relation: http://repositorio.unini.edu.mx/id/eprint/15623/ canonical: http://repositorio.unini.edu.mx/id/eprint/15623/ title: Virtual histopathology methods in medical imaging - a systematic review creator: Imran, Muhammad Talha creator: Shafi, Imran creator: Ahmad, Jamil creator: Butt, Muhammad Fasih Uddin creator: Gracia Villar, Santos creator: García Villena, Eduardo creator: Khurshaid, Tahir creator: Ashraf, Imran subject: Biomedicina subject: Ingeniería description: Virtual histopathology is an emerging technology in medical imaging that utilizes advanced computational methods to analyze tissue images for more precise disease diagnosis. Traditionally, histopathology relies on manual techniques and expertise, often resulting in time-consuming processes and variability in diagnoses. Virtual histopathology offers a more consistent, and automated approach, employing techniques like machine learning, deep learning, and image processing to simulate staining and enhance tissue analysis. This review explores the strengths, limitations, and clinical applications of these methods, highlighting recent advancements in virtual histopathological approaches. In addition, important areas are identified for future research to improve diagnostic accuracy and efficiency in clinical settings. date: 2024-11 type: Artículo type: PeerReviewed format: text language: en rights: cc_by_nc_nd_4 identifier: http://repositorio.unini.edu.mx/id/eprint/15623/1/s12880-024-01498-9.pdf identifier: Artículo Materias > Biomedicina Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica Universidad Internacional Iberoamericana México > Investigación > Artículos y libros Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica Universidad Internacional do Cuanza > Investigación > Producción Científica Universidad de La Romana > Investigación > Producción Científica Abierto Inglés Virtual histopathology is an emerging technology in medical imaging that utilizes advanced computational methods to analyze tissue images for more precise disease diagnosis. Traditionally, histopathology relies on manual techniques and expertise, often resulting in time-consuming processes and variability in diagnoses. Virtual histopathology offers a more consistent, and automated approach, employing techniques like machine learning, deep learning, and image processing to simulate staining and enhance tissue analysis. This review explores the strengths, limitations, and clinical applications of these methods, highlighting recent advancements in virtual histopathological approaches. In addition, important areas are identified for future research to improve diagnostic accuracy and efficiency in clinical settings. metadata Imran, Muhammad Talha; Shafi, Imran; Ahmad, Jamil; Butt, Muhammad Fasih Uddin; Gracia Villar, Santos; García Villena, Eduardo; Khurshaid, Tahir y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, santos.gracia@uneatlantico.es, eduardo.garcia@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR (2024) Virtual histopathology methods in medical imaging - a systematic review. BMC Medical Imaging, 24 (1). ISSN 1471-2342 relation: http://doi.org/10.1186/s12880-024-01498-9 relation: doi:10.1186/s12880-024-01498-9 language: en