
Received 27 April 2024, accepted 24 May 2024, date of publication 31 May 2024, date of current version 11 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3407753

Natural Language Processing-Based Software
Testing: A Systematic Literature Review
MOHAMED BOUKHLIF 1, MOHAMED HANINE 1, NASSIM KHARMOUM2,3,
ATENEA RUIGÓMEZ NORIEGA4,5,6, DAVID GARCÍA OBESO 4,7,8,
AND IMRAN ASHRAF 9, (Member, IEEE)
1LTI Laboratory, National School of Applied Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
2IPSS Team, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco
3National Center for Scientific and Technical Research (CNRST), Rabat 10000, Morocco
4Universidad Europea del Atlántico, 39011 Santander, Spain
5Universidad Internacional Iberoamericana, Campeche 24560, Mexico
6Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA
7Universidade Internacional do Cuanza, Cuito, Bié, Angola
8Universidad de La Romana, La Romana, Dominica
9Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Corresponding authors: Imran Ashraf (imranashraf@ynu.ac.kr) and Mohamed Hanine (hanine.m@ucd.ac.ma)

This work was supported by European University of Atlantic.

ABSTRACT New approaches to software testing are required due to the rising complexity of today’s software
applications and the rapid growth of software engineering practices. Among these methods, one that has
shown promise is the introduction of Natural Language Processing (NLP) tools to software testing practices.
NLP has witnessed a rise in popularity within all IT fields, especially in software engineering, where its
use has improved the way we extract information from textual data. The goal of this systematic literature
review (SLR) is to provide an in-depth analysis of the present body of the literature on the expanding
subject of NLP-based software testing. Through a repeatable process, that takes into account the quality
of the research, we examined 24 papers extracted from Web of Science and Scopus databases to extract
insights about the usage of NLP techniques in the field of software testing. Requirements analysis and test
case generation popped up as the most hot topics in the field. We also explored NLP techniques, software
testing types, machine/deep learning algorithms, and NLP tools and frameworks used in the studied body of
literature. This study also stressed some recurrent open challenges that need further work in future research
such as the generalization of the NLP algorithm across domains and languages and the ambiguity in the
natural language requirements. Software testing professionals and researchers can get important insights
from the findings of this SLR, which will help them comprehend the advantages and challenges of using
NLP in software testing.

INDEX TERMS Software testing, natural language processing (NLP), systematic review, test case
generation.

I. INTRODUCTION
In order to guarantee the dependability, functionality, and
general quality of software systems, software testing is an
essential phase in the software engineering process [1].
The importance of rigorous testing increases with the
advancement of technology and the complexity of software

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

programs. In addition to locating and fixing bugs and
vulnerabilities, efficient software testing confirms that the
program satisfies all criteria and operates without any
issues in a variety of environments [2]. It acts as a vital
defense against any malfunctions, security lapses, and user
annoyance. Software testing helps create reliable, resilient,
and user-friendly systems in addition to the immediate
benefits of defect identification. This builds confidence in
developers, stakeholders, and end users alike [3]. The value

VOLUME 12, 2024


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

79383

https://orcid.org/0000-0001-9053-4345
https://orcid.org/0000-0001-5981-2511
https://orcid.org/0009-0007-0427-4243
https://orcid.org/0009-0002-4598-1482
https://orcid.org/0000-0003-3264-185X


M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

of software testing in today’s rapidly changing technological
ecosystem goes far beyond simple error detection; it is
essential to providing dependable, high-quality software
solutions that satisfy a demanding clientele [4].

The use of artificial intelligence (AI) has revolutionized
the world [9]. Its use in software testing signifies a
revolutionary advancement in the search for effectiveness and
accuracy [10]. The testing process is made faster and more
thorough by the automation, adaptive learning, and predictive
capabilities that AI algorithms can offer [11]. AI enhances
software quality by optimizing testing procedures, mini-
mizing manual labor, and generating intelligent test cases
and automated anomaly detection [12]. AI and software
testing work hand in hand to speed up the testing process
and provide developers with the confidence and agility
to handle the complex requirements of modern software
engineering [13], [14].

A direction change has occurred with the use of Natural
Language Processing (NLP) in software testing, which uses
linguistic comprehension to improve many aspects of the
testing environment [15]. Natural language requirements can
be interpreted using NLP approaches, allowing for a more
sophisticated and context-aware testing strategy. NLP adds a
semantic understanding layer to testing, enabling intelligent
test case design based on textual specifications and the
relevant insights extracted from user response [16]. This
combination of software testing with language understanding
speeds up the process of finding ambiguities and inconsisten-
cies and improves communication between development and
testing teams [17]. NLP emerges as an effective companion
as the software industry travels the complexities of many
linguistic areas, transforming software testing, validation,
and refinement [18].

NLP-based software testing confronts a multitude of chal-
lenges and open issues that necessitate careful consideration
and innovative solutions. Firstly, the inherent ambiguity and
variability of natural language pose significant hurdles in
accurately interpreting and analyzing textual artifacts, such
as requirements documents, user stories, and software specifi-
cations. Additionally, the domain-specific nature of software
engineering introduces further complexities, requiring NLP
models to adapt and specialize to diverse linguistic patterns
and terminologies [19]. Furthermore, the scalability and
generalizability of NLP-based testing frameworks remain
elusive goals, with existing approaches often struggling to
cope with the complexities of large-scale software systems
and diverse testing scenarios. Moreover, the interpretability
and trustworthiness of NLP models in the context of
software testing raise profound concerns regarding reliability,
robustness, and ethical considerations [20].
A systematic literature review synthesizes current knowl-

edge in an organized manner, identifies patterns, and high-
lights gaps in the literature, acting as a precise compass across
the enormous expanse of study [21]. It provides a thorough
overview of the current state of a certain subject by using
rigorous procedures for study selection and analysis. This

helps academics, practitioners, and decision-makers make
intelligent choices on future directions and insights [22].

In this study, we followed a thorough and repeatable
process in order to review 24 papers extracted from Scopus
and Web of Science, these papers were published between
2013 and 2023.We extract all helpful insight about the state of
NLP usage in software testing, from famous NLP techniques,
to open challenges, going through machine and deep learning
techniques used in the field.

The subsequent sections of this article are organized as
follows. Section II will commence by discussing related
works in the studied field, followed by an exposition of the
research methodology used in this review in Section III,
Section IV will present the obtained results. The ensuing
Section V will give a comprehensive discussion of the
findings, while Section VI will expound upon the limitations
and future work of this study, and, finally, Section VII will
encapsulate the conclusions drawn from this study.

II. RELATED WORK
In recent years, NLP has emerged as a promising approach
to enhance various aspects of software testing, from test case
generation to test result analysis. This systematic literature
review aims to synthesize the existing body of knowledge in
this domain. This review is not the first in the field, Table 1
presents a comparison between related work.

In [5], the findings exhibit accuracy scores spanning from
70% to 90%, implying a degree of reliability. However,
this broad spectrum leaves room for questioning the con-
sistency and robustness of NLP algorithms in the domain.
Furthermore, the authors classified the studies based on their
contributions which underscores the multifaceted nature of
NLP’s application in software testing. Yet, this diversification
may evoke concerns about the absence of a unified focus,
potentially scattering research efforts. The authors also
categorized the studies based on research methods which
offers structure and rigor, yet the resulting analysis opens
the door to criticism regarding the quality and depth of
research within the domain. They also listed the number
of requirements artifacts processed and test cases generated
providing quantitative insights. They explored the methods
employed for evaluating NLP approaches stressing the
importance of robust evaluation criteria. The main limitation
of their study is excluding information about the domain of
the application, and not mentioning the recurrent challenges.

In study [6], the authors included a detailed listing of NLP
steps such as tokenization, parts-of-speech (POS) tagging,
chunking, and parsing, which are routinely employed in
the context of test case generation, this enumeration offers
valuable guidance on the NLP techniques commonly adopted
by researchers. Concurrently, they also cataloged a range of
NLP tools and algorithms applied or proposed by scholars
for the explicit purpose of generating test cases from initial
requirements. However, a notable limitation is that the scope
of this review is confined to publications within the ACM,
IEEE, and Springer databases.

79384 VOLUME 12, 2024



M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

TABLE 1. Comparative table of related work.

