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Clinical phenotypes and short-term
outcomes based on prehospital point-of-
care testing and on-scene vital signs
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Emergency medical services (EMSs) face critical situations that require patient risk classification
based on analytical and vital signs. We aimed to establish clustering-derived phenotypes based on
prehospital analytical and vital signs that allow risk stratification. This was a prospective, multicenter,
EMS-delivered, ambulance-based cohort study considering six advanced life support units, 38 basic
life support units, and four tertiary hospitals in Spain. Adults with unselected acute diseasesmanaged
by the EMS and evacuated with discharge priority to emergency departments were considered
between January 1, 2020, and June 30, 2023. Prehospital point-of-care testing and on-scene vital
signs were used for the unsupervised machine learning method (clustering) to determine the
phenotypes. Then phenotypes were compared with the primary outcome (cumulative mortality (all-
cause) at 2, 7, and 30 days). A total of 7909 patients were included. The median (IQR) age was 64
(51–80) years, 41% were women, and 26% were living in rural areas. Three clusters were identified:
alpha 16.2% (1281 patients), beta 28.8% (2279), and gamma 55% (4349). Themortality rates for alpha,
beta and gamma at 2 days were 18.6%, 4.1%, and 0.8%, respectively; at 7 days, were 24.7%, 6.2%,
and 1.7%; and at 30 days, were 33%, 10.2%, and 3.2%, respectively. Based on standard vital signs
and blood test biomarkers in the prehospital scenario, three clusters were identified: alpha (high-risk),
beta and gamma (medium- and low-risk, respectively). This permits the EMSsystem to quickly identify
patients who are potentially compromised and to proactively implement the necessary interventions.

Emergency medical services (EMSs) must manage acute life-threatening
illness aspart of the standardworkflow.EMSprovidersmustperform timely
decision-makingwithout delay and indynamic, critical scenarios. Thequick
targeting of high-risk patients represents a major challenge in prehospital
care1, and new strategies to improve their timely recognition are being

continuously implemented2. Accordingly, the application of scores, bio-
markers, risk models, and other markers is becoming routine in clinical
practice3.

In patientswithout a clear acute life-threatening illness, on-scene blood
testsmay assist in screening for hidden high-risk conditions, e.g., electrolyte
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disturbances, metabolic-endocrine diseases, respiratory failure, anemia, or
renal insufficiency4. Point-of-care testing (POCT) allows blood test results,
including venous or arterial blood gas levels, renal profile, glucose, lactate,
hematocrit, hemoglobin, troponin, D-dimer, myoglobin, and international
normalized ratio, to be obtained. The POCT provides EMS healthcare
personnel a quick (fewminutes) bedside analytical data, whichwas formerly
reserved for hospital use exclusively, but now helps and supports the on-
scene decision-making process5.

In addition, precision emergency medicine is a hot research area. In
prehospital critical care, early warning scores, risk scales, and predictive
models are commonly used to detect time-dependent diseases and their
short- and long-term prognoses6,7. Likewise, phenotypes are increasingly
used to identify certain pathophysiological conditions in hospitals8,9, and
they are applied in the prehospital setting10,11.

To our knowledge, there is limited evidence on phenotypes in pre-
hospital care12,13. Accordingly, we aimed to develop clustering-derived
phenotypes in patients with acute life-threatening illnesses based on vital
signs and biomarkers collected by EMS upon initial emergency care. Fur-
thermore,weaimed todetermine the short- andmidtermprognoses of these
patients and the diseases associated with each phenotype.

Results
From an original population of 11,182 patients, 8136 were considered eli-
gible, and 7909 (97.2%) subjects satisfied the inclusion criteria and were
included in the final cohort analysis (Fig. 1). The median (IQR) age was 64
(51–80) years, 41% were women, and 26% were living in rural areas
(Table 1). Clinical characterization via unsupervised machine learning
revealed three clinical phenotypes that exhibited marked differences.

The clustering procedure was preceded by a reduction in dimension-
ality.As shown in SupplementaryFig. 1, thefirst three dimensions explained
81.9% of the variance. The principal component analysis output was sub-
sequently used for the clustering procedure, as shown in Supplementary Fig.
2. The most parsimonious clustering model was the ellipsoidal, varying
volume, shape, and orientation (VVV)model.Moreover, when the number

of clusters was increased, the clustering model was stable, and no major
difference in the BIC was found, suggesting that the VVV model and the
clinically selected number of clusters were supported by the BIC results. The
cluster results and an explanation of clinical criteria for the selection of the
number of clusters are shown in Supplementary Fig. 3.

