eprintid: 17412
rev_number: 8
eprint_status: archive
userid: 2
dir: disk0/00/01/74/12
datestamp: 2025-03-25 23:30:10
lastmod: 2025-03-25 23:30:12
status_changed: 2025-03-25 23:30:10
type: article
metadata_visibility: show
creators_name: Ikram, Sunnia
creators_name: Bajwa, Imran Sarwar
creators_name: Ikram, Amna
creators_name: Díez, Isabel de la Torre
creators_name: Uc Ríos, Carlos Eduardo
creators_name: Kuc Castilla, Ángel Gabriel
creators_id: 
creators_id: 
creators_id: 
creators_id: 
creators_id: carlos.uc@unini.edu.mx
creators_id: 
title: Obstacle Detection and Warning System for Visually Impaired Using IoT Sensors
ispublished: pub
subjects: uneat_eng
divisions: uneatlantico_produccion_cientifica
divisions: uninimx_produccion_cientifica
divisions: uniromana_produccion_cientifica
full_text_status: public
keywords: Obstacle detection, IoT, sensors, visually impaired, machine learning, android application
abstract: Ensuring safe and independent mobility for visually impaired individuals requires efficient obstacle detection systems. This study introduces an innovative smart knee glove, integrating machine learning technologies for real-time obstacle detection and alerting. The system is equipped with ultrasonic sensor, PIR sensor and a buzzer, with data processing managed by an Arduino Uno microcontroller. To enhance detection accuracy, multiple machine learning algorithms including Decision Tree (DT), Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Random Forest (RF) and Gaussian Naïve Bayes (GNB) are utilized. A novel Voting Classifier ensemble method is proposed, effectively combining the strengths of these classifiers to maximize performance. Rigorous cross-fold validation ensures robust evaluation under varying conditions. Experimental results demonstrates that the system achieves an impressive 98.34% detection accuracy within a 4-meter range, with high precision, recall and F1 scores. These findings underscore the system’s reliability and potential to empower visually impaired users with safer, more autonomous navigation, marking a significant advancement in obstacle detection technologies.
date: 2025-02
publication: IEEE Access
volume: 13
pagerange: 35309-35321
id_number: doi:10.1109/ACCESS.2025.3543299
refereed: TRUE
issn: 2169-3536
official_url: http://doi.org/10.1109/ACCESS.2025.3543299
access: open
language: en
citation:   Artículo Materias > Ingeniería <http://repositorio.unini.edu.mx/view/subjects/uneat=5Feng.html> Universidad Europea del Atlántico > Investigación > Producción Científica <http://repositorio.unini.edu.mx/view/divisions/uneatlantico=5Fproduccion=5Fcientifica.html>
Universidad Internacional Iberoamericana México > Investigación > Artículos y libros <http://repositorio.unini.edu.mx/view/divisions/uninimx=5Fproduccion=5Fcientifica.html>
Universidad de La Romana > Investigación > Producción Científica <http://repositorio.unini.edu.mx/view/divisions/uniromana=5Fproduccion=5Fcientifica.html> Abierto Inglés Ensuring safe and independent mobility for visually impaired individuals requires efficient obstacle detection systems. This study introduces an innovative smart knee glove, integrating machine learning technologies for real-time obstacle detection and alerting. The system is equipped with ultrasonic sensor, PIR sensor and a buzzer, with data processing managed by an Arduino Uno microcontroller. To enhance detection accuracy, multiple machine learning algorithms including Decision Tree (DT), Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Random Forest (RF) and Gaussian Naïve Bayes (GNB) are utilized. A novel Voting Classifier ensemble method is proposed, effectively combining the strengths of these classifiers to maximize performance. Rigorous cross-fold validation ensures robust evaluation under varying conditions. Experimental results demonstrates that the system achieves an impressive 98.34% detection accuracy within a 4-meter range, with high precision, recall and F1 scores. These findings underscore the system’s reliability and potential to empower visually impaired users with safer, more autonomous navigation, marking a significant advancement in obstacle detection technologies. metadata Ikram, Sunnia; Bajwa, Imran Sarwar; Ikram, Amna; Díez, Isabel de la Torre; Uc Ríos, Carlos Eduardo y Kuc Castilla, Ángel Gabriel mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, carlos.uc@unini.edu.mx, SIN ESPECIFICAR     <http://repositorio.unini.edu.mx/id/eprint/17412/1/Obstacle_Detection_and_Warning_System_for_Visually_Impaired_Using_IoT_Sensors.pdf>     (2025) Obstacle Detection and Warning System for Visually Impaired Using IoT Sensors.  IEEE Access, 13.  pp. 35309-35321.  ISSN 2169-3536     
document_url: http://repositorio.unini.edu.mx/id/eprint/17412/1/Obstacle_Detection_and_Warning_System_for_Visually_Impaired_Using_IoT_Sensors.pdf