The study [7] focused on techniques, tools, and the
quantification of test cases and furnished significant insights.
Its emphasis on well-documented approaches is underscored,
recognizing that the practical application of any approach is
contingent upon its clear and comprehensive documentation,
this attention to documentation is pivotal for promoting
the reproducibility and dissemination of research within
the software testing field. It also highlights information
regarding the availability, license, and operating environment
of the tools and techniques under examination. However,
certain inherent limitations must be addressed. Primarily,
the systematic review lacks explicitly defined inclusion
and exclusion criteria. This absence of well-defined criteria
may introduce ambiguity and subjectivity into the selection
process, potentially affecting the comprehensiveness and
objectivity of the review.

As for [8], the authors did a listing of software require-
ments areas where NLP techniques are frequently practiced,
encompassing tasks such as requirement analysis, require-
ment prioritization, ambiguity removal, and more. This
enumeration provides a valuable roadmap for understanding
the domains within software requirements where NLP
techniques have gained prominence. They also mentioned the
NLP tools and algorithms commonly utilized by researchers
in this domain, which will serve as a valuable resource
for comprehending the diverse computational mechanisms
and linguistic processing tools employed within the realm
of software requirements analysis. However, the review did
not explicitly mention the accuracy or efficacy of the NLP
tools and algorithms discussed. This absence of accuracy
assessment may leave one with questions regarding the
reliability and robustness of the NLP techniques employed
in software requirements analysis.

Despite the growing interest in leveraging NLP techniques
for software testing, a clear understanding of the challenges
and opportunities in this domain remains elusive. Existing
literature primarily showcases the potential benefits of
NLP-based testing methodologies but often overlooks the
nuanced complexities and unresolved issues inherent in their
practical implementation. Additionally, this field is growing
at an exponential rate, requiring literature reviews every

year [5]. Consequently, there exists a significant research
gap that necessitates comprehensive exploration and analysis.
This research seeks to address this gap by conducting a
systematic literature review (SLR) focused on elucidating the
challenges and open issues in NLP-based software testing.
In this study, we aim to overcome some of the limitations of
existing reviews in the studied field and providemore insights
about the use of NLP techniques in software testing.

III. RESEARCH METHODOLOGY
A. REVIEW QUESTIONS
In order to systematically explore and synthesize the existing
body of literature, it is imperative to establish a clear
framework guided by well-defined review questions. The
formulation of precise review questions is the foundational
step in conducting an SLR as it shapes the direction,
scope, and objectives of the review process. We want to
affirm that throughout this study, we meticulously followed
established SLR protocols to ensure methodological rigor
and comprehensiveness. From the initial stages of defining
inclusion and exclusion criteria to the systematic search
and selection of relevant papers, we adhered to a structured
and replicable approach. Furthermore, in constructing the
search query, we employed the Population, Intervention,
Comparison, and Outcome (PICO) framework, a well-
established approach for formulating research questions
and search strategies in systematic reviews that aims to
ensure the comprehensiveness and relevance of the retrieved
literature. Additionally, we employed a rigorous screening
process to select papers that met the predefined inclusion
criteria, including relevance to NLP-based software testing,
full implementation details, and empirical evaluations. This
systematic approach enabled us to identify and analyze a
focused yet representative set of papers that contributed
significantly to our understanding of the topic.

In this section, we articulate the review questions that
guide the SLR, outlining the specific inquiries we aim to
address. These questions not only serve as the compass for
the review but also provide the reader with a comprehensive
understanding of the key themes and objectives that underpin
this study.

VOLUME 12, 2024 79385



M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

• RQ1: What are the most popular NLP techniques
used in the field? What are the prevalent linguistic
and semantic analysis methods and approaches that
have gained prominence in the field? providing valuable
insights into the techniques most frequently employed
by researchers and practitioners in this domain.

• RQ2: How explicit are the NLP algorithms pre-
sented? Is there an in-depth analysis and description
of the NLP algorithm? Which will make reusing the
tool/approach and reproducing the results easy for
researchers?

• RQ3: What language does the NLP models support?
This question aims to clarify the linguistic scope of the
NLP model, which impacts the generalization of the
approach/tool.

• RQ4: What are the trending testing contexts/types?
We aim to uncover the specific contexts and types of
testing that are currently gaining prominence or evolving
as significant areas of research and practice in the
field. This will help researchers discover which software
testing areas are most suitable for the use of NLP.

• RQ5: What are the trending Machine (ML) and
DeepLearning (DL) algorithms used alongsideNLP?
This question aims to explore the cutting-edge ML/DL
algorithms employed in the field. This will help
researchers and practitioners stay abreast of ML/DL that
might work best alongside NLP.

• RQ6: What are the Tools and Frameworks used in
this field ? What software tools and frameworks are
currently employed within the domain?

• RQ7: How reliable are the methods/approaches?
What are the evaluation results such as precision, recall,
and f-measure (when present) of the approaches and
tools presented in the studied papers?

• RQ8: What are the most used datasets? Datasets
play a pivotal role in training and evaluating models,
influencing the robustness and generalizability of NLP
applications in the software testing arena. The question
at hand centers on discerning the most frequently
employed datasets in the field.

• RQ9: What are the recurrent open challenges? This
question aims to identify and examine the persistent and
unresolved issues or obstacles within the domain. This
will shed light on critical areas where further research
and innovation are needed.

• RQ10: What are the domains of the SUT? The
domains of the SoftwareUnder Test (SUT) are important
to researchers to identify the domains that need more
attention and those with domain-specific challenges.
Which enables the development of tailored solutions to
a specific industry need.

Each review question in this SRL forms a crucial part
of a cohesive narrative that systematically explores various
aspects of NLP-based software testing. The investigation
into the most popular NLP techniques naturally leads to an
examination of the explicitness of the algorithms presented,

as understanding the prevalence of specific techniques shapes
the level of detail provided regarding their implementation.
Similarly, the inquiry into NLP model language support
is closely intertwined with the examination of trending
testing contexts and types, as the language support of NLP
models influences their applicability in different testing
scenarios. Furthermore, the exploration of trending machine
and deep learning algorithms used alongside NLP techniques
is inherently linked to understanding the evolving landscape
of NLP-based software testing, as these algorithms enhance
the capabilities and performance of NLP-driven testing
methodologies. The assessment of tools and frameworks
usage is closely tied to evaluating the reliability of methods
and approaches employed in the literature, as the availability
and adoption of robust tools and frameworks contribute
to the reliability and reproducibility of NLP-driven testing
techniques. Identifying the most used datasets provides
insights into the empirical foundations of NLP-based soft-
ware testing research while understanding recurrent open
challenges allows us to contextualize the limitations and
gaps in the existing literature, guiding future research
directions and priorities. Finally, exploring the domains of the
system under test provides valuable context for understanding
the applicability and generalizability of NLP-based testing
methodologies across different domains and industries.

B. INCLUSION/EXCLUSION CRITERIA
The formulation of precise inclusion and exclusion criteria is
a pivotal aspect of conducting an SLR. These criteria provide
a structured framework that delineates the boundaries of our
review, guiding the systematic selection of relevant studies
while excluding those that do not meet the predefined criteria.
In this section, we expound upon the specific parameters
and rationale that underlie our inclusion/exclusion criteria.
Establishing transparent and well-defined criteria ensures
the methodological rigor of our review and enhances its
reproducibility. These criteria serve as a crucial lens through
which we sift through the vast body of literature to identify
studies that align with the objectives of our SLR. Through
this process, we aim to maintain a high standard of quality
and relevance in the selection of primary research sources,
ensuring that our findings and conclusions are grounded in a
systematically derived and representative body of evidence.

1) DATABASE SELECTION
We chose Web of Science (WoS) and Scopus as databases
for conducting the SLR because they offer several com-
pelling advantages. These databases are celebrated for their
extensive coverage of academic literature, encompassing a
diverse range of sources, including journals and confer-
ence proceedings. This breadth of coverage makes them
well-suited for multidisciplinary research, ensuring access to
a wide array of literature, which is particularly valuable for
comprehensive SLRs. Furthermore, WoS and Scopus span
a multitude of academic disciplines, making them an ideal

79386 VOLUME 12, 2024



M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

choice for research inquiries that require cross-disciplinary
perspectives, enhancing the diversity of sources available.