The alpha phenotype was found in 16.2% (1281) of the patients, with a
median age of 74 years, 41.7% (534 patients) female sex, an ALS evacuation
rate of 76.3% (978 patients) and a nursing home origin of 21.7% (278
patients). The beta phenotype accounted for 28.8% (2279) of the patients,
with amedian age of 72 years and 39.8% (906 patients) female sex; 32.4% of
the ALS patients evacuated and 11.8% (269 patients) evacuated from the
origin of the nursinghome.Overall, the gammaphenotype represented 55%
(4349) of the patients, with amedian age of 62 years; 42.3% (1840) of whom
were females; 41.5% (1804 patients) who underwent ALS transfer; and 6%
(261 patients) who were from nursing homes (Table 1).

On-scene vital signs also showed significant differences between the
clusters. The alpha phenotype exhibited increased respiratory and cardiac
rates anddecreased saturation, SaFi, bloodpressure andGlasgowcoma scale
(p < 0.001 in all patients).Differences acrossphenotypeswere also evident in
blood biomarkers, with significant differences among other parameters in
pH, partial pressure of carbon dioxide, lactate, creatinine, and glucose
(p < 0.001 in all) (Table 1).

The distribution of suspected prehospital diagnoses in each cluster is
shown in Fig. 2. Patients with acute life-threatening diseases were assigned
by the unsupervised clustering method to the alpha phenotype and a priori
less severe diseases or nonspecific syndromic conditions to the other two
clusters. Accordingly, patients with the alpha phenotype were characterized
by cardiac arrest, heart failure (including congestive heart failure) and
dyspnea, followed by febrile syndrome, sepsis, and COVID-19; those with
the beta phenotype displayed several heterogeneous conditions: tachyar-
rhythmias, syncope, seizures, stroke, acute chest pain and poisoning; and
those with the gamma phenotype presented syncope, acute chest pain,
stroke, poisoning, orthopedic trauma, and seizures.

The 2-day mortality rates were 18.6%, 4.1%, and 0.8% for the alpha,
beta and gammaphenotypes, respectively.Moreover, 24.7%, 6.2%, and1.7%
of the patients died within 7 days, and 33%, 10.2%, and 3.2% died within
30 days (Table 2). In addition to mortality disparities, the alpha phenotype
stood out due to an increased requirement for on-scene advanced life
support interventions, associated burden of comorbidities, and major ICU
admissions. Survival analysis revealed that the hazard ratios (HRs) for
mortality in patients with the beta and alpha phenotypeswere 3.37 (95%CI:
2.73–4.16) and 12.8 (95% CI: 10.6–15.6), respectively, when gamma was
used as a reference (Supplementary Table 1). As shown in Fig. 3, the highest
mortality in the alpha phenotype occurred immediately, while the beta and
gamma phenotypes separated within the first five days. All three curves
slowed (shallow slopes) as time progressed. Supplementary Fig. 4 shows the
survival curves of the three clustering-derived phenotypes as compared to
low, medium, and high-risk categories of modified early warning score
(MEWS). The mortality curves of each phenotype matched the mortality
curve of each risk category ofMEWS, this is, gamma phenotypewas parallel
to low-risk, beta to intermediate risk, and alpha to high risk, but always with
phenotypes curves below the MEWS ones.

Finally, a clustering of the gamma phenotype was performed (Sup-
plementary Fig. 5, 6, 7). The three gamma subclusters (n = 1321, 1704 and
1324 for gamma #1, #2, and #3, respectively) showed that mortality was
higher for gamma #1 (1.14%, 2.8%, and 5.37%, at 2, 7 and 30-daymortality),
followed by gamma #3 (1.06%, 2.19%, and 3.39%, at 2, 7 and 30-day
mortality), the gamma #2 phenotype presented the lowest mortality rate
(0.23%, 0.47%, and 0.82%, at 2, 7 and 30-day mortality) (Supplementary
Table 2).

Discussion
Our study described different phenotypes with increasing severity based
only on on-scene variables and biomarkers in adults with unselected acute
diseases managed by EMSwhowere evacuated with priority to the ED. TheFig. 1 | Study flowchart. ROSC recovery of spontaneous circulation.
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Table 1 | Clinical and biomarker baseline patient characteristics

Phenotype

Total Alpha Beta Gamma p valueb

No. (%) with dataa 7909 (100) 1281 (16.2) 2279 (28.8) 4349 (55) N.A.

