Current- and Voltage-Actuated Transmission Line Protection Scheme Using a Hybrid Combination of Signal Processing Techniques
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Artículos y libros
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Abierto
Inglés
This paper presents a current- and voltage-driven protection scheme for transmission lines based on a hybrid mix of Stockwell transform (ST) and Hilbert transform (HT). Use of both current and voltage waveforms to detect and categorize faults, improves the reliability of this protection scheme and avoids false tripping. Current and voltage waveforms captured during a period of fault are analyzed using ST to compute a median intermediate fault index (MIFI), a maximum value intermediate fault index (MVFI), and a summation intermediate fault index (SIFI). Current and voltage signals are analyzed via applying HT to compute a Hilbert fault index (HFI). The proposed hybrid current and voltage fault index (HCVFI) is obtained from the MIFI, MVFI, SIFI, and HFI. A threshold magnitude for this hybrid current and voltage fault index (HCVFITH) is set to 500 to identify the faulty phase. The HCVFIT is selected after testing the method for various conditions of different fault locations, different fault impedances, different fault occurrence angles, and reverse flows of power. Fault classification is performed using the number of faulty phases and an index for ground detection (IGD). The ground involved in a fault is detected by comparison of peak IGD magnitude with a threshold for ground detection (THGD). THGD is considered equal to 1000 in this study. The study is carried out using a two-terminal transmission line modeled in MATLAB software. The performance of the proposed technique is better compared to a discrete wavelet transform (DWT)-based technique, a time–frequency approach, and an alienation method. Our algorithm effectively detected an AG fault, observed on a practical transmission line.
metadata
Tang, Ligang; Mahela, Om Prakash; Khan, Baseem y Miró Vera, Yini Airet
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, yini.miro@uneatlantico.es
(2023)
Current- and Voltage-Actuated Transmission Line Protection Scheme Using a Hybrid Combination of Signal Processing Techniques.
Sustainability, 15 (7).
p. 5715.
ISSN 2071-1050
Texto
sustainability-15-05715.pdf Available under License Creative Commons Attribution. Descargar (1MB) |
Resumen
This paper presents a current- and voltage-driven protection scheme for transmission lines based on a hybrid mix of Stockwell transform (ST) and Hilbert transform (HT). Use of both current and voltage waveforms to detect and categorize faults, improves the reliability of this protection scheme and avoids false tripping. Current and voltage waveforms captured during a period of fault are analyzed using ST to compute a median intermediate fault index (MIFI), a maximum value intermediate fault index (MVFI), and a summation intermediate fault index (SIFI). Current and voltage signals are analyzed via applying HT to compute a Hilbert fault index (HFI). The proposed hybrid current and voltage fault index (HCVFI) is obtained from the MIFI, MVFI, SIFI, and HFI. A threshold magnitude for this hybrid current and voltage fault index (HCVFITH) is set to 500 to identify the faulty phase. The HCVFIT is selected after testing the method for various conditions of different fault locations, different fault impedances, different fault occurrence angles, and reverse flows of power. Fault classification is performed using the number of faulty phases and an index for ground detection (IGD). The ground involved in a fault is detected by comparison of peak IGD magnitude with a threshold for ground detection (THGD). THGD is considered equal to 1000 in this study. The study is carried out using a two-terminal transmission line modeled in MATLAB software. The performance of the proposed technique is better compared to a discrete wavelet transform (DWT)-based technique, a time–frequency approach, and an alienation method. Our algorithm effectively detected an AG fault, observed on a practical transmission line.
Tipo de Documento: | Artículo |
---|---|
Palabras Clave: | fault event; Hilbert transform; signal processing technique; Stockwell transform; transmission line; protection scheme |
Clasificación temática: | Materias > Ingeniería |
Divisiones: | Universidad Europea del Atlántico > Investigación > Producción Científica Universidad Internacional Iberoamericana México > Investigación > Artículos y libros Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica |
Depositado: | 30 Abr 2024 22:46 |
Ultima Modificación: | 30 Abr 2024 22:51 |
URI: | https://repositorio.unini.edu.mx/id/eprint/10591 |
Acciones (logins necesarios)
Ver Objeto |
<a href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.
Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,
Alemany Iturriaga
<a href="/15198/1/nutrients-16-03859.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Carotenoids Intake and Cardiovascular Prevention: A Systematic Review
Background: Cardiovascular diseases (CVDs) encompass a variety of conditions that affect the heart and blood vessels. Carotenoids, a group of fat-soluble organic pigments synthesized by plants, fungi, algae, and some bacteria, may have a beneficial effect in reducing cardiovascular disease (CVD) risk. This study aims to examine and synthesize current research on the relationship between carotenoids and CVDs. Methods: A systematic review was conducted using MEDLINE and the Cochrane Library to identify relevant studies on the efficacy of carotenoid supplementation for CVD prevention. Interventional analytical studies (randomized and non-randomized clinical trials) published in English from January 2011 to February 2024 were included. Results: A total of 38 studies were included in the qualitative analysis. Of these, 17 epidemiological studies assessed the relationship between carotenoids and CVDs, 9 examined the effect of carotenoid supplementation, and 12 evaluated dietary interventions. Conclusions: Elevated serum carotenoid levels are associated with reduced CVD risk factors and inflammatory markers. Increasing the consumption of carotenoid-rich foods appears to be more effective than supplementation, though the specific effects of individual carotenoids on CVD risk remain uncertain.
Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Thomas Prola mail thomas.prola@uneatlantico.es, Raquel Martínez Díaz mail raquel.martinez@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,
Sumalla Cano
<a href="/14584/1/s41598-024-73664-6.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
The evolution of the COVID-19 pandemic has been associated with variations in clinical presentation and severity. Similarly, prediction scores may suffer changes in their diagnostic accuracy. The aim of this study was to test the 30-day mortality predictive validity of the 4C and SEIMC scores during the sixth wave of the pandemic and to compare them with those of validation studies. This was a longitudinal retrospective observational study. COVID-19 patients who were admitted to the Emergency Department of a Spanish hospital from December 15, 2021, to January 31, 2022, were selected. A side-by-side comparison with the pivotal validation studies was subsequently performed. The main measures were 30-day mortality and the 4C and SEIMC scores. A total of 27,614 patients were considered in the study, including 22,361 from the 4C, 4,627 from the SEIMC and 626 from our hospital. The 30-day mortality rate was significantly lower than that reported in the validation studies. The AUCs were 0.931 (95% CI: 0.90–0.95) for 4C and 0.903 (95% CI: 086–0.93) for SEIMC, which were significantly greater than those obtained in the first wave. Despite the changes that have occurred during the coronavirus disease 2019 (COVID-19) pandemic, with a reduction in lethality, scorecard systems are currently still useful tools for detecting patients with poor disease risk, with better prognostic capacity.
Pedro Ángel de Santos Castro mail , Carlos del Pozo Vegas mail , Leyre Teresa Pinilla Arribas mail , Daniel Zalama Sánchez mail , Ancor Sanz-García mail , Tony Giancarlo Vásquez del Águila mail , Pablo González Izquierdo mail , Sara de Santos Sánchez mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,
de Santos Castro
<a href="/14915/1/s41598-024-74357-w.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Diabetes is a persistent health condition led by insufficient use or inappropriate use of insulin in the body. If left undetected, it can lead to further complications involving organ damage such as heart, lungs, and eyes. Timely detection of diabetes helps obtain the right medication, diet, and exercise plan to lead a healthy life. ML approach has been utilized to obtain rapid and reliable diabetes detection, however, existing approaches suffer from the use of limited datasets, lack of generalizability, and lower accuracy. This study proposes a novel feature extraction approach to overcome these limitations by using an ensemble of convolutional neural network (CNN) and long short-term memory (LSTM) models. Multiple datasets are combined to make a larger dataset for experiments and multiple features are utilized for investigating the efficacy of the proposed approach. Features from the extra tree classifier, CNN, and LSTM are also considered for comparison. Experimental results reveal the superb performance of CNN-LSTM-based features with random forest model obtaining a 0.99 accuracy score. This performance is further validated by comparison with existing approaches and k-fold cross-validation which shows the proposed approach provides robust results.
Furqan Rustam mail , Ahmad Sami Al-Shamayleh mail , Rahman Shafique mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, J. Pablo Miramontes Gonzalez mail , Imran Ashraf mail ,
Rustam
<a href="/14916/1/s41598-024-75833-z.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Assessment of side effects associated with COVID-19 vaccination is required to monitor safety issues and acceptance of vaccines in the long term. We found a significant knowledge gap in the safety profile of COVID-19 vaccines in Bangladesh. We enrolled 1805 vaccine recipients from May 5, 2021, to April 4, 2023. Kruskal-Wallis test and χ2 test were performed. Multivariable logistic regression was also performed. First, second and third doses were administered among 1805, 1341, and 923 participants, respectively. Oxford–AstraZeneca (2946 doses) was the highest administered followed by Sinopharm BIBP (551 doses), Sinovac (214 doses), Pfizer-BioNTech (198 doses), and Moderna (160 doses), respectively. Pain at the injection site (80-90%, 3200–3600), swelling (85%, 3458), redness (78%, 3168), and heaviness in hand (65%, 2645) were the most common local effects, and fever (85%, 3458), headache (82%, 3336), myalgia (70%, 2848), chills (67%, 2726), muscle pain (60%, 2441) were the most prevalent systemic side effects reported within 48 h of vaccination. Thrombosis was only reported among the Oxford–AstraZeneca recipients (3.5-5.7%). Both local and systemic effects were significantly associated with the Oxford–AstraZeneca (p-value < 0.05), Pfizer–BioNTech (p-value < 0.05), and Moderna (p-value < 0.05) vaccination. Chronic urticaria and psoriasis were reported by 55-60% of the recipients after six months or later. The highest percentage of local and systemic effects after 2nd and 3rd dose were found among recipients of Moderna followed by Pfizer-BioNTech and Oxford–AstraZeneca. Homogenous doses of Oxford–AstraZeneca and heterogenous doses of Moderna and Pfizer-BioNTech were significantly associated with elevated adverse effects. Females, aged above 60 years with preexisting health conditions had higher risks. Vaccination with Pfizer-BioNTech (OR 4.34, 95% CI 3.95–4.58) had the highest odds of severe and long-term effects followed by Moderna (OR 4.15, 95% CI 3.92–4.69) and Oxford–AstraZeneca (OR 3.89, 95% CI 3.45–4.06), respectively. This study will provide an integrated insight into the safety profile of COVID-19 vaccines.
Nadim Sharif mail , Rubayet Rayhan Opu mail , Tama Saha mail , Afsana Khan mail , Abrar Aljohani mail , Meshari A. Alsuwat mail , Carlos O. García mail , Annia A. Vázquez mail annia.almeyda@uneatlantico.es, Khalid J. Alzahrani mail , J. Pablo Miramontes-González mail , Shuvra Kanti Dey mail ,
Sharif