Equally crucial is the rigorous quality control applied
to the content in these databases, ensuring high-quality,
peer-reviewed material. This quality assurance underpins
the reliability of studies selected for inclusion in our SLR,
fostering a high level of academic rigor. WoS and Scopus
provide advanced search capabilities, including Boolean
operators and filters, enabling the creation of precise search
queries, and enhancing the efficiency of study identification.

2) SEARCH QUERY
To build the search query we chose the PICO criteria [22].
To find out the keywords and strings from the review
questions, the term PICO means Population, Intervention,
Comparison, and Outcomes, when in our case:

• Population: NLP usage in software testing
• Interventions: NLP-based software testing tech-
niques/methods/tools/frameworks.

• Comparison: Comparison of the studies
• Outcomes: Develop/Improve the usage of NLP in
software testing

Thus we opted for this search query: (‘‘natural language
processing’’ OR ‘‘NLP’’) AND (‘‘software testing’’ OR
‘‘software quality assurance’’ OR ‘‘software verification’’
OR ‘‘software validation’’ OR ‘‘software quality con-
trol’’)

We employed Boolean operators to create a comprehensive
search strategy to identify studies related to the intersection
of natural language processing (NLP) and software testing.
Here’s a breakdown of the query:

• (‘‘natural language processing’’ OR ‘‘NLP’’): This
part of the query is enclosed in parentheses and uses
the OR operator. It searches for papers that contain
either ‘‘natural language processing’’ or its abbreviation
‘‘NLP’’ in their content. This helps to capture studies
that reference NLP using different terminologies.

• AND: The AND operator is used to combine the first
part of the query with the second part to ensure that
papers must include both elements.

• (‘‘software testing’’ OR ‘‘software quality assur-
ance’’ OR ‘‘software verification’’ OR ‘‘software
validation’’ OR ‘‘software quality control’’): This
portion of the query uses the OR operator to search for
papers that include any of the specified terms related to
software testing. This ensures that the search is inclusive
and captures studies that might use different terminology
to describe software testing processes.

Combining these elements in the query aims to retrieve
a comprehensive set of papers that discuss the intersection
of NLP and software testing, including their applications,
methodologies, challenges, and advancements.

3) INCLUSION/EXCLUSION STEPS
After defining the query and databases, we ran the query in
both databases and got a total dataset of 453 papers. The next

phase is removing the duplicate papers which were 73 papers,
and leaving us with 380 papers.

Next, we applied the following criteria:
• Exclude papers that are not written in English (6 papers
excluded)

• Exclude papers outside this timespan: 2013-2023 inclu-
sive (37 papers excluded)

• Exclude studies that are not consistent journal papers
(277 papers excluded).

Figure 1 shows a flow chart summarizing the inclu-
sion/exclusion criteria steps.

C. QUALITY ASSESSMENT
In the pursuit of methodological rigor and the assurance of the
reliability of this SLR, a critical step lies in the comprehensive
evaluation of the quality of the selected studies. This
section serves as the linchpin of this review, where each
included study undergoes meticulous scrutiny to determine
its methodological soundness and the trustworthiness of
its findings. The objective of this section is to provide
readers with a transparent and objective evaluation of the
studies included in the review, ensuring that the conclusions
drawn are based on robust and well-conducted research.
Through a systematic and standardized assessment process,
we endeavor to identify the strengths and limitations of each
study, allowing us to weigh their contributions appropriately
within the context of the research objectives. This rigorous
quality assessment not only enhances the credibility of this
SLR but also aids readers and researchers in discerning the
reliability of the synthesized evidence, thereby reinforcing
the validity and impact of the findings.

The quality assessment of the papers is presented in the
manual review section of Figure 1. In that section, we were
trying to answer three questions to assess the quality of the
primary studies:

• Does the paper actually use NLP techniques in order to
improve software testing?

• Is the process of presenting the tool/approach/method
clearly defined (problematic identification, NLP tech-
niques, solution architecture)?

• Is there any empirical evidence for the solution? Any
case studies, empirical results, or evaluation results?

After applying the inclusion/exclusion criteria and doing
the quality assessment of the papers. A total of 24 papers were
obtained, which will be used in the rest of this SLR.

While the review may appear focused in comparison to
broader surveys, it is imperative to note that the emphasis
was on meticulously analyzing a select set of high-quality,
full-implementation papers. We recognize the importance
of ensuring that the included literature provides substantive
insights and robust methodologies relevant to the domain of
NLP-based software testing. As such, we applied stringent
criteria to assess the quality and relevance of each paper,
prioritizing those that offered comprehensive insights, empir-
ical evaluations, and practical applications of NLP techniques
in software testing contexts. By adhering to these criteria,

VOLUME 12, 2024 79387



M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

FIGURE 1. Flow chart of the inclusion/exclusion criteria.

we aimed to uphold the integrity and credibility of our review,
thereby providing a solid foundation for synthesizing key
findings and identifying recurring themes and challenges
within the field.

D. PAPERS ANALYSIS
After applying the inclusion/exclusion criteria and quality
assessment, we carried out an in-depth analysis of the
24 papers to extract any information that will help us answer
the review questions. This information was classified in a
spreadsheet with the columns in Table 2.

E. FINAL PAPERS DATASET
As shown in Figure 2, over the last decade, NLP-based
software testing has witnessed a notable surge in research

TABLE 2. The table of the extracted information.

activities, particularly in the latter years. The early years,
spanning from 2013 to 2016, showedminimal research output
with no published papers or only a marginal increase in

79388 VOLUME 12, 2024



M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

FIGURE 2. Field growth over the last decade.

FIGURE 3. Publishers.

2014. However, starting in 2019, there was a discernible
uptick, marked by an increasing trend in the number of
papers. In 2019, there was a modest resurgence with one
publication, and this growth gained momentum in 2020,
with a noteworthy six papers. The year 2021 maintained
momentum with one additional paper, and the trend reached
its pinnacle in 2022 and 2023, demonstrating a substantial
leap with seven and eight papers, respectively.

As shown in Figure 3, the studied papers were published
by a variety of publishers. IEEE emerges as the predominant
publisher, with 11 papers contributing to its repository.
Following closely are Springer and Elsevier, each hosting
5 papers, indicating a balanced representation in academic
platforms. Wiley accounts for 1 paper, as does MDPI,
highlighting the diversity of sources. Additionally, the

Information Processing Society of Japan is associated with
1 paper. This distribution across multiple publishers under-
scores the collaborative and expansive nature of academic
exploration in the field, drawing from a range of reputable
sources to enrich the body of knowledge in the field.

IV. RESULTS
A. RQ1: WHAT ARE THE MOST POPULAR NLP
TECHNIQUES USED IN THE FIELD ?
In recent research papers, a diverse array of NLP techniques
has been employed to address a variety of linguistic chal-
lenges. Tokenization, a fundamental technique for breaking
down text into individual units, was frequently utilized,
emphasizing its importance in many NLP tasks [23]. POS
tagging, stop word removal, and term frequency-inverse

VOLUME 12, 2024 79389



M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

FIGURE 4. Most used NLP techniques.

FIGURE 5. Explicitness of the NLP algorithms.

document frequency (TF-IDF), each employed in seven
papers, showcase their pivotal roles in enhancing language
understanding and information retrieval processes [24].
Word segmentation, explored in four papers, reflects the
significance of this technique, particularly in languages with
non-delimited words [25]. Lemmatization and dependency
parsing, examined in three and two papers respectively,
contribute to syntactic and morphological analysis, providing
a deeper understanding of linguistic structures [26]. Edit
distance and named entities recognition, each explored in two
papers, demonstrate their relevance in applications requiring
similarity measurement and entity identification, respec-
tively [27]. Synonym replacement and word embedding, also
examined in two papers each, underscore the growing interest
in semantic enrichment and vector space representations [28],
reflecting the dynamic landscape of NLP research. Figure 4
summarizes the NLP techniques mentioned.

B. RQ2: HOW EXPLICIT ARE THE NLP ALGORITHMS
PRESENTED?
In this section, we assess the clarity of the NLP algorithms
presented in the papers. We rank them in three categories:
1) Rich, for papers having an in-depth explanation and
presentation of their NLP algorithm; 2) Medium, for papers
with some details, but not a very deep explanation; 3) Poor,
for papers with almost no details about the implementation of
their NLP algorithm. In this ranking, we primarily consider
the availability of the source code of the solution.