Sociodemographic variables

Sex at birth, female 3280 (41) 534 (41.7) 906 (39.8) 1840 (42.3) 0.132

Age, year 64 (51–80) 74 (62–84) 72 (56–82) 62 (47–78) <0.001

Age groups, year

18–49 1679 (21.2) 148 (11.6) 371 (16.3) 1253 (28.8) <0.001

50–74 3128 (39.5) 501 (39.1) 887 (38.9) 1740 (40)

>75 3009 (38.0) 632 (49.3) 1021 (44.8) 1356 (31.2)

Zone, rural 2053 (26.0) 380 (29.7) 564 (24.7) 1109 (25.5) 0.031

Transfer, ALS 2846 (36.0) 978 (76.3) 739 (32.4) 1804 (41.5) <0.001

Nursing homes 808 (10.2) 278 (21.7) 269 (11.8) 261 (6) <0.001

On-scene vital signs

Respiratory rate, breaths/min 18 (14–23) 26 (17–33) 18 (15–24) 17 (14–19) <0.001

Oxygen saturation, % 96 (94–98) 86 (76–94) 95 (92–97) 98 (96–99) <0.001

Fraction of inspired oxygen, % 0.21 (0.21–0.21) 0.21 (0.21–0.31) 0.21 (0.21–0.21) 0.21 (0.21–0.21) <0.001

SaFi 459 (442–466) 343 (257–398) 452 (438–462) 467 (457–471) <0.001

Systolic blood pressure, mmHg 134 (114–153) 129 (99–155) 133 (112–152) 136 (119–153) <0.001

Diastolic blood pressure, mmHg 79 (65–90) 72 (55–89) 77 (63–90) 80 (69–91) <0.001

Mean blood pressure, mmHg 96 (93–110) 92 (71–110) 96 (81–110) 99 (87–111) <0.001

Heart rate, beats/min 85 (70–104) 103 (80–120) 97 (77–121) 79 (67–90) <0.001

Temperature, °C 36.1 (35.9–36.6) 36.2 (35.8–36.8) 36.1 (35.9–36.7) 36 (35.9–36.5) <0.001

Glasgow coma scale, points

Ocular 4 (4–4) 4 (2–4) 4 (4–4) 4 (4–4) <0.001

Verbal 5 (5–5) 5 (2–5) 5 (5–5) 5 (5–5) <0.001

Motor 6 (6–6) 6 (4–6) 6 (6–6) 6 (6–6) <0.001

MEWS categories <0.001

low risk (0–1) 4297 (54.3) 247 (19.3) 863 (37.9) 3187 (73.3)

intermediate risk (2–3) 1967 (24.8) 327 (25.5) 42 (32.6) 898 (20.6)

high risk (≥4) 1645 (20.7) 707 (55.2) 674 (29.6) 264 (6.07)

ISSc 2 (1–9) 16 (9–16) 4 (1–16) 1 (1–4) <0.001

Prehospital blood analysis

pH 7.38 (7.33–7.42) 7.31 (7.14–7.38) 7.37 (7.32–7.42) 7.39 (7.36–7.42) <0.001

pCO2, mmHg 40 (34–46) 48 (38–67) 40 (34–46) 39 (33–44) <0.001

pO2, mmHg 31 (23–40) 23 (17–35) 30 (22–41) 32 (23–41) <0.001

Bicarbonate, mEq 23 (21–26) 22 (18–27) 23 (20–26) 24 (22–27) <0.001

Base excess (ecf), mmol/L 0.4 (−2.4; 1.9) −1.8 (−7.2; 2.4) −0.3 (−3; 1.7) 0.7 (−1.6; 1.9) <0.001

TCO2, mmol/L 26 (23–29) 27 (22–34) 26 (22–29) 26 (23–28) <0.001

Sodium, mmol/L 139 (137–141) 139 (136–141) 139 (136–141) 139 (137–141) <0.001

Potassium, mmol/L 4.1 (3.8–4.5) 4.2 (3.9–5) 4.1 (3.8–4.6) 4.1 (3.8–4.4) <0.001

Calcium, mmol/L 1.14 (1.08–1.21) 1.14 (1.04–1.22) 1.14 (1.08–1.21) 1.14 (1.08–1.21) 0.039

Chlorine, mmol/L 103 (100–106) 103 (100–107) 103 (100–106) 103 (100–105) 0.011

Hematocrit, % 42 (39–45) 41 (36–45) 41 (38–45) 42 (39–45) <0.001

Hemoglobin, g/dL 14.1 (12.8–15.7) 13.8 (12.1–15.7) 14 (12.6–15.7) 14.2 (13–15.7) <0.001

Glucose, mg/dL 126 (104–160) 183 (130–275) 160 (120–197) 113 (99–132) <0.001

Lactate, mmol/L 2.14 (1.28–3.29) 3.29 (2.13–6.29) 2.43 (1.59–3.74) 1.83 (1.13–2.82) <0.001

