Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Artículos y libros
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Cerrado Inglés Recently, the Internet of Medical Things (IoMT) could offload healthcare services to 5 G edge computing for low latency. However, some existing works assumed altruistic patients will sacrifice Quality of Service (QoS) for the global optimum. For priority-aware and deadline-sensitive healthcare, this sufficient and simplified assumption will undermine the engagement enthusiasm, i.e., unfairness. To address this issue, we propose a long-term proportional fairness-driven 5 G edge healthcare, i.e., FairHealth. First, we establish a long-term Nash bargaining game to model the service offloading, considering the stochastic demand and dynamic environment. We then design a Lyapunov-based proportional-fairness resource scheduling algorithm, which decouples the long-term fairness problem into single-slot sub-problems, realizing a trade-off between service stability and fairness. Moreover, we propose a block-coordinate descent method to iteratively solve non-convex fair sub-problems. Simulation results show that our scheme can improve 74.44% of the fairness index (i.e., Nash product), compared with the classic global time-optimal scheme. metadata Lin, Xi; Wu, Jun; Bashir, Ali Kashif; Yang, Wu; Singh, Aman y AlZubi, Ahmad Ali mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, aman.singh@uneatlantico.es, SIN ESPECIFICAR (2022) FairHealth: Long-Term Proportional Fairness-Driven 5G Edge Healthcare in Internet of Medical Things. IEEE Transactions on Industrial Informatics. pp. 1-10. ISSN 1551-3203