Figure 5 represents a pie chart depicting the explicitness
of NLP algorithms in the studied research papers and
offers valuable insights not only about transparency and
openness but also about the possibility of reuse of the
tools and methodologies. It is noteworthy that a significant
portion, 9 papers (37.5%), falls under the ‘‘Medium’’
category, indicating papers that provide a level of detail

79390 VOLUME 12, 2024



M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

FIGURE 6. NLP models language support.

FIGURE 7. Treemap of software testing contexts.

about the implementation without reaching the level of
full openness. The ‘‘Rich’’ category, comprising 8 papers
(33.3%), signifies a commendable proportion of papers that
openly share tools and methods, showcasing a commitment
to transparency and reproducibility, most of the papers of this
category open source their solution. On the other hand, the
‘‘Poor’’ category, representing 7 papers (29.2%), points to
a non-negligible portion of papers that offer limited details
about their implementations. This distribution underscores
the importance of encouraging comprehensive documen-
tation and openness in research, fostering a collaborative
and reproducible environment within the NLP community.
10 papers are sharing the source code related to their method,
approach, tool: [29], [30], [31], [32], [33], [34], [35], [36],
[37], [38].

C. RQ3: WHAT LANGUAGE DOES THE NLP MODELS
SUPPORT?
Language support is a fundamental aspect of NLP
research that significantly influences the generalizability and
real-world impact of models [39]. In this section, we map the
language support in the studied papers. Regardless of theNLP
tool used, those languages are extracted from the validation
phase of the studies (case study, application example. . . ).

The language support distribution in the studied research
papers is outlined in Figure 6. Among the papers, 15 are
focused on the English language, indicating a substantial
emphasis on English in the literature. Additionally, Chinese,
as a language of focus, is represented in 5 papers, reflecting a
notable but comparatively smaller proportion. Furthermore,
an intriguing aspect is the inclusion of 4 papers that

VOLUME 12, 2024 79391



M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

TABLE 3. Software testing contexts.

FIGURE 8. Software testing types.

incorporate source code from programming languages. This
limitation in language support suggests poor support from
the NLP tools and/or abundant resources in the English and
Chinese languages. The integration of source code embraces
its importance in software testing either the code of SUT itself
or the source code of the test cases.

D. RQ4: WHAT ARE THE TRENDING TESTING
CONTEXTS/TYPES?
This section delves into the world oif testing as revealed
by the research papers under scrutiny. The examination
encompasses a spectrum of testing contexts and types that
researchers have explored.

The testing type represents a specific category or classi-
fication of testing activities based on the testing objectives,
focus, and the nature of the defects being addressed. Testing

types help define the purpose and scope of the testing effort
within the broader testing context.

The testing context refers to the effective area of the soft-
ware life-cycle under which software testing is conducted or
used to improve software testing. It encompasses the broader
factors that influence the testing strategy, methodologies, and
tools chosen for a particular testing effort.

As shown in Figure 7 and Table 3, the distribution
of software testing contexts across the studied research
papers reflects a diverse array of testing methodologies and
objectives. Test case generation and requirements analysis are
prominent, with 7 and 6 instances, respectively, showcasing a
significant focus on creating effective test cases and analyzing
system requirements. Other contexts, such as test case
classification, test case improvement, and Natural language
test case clustering, are explored in a more limited manner,
each appearing in 1 research paper. The analysis extends to

79392 VOLUME 12, 2024



M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

TABLE 4. Software testing types.

TABLE 5. Machine learning and deep learning techniques.

various phases of testing, including test report prioritization,
test report clustering, and test report quality assessment,
each represented in 2 or fewer papers. Additionally, the
research delves into specialized areas such as fault injection,
fault seeding, bug report analysis, bug report classification,
defect prediction, and test oracle generation, each appearing
in 2 or fewer papers. Unique testing contexts, like Flaky
test prediction, vulnerability prediction, and acceptance test
generation, are also explored in 1 research paper each. This
distribution shows the diversified nature of software testing.

Figure 8 and Table 4 illustrate the software testing types
utilized in the studied research papers, Functional Testing
emerges as the predominant type, present in 9 papers.
Usability Testing follows closely, appearing in 5 papers.
Vulnerability Testing is explored in 3 papers, while Black-box
testing, crowdsourced testing, and metamorphic testing each

make an appearance in 2 papers. Greybox fuzzing, integration
testing, manual testing, mutation testing, fairness testing,
system testing, UI testing, and unit testing are each featured
once in the research papers, indicating a diverse range of
testing types examined within the literature.

E. RQ5: WHAT ARE THE TRENDING MACHINE AND DEEP
LEARNING ALGORITHMS USED ALONGSIDE NLP?
The convergence of machine and deep learning techniques
within the realm of NLP holds paramount importance for
advancing the capabilities and performance of language-
centric applications [56]. This amalgamation enables a more
comprehensive understanding of linguistic nuances, semantic
relationships, and contextual intricacies. The incorporation of
diverse techniques further enriches the toolkit available for
tackling NLP challenges [57].

VOLUME 12, 2024 79393



M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

TABLE 6. Software, Tools, Frameworks used.

Table 5 outlines the machine and deep learning techniques
employed in the studied research papers, categorizing them
into distinct subcategories. Under ‘‘Machine Learning’’,
logistic regression is utilized in 3 papers, random forests, and
support vector machine in 2 papers each, while Naive Bayes,
hierarchical agglomerative clustering (HAC) [61], K-means,
decision tree, and IFROWANN [54] are each applied in
1 paper. In the ‘‘Deep Learning’’ category, the feedforward
neural network, back-propagation neural network, and Fuz-
zGuard [55] are featured in 1 paper each. The ‘‘Activation
Functions and Optimizers’’ category includes softmax in
2 papers, and Adam optimizer and sigmoid in 1 paper
each. Image techniques involve spatial pyramid matching
(SPM), bilateral filtering, and averaging, each employed in
1 paper. Lastly, under ‘‘Other methods’’, K-fold [62] and
expectation maximization are applied in 1 paper each. This
breakdown offers an overview of the diverse array of machine

and deep learning techniques explored within the research
papers.

F. RQ6: WHAT ARE THE TOOLS AND FRAMEWORKS USED
IN THIS FIELD ?
Table 6 enumerates the utilization of various software, tools,
libraries, and frameworks in the studied research papers,
categorized across different domains. About programming
languages, Python is prominently featured in 11 papers,
followed by Java in 7 papers, and R in 1 paper. NLP
tools, frameworks, and libraries exhibit a diverse spectrum,
with BERT appearing in 5 papers, Stanford CoreNLP and
Word2Vec in 3 papers each, and several others, including
NLTK, SpaCy, Jieba, and CodeBERT, making appearances
in 2 papers each. Software testing tools and frameworks,
such as JUnit, Selenium, Pytest, AFL++, PiTest, and others,
are each employed in 1 paper. Machine/deep learning and

79394 VOLUME 12, 2024



M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

TABLE 7. Precision, Recall, and F-score of the methods/approaches.

computer vision libraries/tools, such as Pandas, Scikit-Learn,
Tesseract, and YoloV5, are utilized in 1 paper each. Other
software engineering tools cover a range of applications,
with IBM DOORS and Eclipse JDT Core Component being
used in 2 papers each, while Eclipse Papyrus, IBM Rational
Rhapsody, Soot, FlowDroid, XOM, Networkx Library, and
IBIR appear in 1 paper each. Integrated Development Envi-
ronments (IDEs) feature Eclipse in 3 papers and Netbeans in
1 paper.

G. RQ7: HOW RELIABLE ARE THE METHODS/
APPROACHES?
The evaluation and benchmarking of NLP-based software
testing approaches and methods are paramount to assess
the effectiveness in addressing specific challenges [63].
This section meticulously examines the precision, recall,
and F-score metrics associated with the diverse array of
approaches presented in the studied papers. These metrics
serve as quantitative indicators of the performance and
efficacy of each method, providing insights into their
ability to accurately identify relevant information, minimize
false positives and negatives, and strike a balance between
precision and recall [64]. These numbers are extracted from
the studied papers. When multiple numbers are presented we
use the average. When the f-score is not presented we auto-
matically calculate using this formula: 2 ×

(precision×recall)
(precision+recall) .

We automatically calculated the f-score for 3 papers: [29],
[37], [38]. Only 13 papers from the 24 papers have shared
the metrics from the evaluation phase of their study. Those
numbers are presented in Table 7, sorted by the f-score.