Creatinine, mg/dL 0.91 (0.76–1.21) 1.21 (0.88–1.86) 0.96 (0.79–1.28) 0.86 (0.75–1.08) <0.001

Blood urea nitrogen, mg/dL 16 (12–23) 24 (16–37) 18 (13–26) 14 (11–20) <0.001

Osmolarity, mOsm/kg 291 (287–297) 298 (290–307) 294 (288–299) 290 (286–294) <0.001

GAP anion, mmol/L 11.6 (8.3–15.2) 11.8 (7.5–16.6) 11.8 (8.3–15.6) 11.5 (8.4–14.6) 0.026

Urinary anion, mmol/L 40.1 (37.1–42.9) 39.9 (36.1–43.2) 40 (36.8–42.8) 40.3 (37.5–42.8) 0.002

Potassium anion, mmol/L 15.8 (12.5–19.3) 16.2 (11.9–21.3) 16 (12.6–17.9) 15.7 (12.6–18.7) <0.001

NA not applicable, ALS advanced life support, SaFi ratio pulse oximetry saturation/fraction of inspired oxygen ratio, pCO2 partial pressure of carbon dioxide, pO2 partial pressure of oxygen, TCO2 total
carbon dioxide content, ISS Injury Severity Score,MEWSModified Early Warning Score.
aValues are expressed as the total number (percentage) and median (25th percentile-75th percentile), as appropriate.
bThe Mann‒Whitney U test or chi-squared test was used as appropriate.
cNote that ISS was only determined in trauma patients.
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alpha and beta phenotypes identified those patients at risk of clinical wor-
sening in a more appropriate way than the intermediate and high-risk of
MEWS,making these clustersmore valuable for triage. This study paves the
way for applying standardized prehospital laboratory tests and routine vital
signs to determine bedside phenotypes. Phenotyping to target critical care
and support the decision-making process might become commonplace in
clinical practice. This methodology is already well established for sepsis,
chronic obstructive pulmonary disease/asthma, and heart failure9,14. More
recently, it has been used to develop real-time solutions against COVID-
1915. Nevertheless, phenotyping during prehospital critical care is emerging
tentatively12,16,17.

Based on 30 variables (sociodemographic, clinical, and analytical
biomarkers) collected during prehospital care and blinded to the main
dependent outcome, three clustering-derived phenotypes were identified.
The alpha phenotype was characterized by a compromised clinical condi-
tion (tachypnea, desaturation, impaired SaFi, lower blood pressure, tachy-
cardia, and a poorer consciousness level), associated with acidosis,
hypercapnia, negative base excess, hyperlactacidemia, an abnormal renal
profile (creatinine and blood urea nitrogen rises) and hyperglycemia; such
patients presented amarked dependence over time for on-scene life support
interventions, the greatest rates of ICU admissions, and mortality (3-times
greater for thebetaphenotype and10-times greater for thealphaphenotype,
both compared to gamma). Next, patients in the beta phenotype were
characterized by an improved acid‒base balance, increased blood oxygen,
mild hyperlactacidemia, a renal profile that returned to target ranges, and
mild hyperglycemia. Finally, most of the gamma phenotype patients pre-
sented results within normal ranges.

As previously mentioned, the suspected prehospital diagnoses vary
largely by phenotype; the alpha phenotype is characterized by severe heart
disease and other conditions associated with high short- and long-term
morbidity and mortality18. The beta phenotype conditions were highly
heterogeneous. Finally, the gamma phenotype included a priori less severe
diseases or nonspecific syndromic conditions. Our results aligned well with
previous evidence, pooling in one cluster of critically ill patients14,19.

Consistently, the alpha phenotype was associated with high-level on-
scene advanced life support interventions, ICU admissions, frequent
advanced airway management and intravenous medication. This finding
contrastedwith thefindings of beta phenotypes, particularlywith the gamma
phenotype, which requires less use of health services, which even more
critical for the gamma subcluster #2, presenting a very lowmortality rate of

Fig. 2 | Distribution of suspected prehospital diagnoses. Chord diagram repre-
senting the distribution of suspected prehospital diagnoses in each cluster. The blue
line = alpha (C1), the green line = beta (C2), and the red line = gamma (c3).

Table 2 | Principal outcomes and other determinants

Phenotype

Alpha Beta Gamma p valueb

No. (%) with dataa 1281
(16.2)

2279
(28.8)

4349 (55) N.A.