As seen in Figure 9, 6 papers have more than 90%
in precision and 3 of those papers have also more than
90% in f-score which shows a high level of reliability and
opens the door for industry applications. 6 other papers have
more than 80% in f-score, which is an important milestone
in NLP-based software testing but still far from what the
industry is demanding – near 100% reliability.

H. RQ8: WHAT ARE THE MOST USED DATASETS?
Publicly available datasets are essential for the advancement
of NLP. They serve as standardized benchmarks, enabling

researchers to evaluate and compare the performance of NLP
models. Access to these datasets promotes reproducibility,
collaboration, and innovation, acting as foundational tools
for developing robust NLP applications [65]. In this section,
we are interested in discovering the datasets used by
the papers in different phases of the creation of their
approaches/tools. We are limited to publicly available
datasets, and we omit any private or unavailable datasets
mentioned in the papers.

As shown in Table 8,WordNet, VerbNet, PropBank,Multi-
Genre Natural Language, and C4 are employed during the
NLP Model Development phase. NeuroDebug-2 and CiRA
(Conditionals in Requirements Artifacts) are the results of
the papers. Defects4J, IDoFT, FlakeFlagger, WINOGEN-
DER, WebQuestionSP, ComplexWebQ, BoolQ, NatQA, and
SQuAD are predominantly featured in the Evaluation Phase
across different studies.

I. RQ9: WHAT ARE THE RECURRENT OPEN CHALLENGES?
Recurrent open challenges persist in the continuous evolution
of NLP, posing avenues for exploration and improvement.
As NLP continues to unfold as a transformative force
in various applications, addressing persistent challenges
remains crucial for unlocking the full potential of language-
driven technologies [66].

From evaluating the papers presented in this review, many
challenges have popped up many times. We assembled them
in this list:

• Generalization across fields and languages: Particularly
in requirement analysis papers, it lies in achieving
robust generalization. Researchers struggle with extend-
ing their approaches and methods to diverse fields
and languages, aiming for broad applicability beyond
specific contexts.

• Ambiguity in natural language requirements: The
persistent challenge of resolving ambiguities within
natural language requirements remains a focal point.
The vagueness and imprecision in linguistic expressions
pose a continuous hurdle, demanding innovative NLP
strategies to enhance clarity and precision.

• Exploration of different pre-trained NLP models:
Researchers face the challenge of determining which
model or combination of models yields the best results,
necessitating a comprehensive exploration beyond con-
ventional choices.

• Enhancing the evaluation with multiple datasets:
Improving the evaluation of the approaches stands as
an ongoing challenge that needs rigorous testing against
multiple datasets, ensuring a more comprehensive
assessment of their performance.

• Integration of ML/DL phases for improved results: A
recurring query revolves around the potential benefits of
incorporating machine learning (ML) or deep learning
(DL) phases into NLP-based software testing method-
ologies. The investigation of whether the inclusion
of these phases will enhance the overall effectiveness

VOLUME 12, 2024 79395



M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

FIGURE 9. Precision, recall, and F-score of the methods/approaches.

TABLE 8. Datasets used in the papers.

and performance of the methods is still an ongoing
challenge.

• Precision and Recall Improvement: As we’ve seen in
Table 7, many papers don’t have any evaluation of
their approach or don’t share their evaluation results,
and many others are still far from results that are
applicable to the market need. The perpetual challenge
of enhancing precision and recall metrics remains at the
forefront of the field.

• Exploration of different hyperparameters: The explo-
ration of diverse hyperparameters poses an open chal-
lenge in the quest for optimal performance. Identifying
whether adjusting hyperparameters can yield improve-
ments in the efficacy of the models remains an open
question in many papers.

• Transformation into practical tools: Converting innova-
tivemethods and approaches into practical tools presents

a challenge. Researchers need to bridge the gap between
theoretical advancements and real-world applications,
necessitating engineering efforts to make their methods
readily applicable within the software testing field.

These open challenges pave the road for future research in
the field. Whether caused by dataset limitations, engineering
constraints, or broader application contexts, these challenges
serve as beacons guiding the research community toward
uncharted territories of improvement and innovation in the
field.

J. RQ10: WHAT ARE THE DOMAINS OF THE SUT?
The domain of the System Under Test (SUT) in software
testing is crucial for tailoring testing approaches to specific
contexts and requirements. It ensures that testing strategies
align with industry standards, regulatory compliance, and
user expectations within a particular field [67]. This review

79396 VOLUME 12, 2024



M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

TABLE 9. Domains of the SUT.

question serves as a gateway to understanding the diverse
application contexts of the field. We aim to find which
domains get the most attention from the researchers.

These domains represent the domain of the SUT used for
the evaluation of the suggested approaches/methods in the
studied papers.

Table 9 lists the domains of the system under test (SUT)
and their respective occurrences in the studied research
papers. Themost frequently encountered domain is Entertain-
ment (encompassingMusic, Reading, Photo Sharing, Games,
Lifestyle, Food & Drink, and Travel), appearing in 7 research
papers. Education follows closely with 6 occurrences, while
E-commerce is associated with 5 research papers. Java source
code is mentioned in 4 papers, and embedded systems and
health each have 3 occurrences. Automotive is linked to
2 papers, while machine learning model, bug reporting,
software compilation, question answering, software binary
code, transportation, insurance, finance, web conferencing,
and telecommunication are each associated with 1 research
paper.

V. DISCUSSION
This paper explores 24 research studies from the field of
NLP-based software testing. Most of the studied papers
were released in the last 5 years (2023-2019) which may
be attributed to the rapidly evolving landscape of NLP
and software testing. Advances in NLP techniques, coupled
with the increasing integration of NLP in software testing
practices, can explain the research output increase during this
timeframe.

IEEE, Springer, and Elsevier are the dominant publishers
for more than 80% of the papers, this might be attributed to
the well-established reputation and widespread recognition
of these publishing houses within the academic community.
Other publishers may have a smaller share due to variations
in the visibility, impact factor, or specialization of different
journals.

Tokenization, POS tagging, and TF-IDF being the most
used NLP techniques may originate from their fundamental

roles in linguistic analysis, information retrieval, and feature
representation. And since a good number of papers study
natural language text, it is normal for these techniques to pop
up.

Only eight papers are sharing in-depth details about their
implementation of the method/approach, this limited sharing
may be influenced by space constraints in publications or
the researchers’ discretion. Comprehensive implementation
details might be deemed proprietary or too extensive for the
scope of the papers, but on the other hand, it makes it hard to
reproduce the results of the paper.

The exclusive focus on a single natural language in
all papers could be influenced by the complexities and
challenges associated with multilingual NLP. Researchers
may choose a single language to maintain precision and
clarity in their methodology and evaluation. On the other
hand, this generates questions about the generalization of the
algorithm to other languages. English and Chinese are the
most used languages for testing NLP algorithms may reflect
the global influence of research conducted in these languages,
but the availability of extensive resources and datasets for
English and Chinese might also contribute to their popularity.
While the absence of implementations in other languages
draws the path for future research.

Test case generation and requirements analysis are the
most used software testing contexts in more than 50% of the
papers. This dominance could be attributed to their critical
roles in software development. These contexts directly align
with the core objectives of ensuring functionality andmeeting
specified requirements. Future research should also focus
on other software contexts such as defect prediction, and
vulnerability prediction. Functional testing, usability testing,
and crowdsourced testing are the most used software testing
types in more than 70% of the papers. They align with the
software testing contexts in their focus on ensuring functional
and non-functional requirements. It also shows the focus on
crowdsourced testing with all the benefits it has in terms
of lowering the cost and leveraging crowd intelligence in
software testing.

VOLUME 12, 2024 79397



M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

The integration of machine learning and deep learning
alongside NLP in 11 papers is the result of the potential
advantage of their union. This combination enhances the
ability to handle complex linguistic patterns and solve tasks
that cannot be solved with NLP, such as classification and
clustering. The choice of logistic regression, random forests,
support vector machines, and Naive Bayes in most papers
is influenced by their versatility, ease of implementation,
and well-established track record in various applications.
The popularity of neural networks and LSTM in deep
learning may stem from their capacity to capture intricate
patterns in data, making them suitable for tasks that require
specific linguistic understanding. Still, with less than 50%
of the papers, future research should take advantage of this
combination to enhance software testing capabilities.

Python and Java are the two trending programming
languages for the implementation of the method/approach
presented in the studied papers. This could be explained by
the large libraries and frameworks that are available in these
languages, which support effective development and a vibrant
developer community. The popularity of BERT, Stanford
CoreNLP, and Word2Vec is linked to their state-of-the-art
performance and wide adoption in the NLP community.
These libraries offer pre-trained models and robust func-
tionalities. The use of Pandas and Scikit-Learn highlights
their adaptability to tasks involving data manipulation and
machine learning, which makes them appropriate for a
range of research-related applications. JUnit, Selenium, and
PyTest were used in two papers indicating that most meth-
ods/approaches are not related to the code implementation
phase and stick to previous representations in the software
engineering lifecycle.

The achievement of high precision and F-score in some
papers could be attributed to meticulous algorithm design,
effective feature representation, and rigorous evaluation
methodologies. These results may showcase the robustness
and reliability of specific approaches. But we’re still far
from the industry need, which requires nearly 0% error rate.
We cannot forget to mention that more than 45% of the papers
haven’t shared the results of their evaluation phase, which can
be an alarming number, that impacts the reliability of their
results. This adds to the limited sharing of the testing datasets
and the source code of the research output. Only 10 papers
have open-sourced their implementation and publicly stated
the datasets used for the evaluation. This limited sharing can
be influenced by factors such as data privacy concerns, the
proprietary nature of datasets, or the complexity of releasing
software implementations. Researchers might be cautious
about sharing sensitive information or investing additional
resources in open-sourcing efforts.

There were 17 different umbrella domains of the SUT.
This diversity of domains shows the broad applicability of
NLP-based software testing across various industries. It also
highlights the adaptability of NLP methodologies to different
application contexts.

VI. LIMITATIONS AND FUTURE WORK
To ensure the replicability of this review, we meticulously
defined and documented the search engines, search terms,
and inclusion/exclusion criteria as presented in Section III-B.
Two notable challenges in the selection process were the
constraints posed by search terms and search engines, as well
as potential biases in applying exclusion and inclusion
criteria. To address this, we adopted a systematic search
approach, employing carefully crafted keywords. Addition-
ally, a manual verification encompassed the examination of
reference lists in the initial pool to enhance the likelihood of
encompassing all pertinent studies.

Future work should consider solving the challenges
presented in Section IV-I. The identification of those open
challenges signals an ongoing and dynamic landscape that
demands further exploration and innovation. Achieving
effective generalization across diverse fields and languages
necessitates developing approaches that adapt to varying
industry sectors and linguistic contexts. Resolving ambi-
guities in natural language requirements calls for refining
NLP-based testing methods to interpret imprecise specifica-
tions accurately, potentially through advanced algorithms and
contextual knowledge integration, or through the work on
an intermediate representation of those requirements. Higher
precision and recall are vital for industry needs, prompting
future research to prioritize enhancements, exploring innova-
tive algorithms, optimization techniques, and the integration
of machine/deep learning alongside NLP techniques. These
research directions aim to advance methodologies and
contribute to the development of more powerful testing
solutions that meet the diverse needs of different fields and
industries. The solution to these open challenges can lead to
a better, high-quality, reliable, and lower-cost software that
aligns with agile principles

VII. CONCLUSION
In conclusion, this systematic literature review has presented
a thorough synthesis of the current state of research
concerning NLP-based software testing. We aim to ensure
the replicability and rigor of this SLR by establishing clear
inclusion/exclusion criteria. Challenges encountered, such
as limitations in search terms and engines, were addressed
through a systematic approach involvingmeticulous selection
of keywords and manual verifications. The findings under-
score the dynamic nature of NLP-based software testing,
revealing persistent challenges in generalization across fields
and languages, ambiguity in natural language requirements,
and the need for precision and recall enhancements to meet
industry demands. Despite these obstacles, the literature indi-
cates promising advancements in integrating NLP techniques
across diverse software testing scenarios. Notably, the focus
on test case generation and requirements analysis reflects
current trends, while opportunities for further exploration in
less-represented domains remain. Additionally, certain NLP
techniques and programming languages exhibit dominance,

79398 VOLUME 12, 2024



M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

suggesting discernible trends in the field. As the field
progresses, this systematic review serves as a foundational
resource for both scholars and industry practitioners, facil-
itating the identification of future research avenues and
improvements, fostering interdisciplinary collaboration, and
contributing to the evolving landscape of natural language
processing applications in software testing.

REFERENCES
[1] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The Art of Software

Testing, vol. 2. Hoboken, NJ, USA: Wiley, 2004.
[2] M. Boukhlif, M. Hanine, and N. Kharmoum, ‘‘A decade of intelligent

software testing research: A bibliometric analysis,’’ Electronics, vol. 12,
no. 9, p. 2109, May 2023.

[3] A. Bertolino, ‘‘Software testing research: Achievements, challenges,
dreams,’’ Future Softw. Eng., pp. 85–103, 2007.

[4] R. Ramler, S. Biffl, and P. Grünbacher, Value-Based Management of
Software Testing. Springer, 2006, pp. 225–244.

[5] V. Garousi, S. Bauer, and M. Felderer, ‘‘NLP-assisted software testing:
A systematic mapping of the literature,’’ Inf. Softw. Technol., vol. 126,
Oct. 2020, Art. no. 106321.

[6] I. Ahsan, W. H. Butt, M. A. Ahmed, and M. W. Anwar, ‘‘A comprehensive
investigation of natural language processing techniques and tools to
generate automated test cases,’’ in Proc. 2nd Int. Conf. Internet Things,
Data Cloud Comput., Mar. 2017, pp. 1–10.

[7] M. J. Escalona, J. J. Gutierrez, M. Mejías, G. Aragón, I. Ramos, J. Torres,
and F. J. Domínguez, ‘‘An overview on test generation from functional
requirements,’’ J. Syst. Softw., vol. 84, no. 8, pp. 1379–1393, Aug. 2011.

[8] F. Nazir, W. H. Butt, M. W. Anwar, and M. A. K. Khattak, ‘‘The appli-
cations of natural language processing (NLP) for software requirement
engineering—A systematic literature review,’’ in Information Science and
Applications, K. Kim and N. Joukov, Eds. Singapore: Springer, 2017,
pp. 85–493.

[9] Z. Aoujil, M. Hanine, E. S. Flores, M. A. Samad, and I. Ashraf, ‘‘Artificial
intelligence and behavioral economics: A bibliographic analysis of
research field,’’ IEEE Access, vol. 11, pp. 139367–139394, 2023.

[10] M. Boukhlif, N. Kharmoum, M. Hanine, C. Elasri, W. Rhalem, and
M. Ezziyyani, ‘‘Exploring the application of classical and intelligent
software testing in medicine: A literature review,’’ in Proc. Int. Conf. Adv.
Intell. Syst. Sustain. Develop., 2024, pp. 37–46.

[11] S. Tahvili and L. Hatvani, Artificial Intelligence Methods for Optimization
of the Software Testing Process: With Practical Examples and Exercises.
Amsterdam, The Netherlands: Elsevier, 2022.

[12] M. A. Job, ‘‘Automating and optimizing software testing using artificial
intelligence techniques,’’ Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 5,
pp. 594–602, 2021.

[13] H. Alrumaih, A. Mirza, and H. Alsalamah, ‘‘Toward automated software
requirements classification,’’ in Proc. 21st Saudi Comput. Soc. Nat.
Comput. Conf. (NCC), Apr. 2018, pp. 1–6.

[14] C. Elasri, N. Kharmoum, F. Saoiabi, M. Boukhlif, S. Ziti, and W. Rhalem,
‘‘Applying graph theory to enhance software testing in medical applica-
tions: A comparative study,’’ in Proc. Int. Conf. Adv. Intell. Syst. Sustain.
Develop., 2023, pp. 70–78.

[15] A. Kao and S. R. Poteet, Natural Language Processing and Text Mining.
Cham, Switzerland: Springer, 2007.

[16] W. Zheng, Y. Bai, and H. Che, ‘‘A computer-assisted instructional method
based on machine learning in software testing class,’’ Comput. Appl. Eng.
Educ., vol. 26, no. 5, pp. 1150–1158, Sep. 2018.