Support on-scene

NIMV 246 (19.2) 41 (1.8) 6 (0.1) <0.001

IMV 260 (20.3) 130 (5.7) 95 (2.2) <0.001

Pacemaker 26 (2) 34 (1.5) 42 (1) 0.007

Cardioversion 19 (1.5) 60 (2.6) 3 (0.1) <0.001

Defibrillation 75 (5.9) 12 (0.5) 8 (0.2)

Intravenous medication, quantity

No medication 52 (4.1) 416 (18.3) 1316 (30.3) <0.001

1 122 (9.5) 587 (25.8) 1258 (28.9)

2 176 (13.7) 427 (18.7) 837 (19.2)

3 204 (15.9) 363 (15.9) 467 (10.7)

4 219 (17.1) 243 (10.7) 272 (6.3)

5 222 (17.3) 133 (5.8) 125 (2.9)

6 163 (12.7) 66 (2.9) 57 (1.3)

7 or more 123 (9.6) 44 (1.9) 17 (0.4)

Vasoactive agents 145 (11.3) 36 (1.6) 11 (0.3) <0.001

Suspected prehospital diagnoses

Abdominal pain/GB 22 (1.7) 107 (4.7) 213 (4.9) <0.001

Abdominal trauma 2 (0.2) 13 (0.6) 16 (0.4)

Acute chest pain 19 (1.5) 158 (6.9) 578 (13.3)

Acute myocardial
infarction

52 (4.1) 134 (5.9) 278 (6.4)

Anaphylaxis 16 (1.2) 24 (1.1) 41 (0.9)

Bradyarrhythmia 9 (0.7) 31 (1.4) 44 (1)

Burns 6 (0.5) 9 (0.4) 19 (0.4)

Cardiac arrest 117 (9.1) 14 (0.6) 7 (0.2)

Confusional syndrome 3 (0.2) 18 (0.8) 28 (0.6)

Congestive heart failure 104 (8.1) 15 (0.7) 2 (0)

COPD/dyspnea 237 (18.5) 125 (5.5) 86 (2)

Headache 2 (0.2) 1 (0) 32 (0.7)

Heart failure 137 (10.7) 102 (4.5) 46 (1.1)

Hypertensive crisis 10 (0.8) 18 (0.8) 87 (2)

Infection/febrile
syndrome

74 (5.8) 120 (5.3) 125 (2.9)

Metabolic disease 64 (5) 56 (2.5) 22 (0.5)

Orthopedic trauma 3 (0.2) 53 (2.3) 346 (8)

Poisoning 41 (3.2) 155 (6.8) 419 (9.6)

Polytraumatized 44 (3.4) 58 (2.5) 60 (1.4)

SARS-CoV-2 50 (3.9) 49 (2.2) 60 (1.4)

Seizures 35 (2.7) 182 (8) 329 (7.6)

Sepsis 82 (6.4) 56 (2.5) 17 (0.4)

Status epilepticus 8 (0.6) 15 (0.7) 9 (0.2)

Stroke 49 (3.8) 175 (7.7) 420 (9.7)

Syncope 35 (2.7) 224 (9.8) 589 (13.5)

Tachyarrhythmia 23 (1.8) 234 (10.3) 50 (1.1)

Thoracic trauma 7 (0.5) 21 (0.9) 55 (1.3)

Transient ischemic
attack

3 (0.2) 32 (1.4) 137 (3.2)

Trauma brain injury 31 (2.4) 79 (3.5) 234 (5.4)
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less than 1%, therefore, requiring lower attention by the EMS. Clinical
evidence suggests an association betweenunplannedmechanical ventilation
and mortality, just as concomitant administration of medication correlates
with a worse prognosis20, thus suggesting that the group of patients who
meet these criteria are in themost critical phenotype category. As expected,
the cluster with the poorest outcomes (alpha) mostly included elderly
patients and was more burdened by comorbidities. Several risk scores
consider age and comorbidities as vulnerability indicators, such as the
aCCI21. Frailty syndrome is a well-described multidimensional condition
that, despite individual variability, constitutes a focal point directly related to
poor outcomes. As age and comorbidities progress, physiological and psy-
chosocial reserves may be jeopardized, enhancing clinical vulnerability22.

An innovative objective of this studywas to conduct phenotyping with
ultra-early (first contactwith patients by the EMS staff) analytical data based

on prospective and standardized POCT. From primitive capillary gluc-
ometers to current POCTs, technological advances have favored the pro-
duction of novel devices available on-scene with reduced dimensions that
are portable, robust and highly reliable, making them an ideal solution for
deployment in ambulances3. Due to the support provided by POCT, EMS
providers obtain crucialmedical data quickly during the turnaround period;
otherwise, the data are retrieved only from the hospital. We demonstrated
that objective and structured clinical evaluation combined with biomarker
testing in acute life-threatening diseases can guide targeted life support
interventions on-scene or en route and optimize decision-making processes
in prehospital critical care, all of which are aligned with international
guideline recommendations5,23.