[17] R. S. Wahono, ‘‘A systematic literature review of software defect
prediction,’’ J. Softw. Eng., vol. 1, no. 1, pp. 1–16, 2015.

[18] C. Chao, Q. Yang, and X. Tu, ‘‘Research on test case generation method
of airborne software based on NLP,’’ in Proc. CEUR-WS, vol. 3304, 2022,
pp. 28–37.

[19] S. D. R. Konreddy ‘‘The impact of NLP on software testing,’’ J. Univ.
Shanghai Sci. Technol., vol. 23, no. 8, pp. 295–304, Aug. 2021.

[20] W. Ke, C. Wu, X. Fu, C. Gao, and Y. Song, ‘‘Interpretable test case
recommendation based on knowledge graph,’’ inProc. IEEE 20th Int. Conf.
Softw. Qual., Rel. Secur. (QRS), Dec. 2020, pp. 489–496.

[21] A. Carrera-Rivera, W. Ochoa, F. Larrinaga, and G. Lasa, ‘‘How-to conduct
a systematic literature review: A quick guide for computer science
research,’’MethodsX, vol. 9, Nov. 2022, Art. no. 101895.

[22] K. Petersen, S. Vakkalanka, and L. Kuzniarz, ‘‘Guidelines for conducting
systematic mapping studies in software engineering: An update,’’ Inf.
Softw. Technol., vol. 64, pp. 1–18, Aug. 2015.

[23] A. Rai and S. Borah, ‘‘Study of various methods for tokenization,’’ in
Applications of Internet of Things. Cham, Switzerland: Springer, 2021,
pp. 193–200.

[24] I. Lauriola, A. Lavelli, and F. Aiolli, ‘‘An introduction to deep learning in
natural language processing: Models, techniques, and tools,’’ Neurocom-
puting, vol. 470, pp. 443–456, Jan. 2022.

[25] J. Zhang, F. Meng, M. Wang, D. Zheng, W. Jiang, and Q. Liu, ‘‘Is local
window essential for neural network based Chinese word segmentation?’’
in Lecture Notes in Computer Science. Cham, Switzerland: Springer, 2016,
pp. 450–457.

[26] N. Z. Abdurakhmonova, A. S. Ismailov, and D. Mengliev, ‘‘Developing
NLP tool for linguistic analysis of turkic languages,’’ in Proc. IEEE
Int. Multi-Conf. Eng., Comput. Inf. Sci. (SIBIRCON), Nov. 2022,
pp. 1790–1793.

[27] P. Sun, X. Yang, X. Zhao, and Z. Wang, ‘‘An overview of named entity
recognition,’’ in Proc. Int. Conf. Asian Lang. Process. (IALP), Nov. 2018,
pp. 273–278.

[28] Y. Ling, Y. An, M. Liu, S. A. Hasan, Y. Fan, and X. Hu, ‘‘Integrating extra
knowledge into word embedding models for biomedical NLP tasks,’’ in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017, pp. 968–975.

[29] C. Wang, F. Pastore, A. Goknil, and L. C. Briand, ‘‘Automatic generation
of acceptance test cases from use case specifications: An NLP-based
approach,’’ IEEE Trans. Softw. Eng., vol. 48, no. 2, pp. 585–616, Feb. 2022.

[30] E. Soremekun, S. Udeshi, and S. Chattopadhyay, ‘‘Astraea: Grammar-
based fairness testing,’’ IEEE Trans. Softw. Eng., vol. 48, no. 12,
pp. 5188–5211, Dec. 2022.

[31] A. Blasi, A. Gorla, M. D. Ernst, M. Pezzè, and A. Carzaniga, ‘‘MeMo:
Automatically identifying metamorphic relations in javadoc comments for
test automation,’’ J. Syst. Softw., vol. 181, Nov. 2021, Art. no. 111041.

[32] X. Xie, S. Jin, and S. Chen, ‘‘QAASKER+: A novel testing method for
question answering software via asking recursive questions,’’ Automated
Softw. Eng., vol. 30, no. 1, p. 14, May 2023.

[33] Z. Peng, P. Rathod, N. Niu, T. Bhowmik, H. Liu, L. Shi, and Z. Jin,
‘‘Testing software’s changing featureswith environment-driven abstraction
identification,’’ Requirements Eng., vol. 27, no. 4, pp. 405–427, Dec. 2022.

[34] M. Ojdanic, A. Garg, A. Khanfir, R. Degiovanni, M. Papadakis, and Y. Le
Traon, ‘‘Syntactic versus semantic similarity of artificial and real faults
in mutation testing studies,’’ IEEE Trans. Softw. Eng., vol. 49, no. 7,
pp. 3922–3938, Jul. 2023.

[35] J. Fischbach, J. Frattini, A. Vogelsang, D. Mendez, M. Unterkalmsteiner,
A.Wehrle, P. R. Henao, P. Yousefi, T. Juricic, J. Radduenz, and C.Wiecher,
‘‘Automatic creation of acceptance tests by extracting conditionals from
requirements: NLP approach and case study,’’ J. Syst. Softw., vol. 197,
Mar. 2023, Art. no. 111549.

[36] M. Viggiato, D. Paas, C. Buzon, and C.-P. Bezemer, ‘‘Identifying similar
test cases that are specified in natural language,’’ IEEE Trans. Softw. Eng.,
vol. 49, no. 3, pp. 1027–1043, Mar. 2023.

[37] B. F. Demissie, M. Ceccato, and L. K. Shar, ‘‘Security analysis of
permission re-delegation vulnerabilities in Android apps,’’ Empirical
Softw. Eng., vol. 25, no. 6, pp. 5084–5136, Nov. 2020.

[38] C. Wei, L. Xiao, T. Yu, X. Chen, X. Wang, S. Wong, and A. Clune,
‘‘Automatically tagging the ‘AAA’ pattern in unit test cases using machine
learning models,’’ IEEE Trans. Softw. Eng., vol. 49, no. 5, pp. 3305–3324,
May 2023.

[39] O. Majewska, I. Vulic, and A. Korhonen, Linguistically Guided Multi-
lingual NLP: Current Approaches, Challenges, and Future Perspectives.
Boca Raton, FL, USA: CRC Press, 2022.

[40] G. Carvalho, D. Falcão, F. Barros, A. Sampaio, A. Mota, L. Motta, and M.
Blackburn, ‘‘NAT2TESTSCR: Test case generation from natural language
requirements based on SCR specifications,’’ Sci. Comput. Program.,
vol. 95, pp. 275–297, Dec. 2014.

[41] Z. Khaliq, D. A. Khan, and S. U. Farooq, ‘‘Using deep learning
for selenium web UI functional tests: A case-study with e-commerce
applications,’’ Eng. Appl. Artif. Intell., vol. 117, Jan. 2023, Art. no. 105446.

[42] S. Tahvili, L. Hatvani, E. Ramentol, R. Pimentel, W. Afzal, and F. Herrera,
‘‘A novel methodology to classify test cases using natural language
processing and imbalanced learning,’’ Eng. Appl. Artif. Intell., vol. 95,
Oct. 2020, Art. no. 103878.

VOLUME 12, 2024 79399



M. Boukhlif et al.: NLP-Based Software Testing: A Systematic Literature Review

[43] M. I. Malik, M. A. Sindhu, A. S. Khattak, R. A. Abbasi, and
K. Saleem, ‘‘Automating test oracles from restricted natural language agile
requirements,’’ Expert Syst., vol. 38, no. 1, pp. 1–12, Jan. 2021.

[44] M.Y. Chow, ‘‘Analysis of embedded system’s functional requirement using
BERT-based name entity recognition for extracting IO entities,’’ J. Inf.
Process., vol. 31, no. 1, pp. 143–153, 2023.

[45] X. Chen, H. Jiang, Z. Chen, T. He, and L. Nie, ‘‘Automatic test report
augmentation to assist crowdsourced testing,’’ Frontiers Comput. Sci.,
vol. 13, no. 5, pp. 943–959, Oct. 2019.

[46] P. Zhu, Y. Li, T. Li, H. Ren, and X. Sun, ‘‘Advanced crowdsourced test
report prioritization based on adaptive strategy,’’ IEEE Access, vol. 10,
pp. 53522–53532, 2022.