Phenotyping has begun to be incorporated in particular diseases,
mainly in the hospital setting.García-Vidal, C. et al.24 developed a system for
the timely detection of high-risk patients during the first wave of the last
COVID-19 pandemic. Using artificial intelligence techniques, they were
able to identify three phenotypes: inflammation, superinfection and
thrombotic events. Their system analyzed data in real time, allowing early
decisions and quick personalized treatments, with a 90% prediction of
patient evolution and a 50% reduction inmortality. Komorowski, M. et al.25

developed the “AI Clinician”, a computational model based on reinforce-
ment learning capable of dynamically suggesting optimal treatments for
ICU patients with sepsis. Their model uses variables very similar to those
proposed in ourmodel. The AI Clinician was able to suggest individualized
andclinically interpretable treatment strategies for sepsis. In an independent
cohort, patients who received the treatments suggested by the AI Clinician
had the lowest mortality rate. In the prehospital setting, Kang, D. et al.26,
using deep learning algorithms, predicted the need for critical care by the
EMS, with an AUROC of 0.867, outperforming conventional triage tools
and early warning scores.

Unfortunately, prehospital care studies, such as the one from Kang
et al., are exceptions, in part, due to the complexity of out-of-hospital work,
hindering the implementation of EMS systems. The on-scene workflow,
rushed decision-making, and ongoing dramatic interventions make infer-
ring the patient’s phenotype impossible for EMSproviders without support.
Onepossibleway tobridge this gap is to implement the algorithmdeveloped
to derive phenotypes in EMS electronic medical records. In this way, in real
time and at the bedside, the EMS provider could have access to the infor-
mation, supporting the decision-making process. This a priori difficult
adoption of phenotyping could follow the example of scores, which are
routinely employed in health services, e.g., bodymass index, Glasgow coma
scale, CHA2DS2-VASc score for atrial fibrillation stroke risk, etc. EMSs are
not an exception since the use of early warning scores is a reality and
mandatory for the decision-making process. Therefore, since EMS profes-
sionals are accustomed to work with scores, the implementation of phe-
notyping systems in the EMS could be a straightforward process.

The main strength of this study is that, by means of a free-scale
machine learning methodology, we identified a phenotype, alpha, which
comprises medically challenging conditions, with some degree of frailty
and evident clinical disorders (impaired respiratory capacity, hemody-
namic unsteadiness, neurological deterioration, lactic acidosis, hyper-
glycemia, etc.). Sixteen percent of patients, those typically requiring
several advanced life support interventions on-scene, with a large pro-
portion of inpatients admitted to the ICU,were ultimately associated with
elevated mortality. Additionally, this method allowed to characterize
patients which are not easy to identify such as those from beta, gamma,
and even gamma subclusters, increasing the capability of the EMS to
identify true negative patients. This zero-minute flagging of high-risk
patients, based not only on standard vital signs but also on optimal sup-
port from blood test biomarkers, empowers the EMS system to recognize
patients potentially compromised and to proactively implement the
necessary interventions27. In this sense, artificial intelligence represented a
breakthrough, emergingphenotyping as aflexible anduseful solutionwith
a proven risk-based case matching capability, allowing massive data
analysis to classify high-risk patients as sentinel events26. Other strengths

Table 2 (continued) | Principal outcomes and other
determinants

Phenotype

Alpha Beta Gamma p valueb

No. (%) with dataa 1281
(16.2)

2279
(28.8)

4349 (55) N.A.

Hospital outcomes

aCCI, points 6 (4–9) 5 (3–7) 3 (1–5) <0.001

Inpatient 1108
(86.5)

1345 (59) 1793 (41.2) <0.001

ICU-admission 339 (26.5) 281 (12.3) 273 (6.3) <0.001

ACCU-admission 124 (9.7) 200 (8.8) 325 (7.5) 0.021

Stroke unit-admission 15 (1.2) 110 (4.8) 289 (6.6) <0.001

Mortality

2-day 238 (18.6) 93 (4.1) 33 (0.8) <0.001

7-day 316 (24.7) 142 (6.2) 74 (1.7) <0.001

30-day 423 (33) 233 (10.2) 137 (3.2) <0.001

NA not applicable, NIMV noninvasive mechanical ventilation, IMV invasive mechanical ventilation,
GB gastrointestinal bleeding, COPD chronic obstructive pulmonary disease, SARS-CoV-2 severe
acute respiratory syndrome coronavirus 2, aCCI age-adjusted Charlson comorbidity index, ICU
intensive care unit, ACCU acute cardiac care unit.
aValues are expressed as the total number (percentage) and median (25th percentile-75th
percentile), as appropriate.
bThe Mann‒Whitney U test or chi-squared test was used as appropriate.

Fig. 3 | Phenotype survival. Survival curve of each phenotype. The blue line = alpha,
the green line = beta, and the red line = gamma.
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of our study include its large size, population size based on few exclusion
criteria, and real-world setting.

Limitations of the study
However, a number of limitations are worth considering. First, a con-
venience sample was compiled. To minimize bias, a dual strategy was
employed. All adult patients were screened for eligibility on a 24/7/365
basis; in addition, patients with various ALS types from urban and rural
locations and from hospitals with diverse capabilities (one minor general
district hospital and three university tertiary hospitals) were included in
the study. Second, the data extractors were unblinded. To prevent
crossover connections, the EMS providers had no access to the hospital
follow-up data; vice versa, the hospital investigators were unaware of the
prehospital care data; only the principal investigator and the datamanager
received full access to the master database and the phenotyping output.
Third, the EMS medical records are still paper-based and not yet elec-
tronic. Manual review of the patientmedical records attended by the EMS
(the current reference standard for identifying patient cohorts) demands a
significant amount of time and resources. Considerable efforts are being
made by the Public Health system to implement a prehospital electronic
health record system involving both the BLS and ALS, with operational
capacity for real-time transmission of all the information to the ED.
Fourth, despite the rapid expansion of POCT in numerous EMS systems
around us, this technology has not been regularly implemented in all
ambulances or all ALSwards. Finally, the studywas carried out before and
concurrently with the ongoing COVID-19 pandemic. At the peak of the
first wave of the pandemic, EMS activation for acute life-threatening
diseases declined drastically, and the extent of the effect of COVID-19 on
the physiological and psychosocial reserve of surviving patients is unclear.
More research is needed to determine the excess mortality due to non-
COVID-19pathology in theprevaccination stage, and in addition, the role
of COVID-19 in increasing clinical vulnerability in the medium and long
term should be explored.

In summary, based on data collected exclusively in prehospital care,
unselected acute disease patients managed by EMS and transferred to the
ED can be categorized into three phenotypes with different clinical and
prognostic implications. At the first point of care, EMS staff can identify the
risk level, avoid underrated hidden unresolved health conditions and
characterize complex or atypical clinical presentations. Identifying patients
with an alpha phenotype from the initial moments of assistance allows the
development of a personalized strategy, tailoring the level of support and
resources to individual situations, or evendetermining themost appropriate
course of action for each patient. This knowledge provides valuable infor-
mation for bedside decision-making from the outset to design the best
possible care strategy tailored to the individual case.

Methods
Study design and setting
A prospective, multicenter, EMS-delivered, ambulance-based cohort study
was conducted with adults with unselected acute diseases (assistance by an
advanced life support unit -ALS-) managed by EMS who were evacuated
with priority discharge to the ED from January 1, 2020, to June 30, 2023.

The study involved the use of a 1–1–2 emergency coordination center,
six ALS units, 38 basic life support (BLS) units, and four hospitals in Sala-
manca, Segovia andValladolid (Spain), comprising a population of 995,137
inhabitants and comprising urban and rural communities. The public
health system managed and coordinated all the facilities. BLSs include two
emergency medical technicians (EMTs); ALSs are made by an emergency
registered nurse (ERN) and a physician, operating all EMS providers in
compliance with life support guidelines.

Patients were prospectively included uninterruptedly from two studies
conducted under identical research protocols, the “HITS study”
(ISRCTN48326533) and the preBIO study” (ISRCTN49321933), which
were approved by the institutional review board of the PublicHealth Service
and followed the STrengthening the Reporting of OBservational studies in

Epidemiology (STROBE) statement (supplementary material Note 1)28.
Informed consent was obtained from all human participants.

Population
Adults (>18 years) with unselected acute illnesses were screened for elig-
ibility consecutively 24/7/365 by the EMS. Additionally, following an eva-
luation by an ALS physician, to be included in the study, patients had to be
mandatorily referred to the emergency department (ED), either at the BLS
or at the ALS.

Minors, pregnant women (evident or probable), cardiac arrest without
recovery of spontaneous circulation on-scene, end-stage patients (docu-
mented by a report), impossibility to obtain prehospital blood tests (e.g.,
difficulty to establish venous access, breakdownof blood testing device), and
no informed consentwere excluded. Patients requiring prehospital care and
already registered in the database for previous care were excluded.

Outcome
The principal outcome was cumulative mortality (all-cause) at 2, 7, and
30 days. The secondary variables considered included on-scene life support
interventions (advanced airway management, defibrillation or pacemaker
application, and intravenous medication delivery), suspected prehospital
diagnoses (29 different subcategories), hospital outcomes (inpatient,
intensive care unit admission), and 17 comorbidities needed to calculate the
age-adjusted Charlson comorbidity index (aCCI).