[47] D. Liu, Y. Feng, X. Zhang, J. A. Jones, and Z. Chen, ‘‘Clustering crowd-
sourced test reports of mobile applications using image understanding,’’
IEEE Trans. Softw. Eng., vol. 48, no. 4, pp. 1290–1308, Apr. 2022.

[48] X. Chen, H. Jiang, X. Li, L. Nie, D. Yu, T. He, and Z. Chen, ‘‘A systemic
framework for crowdsourced test report quality assessment,’’ Empirical
Softw. Eng., vol. 25, no. 2, pp. 1382–1418, Mar. 2020.

[49] Y. Yang and X. Chen, ‘‘Crowdsourced test report prioritization based on
text classification,’’ IEEE Access, vol. 10, pp. 92692–92705, 2022.

[50] S. A. Alsaedi, A. Y. Noaman, A. A. A. Gad-Elrab, and F. E. Eassa, ‘‘Nature-
based prediction model of bug reports based on ensemble machine learning
model,’’ IEEE Access, vol. 11, pp. 63916–63931, 2023.

[51] F. Rustamov, J. Kim, J. Yu, H. Kim, and J. Yun, ‘‘BugMiner: Mining the
hard-to-reach software vulnerabilities through the target-oriented hybrid
fuzzer,’’ Electronics, vol. 10, no. 1, p. 62, Dec. 2020.

[52] F. Artuso, G. A. Di Luna, and L. Querzoni, ‘‘Debugging debug information
with neural networks,’’ IEEE Access, vol. 10, pp. 54136–54148, 2022.

[53] S. Fatima, T. A. Ghaleb, and L. Briand, ‘‘Flakify: A black-box, language
model-based predictor for flaky tests,’’ IEEE Trans. Softw. Eng., vol. 49,
no. 4, pp. 1912–1927, Apr. 2023.

[54] E. Ramentol, S. Vluymans, N. Verbiest, Y. Caballero, R. Bello, C. Cornelis,
and F. Herrera, ‘‘IFROWANN: Imbalanced fuzzy-rough ordered weighted
average nearest neighbor classification,’’ IEEE Trans. Fuzzy Syst., vol. 23,
no. 5, pp. 1622–1637, Oct. 2015.

[55] P. Zong, T. Lv, D. Wang, Z. Deng, R. Liang, and K. Chen, ‘‘FuzzGuard:
Filtering out unreachable inputs in directed grey-box fuzzing through deep
learning,’’ in Proc. 29th USENIX Secur. Symp., Aug. 2020, pp. 2255–2269.

[56] U. Kamath, J. Liu, and J. Whitaker, Deep Learning for NLP and Speech
Recognition, vol. 84. Cham, Switzerland: Springer, 2019.

[57] A. Celikyilmaz, L. Deng, and D. Hakkani-Tür, Deep Learning in Spoken
and Text-Based Dialog Systems. Cham, Switzerland: Springer, 2018,
pp. 49–78.

[58] H. Cunningham, ‘‘Gate: A framework and graphical development environ-
ment for robust NLP tools and applications,’’ in Proc. 40th Annu. meeting
Assoc. Comput. linguistics, 2002, pp. 168–175.

[59] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao, and Y. Wang, ‘‘DeepMutation: Mutation testing of deep
learning systems,’’ in Proc. IEEE 29th Int. Symp. Softw. Rel. Eng. (ISSRE),
Oct. 2018, pp. 100–111.

[60] A. Khanfir, A. Koyuncu,M. Papadakis,M. Cordy, T. F. Bissyandé, J. Klein,
and Y. Le Traon, ‘‘IBiR : Bug-report-driven fault injection,’’ ACM Trans.
Softw. Eng. Methodol., vol. 32, no. 2, pp. 1–31, Mar. 2023.

[61] R. Alfred, D. Kazakov, M. Bartlett, and E. Paskaleva, ‘‘Hierarchical
agglomerative clustering for cross-language information retrieval,’’ Int.
J. Transl., vol. 19, no. 1, pp. 139–162, 2007.

[62] O. Chamorro-Atalaya, J. Arévalo-Tuesta, D. Balarezo-Mares,
A. Gonzáles-Pacheco, O. Mendoza-León, M. Quipuscoa-Silvestre,
G. Tomás-Quispe, and R. Suarez-Bazalar, ‘‘K-fold cross-validation
through identification of the opinion classification algorithm for the
satisfaction of university students,’’ Int. J. Online Biomed. Eng., vol. 19,
no. 11, pp. 1–12, Aug. 2023.

[63] P. Resnik and J. Lin, Evaluation of NLP Systems. Hoboken, NJ, USA:
Wiley, 2010, ch. 1, pp. 271–295.

[64] T. Ly, C. Pamer, O. Dang, S. Brajovic, S. Haider, T. Botsis, D. Milward,
A. Winter, S. Lu, and R. Ball, ‘‘Evaluation of natural language processing
(NLP) systems to annotate drug product labeling with MedDRA terminol-
ogy,’’ J. Biomed. Informat., vol. 83, pp. 73–86, Jul. 2018.

[65] Q. Lhoest et al., ‘‘Datasets: A community library for natural language
processing,’’ 2021, arXiv:2109.02846.

[66] Z. Kaddari, Y. Mellah, J. Berrich, M. G. Belkasmi, and T. Bouchentouf,
‘‘Natural language processing: Challenges and future directions,’’ in Artifi-
cial Intelligence and Industrial Applications. Springer, 2021, pp. 236–246.

[67] T. Martínez-Ruiz, J. Münch, F. García, and M. Piattini, ‘‘Requirements
and constructors for tailoring software processes: A systematic literature
review,’’ Softw. Qual. J., vol. 20, no. 1, pp. 229–260, Mar. 2012.

MOHAMED BOUKHLIF received the Engineer-
ing degree (equivalent to the Master of Engineer-
ing) from the University of Hassan II, Morocco,
with a focus on computer science engineering,
big data, and cloud computing. He is currently
pursuing the Ph.D. degree with Chouaib Doukkali
University, Morocco. In 2024, he was the Head
of the IT Department, National School of Applied
Sciences, University Cadi Ayyad, Morocco. His
research interests include software engineering,

software testing, and applied artificial intelligence.

MOHAMED HANINE received the Ph.D. degree
in computer science (spatial decision-making)
from the University of Cadi Ayyad, Marrakesh,
Morocco, in 2017. In 2018, he joined the Depart-
ment of Telecommunications, Networks, and
Computer Science, National School of Applied
Sciences, where he educates engineering students
in the fields of big data, artificial intelligence,
NoSQL, and business intelligence. He is currently
an Associate Professor with the National School

of Applied Sciences, Chouaib Doukkali University, El Jadida, Morocco.
His research interests include artificial intelligence, big data, multicriteria
decision-making, NoSQL, and business intelligence.

NASSIM KHARMOUM received the Diploma
of Doctor degree in computer science from
Mohammed V University in Rabat. He is currently
pursuing the Ph.D. degree in software engineering
with the National Center for Scientific and Tech-
nical Research, Morocco. He proposed different
validated methods in scientific articles published
in international journals, books, and conferences.
His research interests include analysis and concep-
tual modeling, software requirements, multi-agent

systems modeling, and modernization of legacy systems.

ATENEA RUIGÓMEZ NORIEGA is currently with Universidad Europea del
Atlántico, Santander, Spain. She is also affiliated with Universidad Interna-
cional Iberoamericana, Campeche, Mexico, and Universidad Internacional
Iberoamericana, Arecibo, PR, USA.

DAVID GARCÍA OBESO is currently with Universidad Europea del
Atlántico, Santander, Spain. He is also affiliated with Universidade
Internacional do Cuanza, Kuito, Bié, Angola, and Universidad de La
Romana, La Romana, Dominica.

IMRAN ASHRAF (Member, IEEE) received the
M.S. degree (Hons.) in computer science from
Blekinge Institute of Technology, Karlskrona,
Sweden, in 2010, and the Ph.D. degree in informa-
tion and communication engineering from Yeung-
namUniversity, Gyeongsan, South Korea, in 2018.
He was a Postdoctoral Fellow with Yeungnam
University. He is currently an Assistant Profes-
sor with the Information and Communication
Engineering Department, Yeungnam University.

His research interests include positioning using next-generation networks,
communication in 5G and beyond, location-based services in wireless
communication, smart sensors (LIDAR) for smart cars, and data analytics.

79400 VOLUME 12, 2024