Data collection and processing
The EMS providers received prior face-to-face training on the imple-
mentation of the research protocol and standardized data entry into the
database.

Covariates included sociodemographic variables (sex at birth and age);
on-scene vital signs (respiratory rate, oxygen saturation, blood pressure,
heart rate, temperature, and Glasgow coma scale); and prehospital blood
analysis (pH, bicarbonate, excess bases, sodium, potassium, chloride, cal-
cium, hemoglobin, hematocrit, creatinine, blood urea nitrogen, glucose,
lactate, osmolarity, GAP anion, urinary anion, and potassiumanion), which
were obtained by the ERN.Measurementswere collected immediately upon
starting prehospital care on the first patient encounter. Vital signs were
obtained via a LifePAK® 15 monitor-defibrillator (Physio-Control, Inc.,
Redmond, USA), and blood tests were performed by means of an Epoc®
analyzer (SiemensHealthcareGmbH, Erlangen,Germany). The respiratory
rate was monitored by direct observation and counting of breathing cycles
for half a minute; in the case of very shallow or difficult breathing, the
respiratory rate was measured by direct auscultation. Oxygen therapy (by
any method) was also administered at the time of the patient’s diagnosis of
ALS; once the fraction of inspired oxygen was known, the pulse oximetry
saturation/fraction of inspired oxygen ratio (SaFi) was calculated.

After a 30-day follow-up period, data on mortality, comorbidities and
hospital admissions were collected by reviewing the patients’ electronic
medical records. The data were recorded electronically in a database spe-
cifically designed for this purpose, recording the prehospital care variables.
Access was provided by individual passwords and double authentication.
After the data were cleaned (logic, range and consistency tests), a total of 54
variables were analyzed. Once the data were linked, patient identifiers were
anonymized.

Statistical analysis
Descriptive and bivariate statistics for the outcome variables were assessed
by the t test, the Mann‒Whitney U test or the chi-square test, whenever
appropriate. Absolute values and percentages were used for categorical
variables, andmedian interquartile ranges (IQRs) were used for continuous
variables that were not normally distributed. The clustering procedure was
as follows: First, a reduction in dimensionality (principal component ana-
lysis) was used to reduce the number of variables. The most parsimonious
clusteringmodelwas selected by theBayesian information criterion (BIC) to
perform Gaussian mixture modeling for model-based clustering. Since the
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clusters were obtained from the same unsupervised method, all resulted
from the same set of variables. The number of clusters was fixed to three
based on clinical criteria. Finally, each cluster was explored by including the
outcomes, life support interventions, suspected prehospital diagnoses, and
aCCI. Finally, a survival analysis was performed according to each pheno-
type; this was the univariate comparison between each independent variable
and the outcome, assessed by the log-rank test, and the survival curve
according to clusters was obtained using the Kaplan‒Meier method (KM).

The data were collected and registered in a database generatedwith the
IBM SPSS Statistics for Apple version 20.0 software. (IBM Corp, Armonk,
NY, USA). The caseload entry system was tested to delete unclear or
ambiguous values and to verify the adequacy of the data gathering system.
Missing values were random; therefore, a listwise deletionmethodwas used
since it does not induce biased means, variances or regression weight
modifications. The sample size needed for the clustering studies has been
recently estimated29. Due to the characteristics of the clustering procedure,
the phenotypes derived from clustering are driven by large effect sizes or by
the accumulationof small effect sizes among themultiple variables analyzed,
and there is no effect of the covariance structure difference. Therefore, a
small sample size (e.g., N = 20), as stated in ref. 29, allows large cluster
separations.

All calculations and analyses were performed by our own codes, R
packages (mclust30) and base functions in R, version 4.2.2 (http://www.R-
project.org; the R Foundation for Statistical Computing, Vienna, Austria).

Inclusion and ethics statement
All collaborators of this study have fulfilled the criteria for authorship
required byNature Portfolio journals have been included as authors, as their
participation was essential for the design and implementation of the study.
Roles and responsibilities were agreed among collaborators ahead of the
research. This work includes findings that are locally relevant, which have
been determined in collaboration with local partners. This research was not
severely restricted or prohibited in the setting of the researchers, and does
not result in stigmatization, incrimination, discrimination, or personal risk
to participants. Local and regional research relevant to our study was taken
into account in citations.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The datasets used and/or analyzed during the current study are available
from the corresponding author upon reasonable request.

Code availability
The underlying code for this study [and training/validation datasets] is not
publicly available but may be made available to qualified researchers upon
reasonable request from the corresponding author.
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