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Abstract

The classification of bird species is of significant importance in the field of ornithology, as it

plays an important role in assessing and monitoring environmental dynamics, including hab-

itat modifications, migratory behaviors, levels of pollution, and disease occurrences. Tradi-

tional methods of bird classification, such as visual identification, were time-intensive and

required a high level of expertise. However, audio-based bird species classification is a

promising approach that can be used to automate bird species identification. This study

aims to establish an audio-based bird species classification system for 264 Eastern African

bird species employing modified deep transfer learning. In particular, the pre-trained Effi-

cientNet technique was utilized for the investigation. The study adapts the fine-tune model

to learn the pertinent patterns from mel spectrogram images specific to this bird species

classification task. The fine-tuned EfficientNet model combined with a type of Recurrent

Neural Networks (RNNs) namely Gated Recurrent Unit (GRU) and Long short-term memory

(LSTM). RNNs are employed to capture the temporal dependencies in audio signals,

thereby enhancing bird species classification accuracy. The dataset utilized in this work con-

tains nearly 17,000 bird sound recordings across a diverse range of species. The experi-

ment was conducted with several combinations of EfficientNet and RNNs, and EfficientNet-

B7 with GRU surpasses other experimental models with an accuracy of 84.03% and a

macro-average precision score of 0.8342.

Introduction

Bird species classification using deep learning and audio data is a rapidly evolving field with

numerous applications in bioacoustics, ecology, ornithology, and conservation [1]. Bird
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species are excellent indicators of environmental quality [2]. Researchers and conservationists

can better understand population trends, migratory patterns, and ecosystem health with pre-

cise classifications of bird species. The relationship between bird species and their population

trends, migratory patterns, and ecosystem health is essential to develop efficient conservation

plans and prevent the extinction of threatened bird species [3].

The world is facing a biodiversity loss crisis due to human activities [4], such as environ-

mental pollution, climate change, and habitat destruction. As a result, there is a pressing need

to monitor and conserve species as indicators of biodiversity. Birds are critical indicators of

environmental changes [5], such as changes in habitat, migration patterns, pollution, and dis-

ease outbreaks. Therefore, the conservation of bird species is critical to understanding envi-

ronmental changes and preserving biodiversity worldwide. In particular, Eastern Africa is

home to numerous bird species that play a vital role in the ecosystem and contribute to the cul-

tural and economic value of the region [6]. However, monitoring and conserving these species

is challenging due to the vast and diverse region, rugged terrain, and complex vocalizations.

Traditional monitoring methods are often costly, time-consuming, and limited in data avail-

ability, particularly for rare and endangered species. However, these methods can be optimized

using acoustic sensors [7]. In combination with deep learning techniques, wireless acoustic

sensor networks present a novel approach to the classification of bird species [8, 9]. The wire-

less acoustic sensor networks in combination with deep learning approach uses audio record-

ings of bird vocalizations to identify species based on their unique acoustic patterns. It

overcomes the limitations of visual identification [10] and enables the analysis of bird vocaliza-

tions in dense foliage. The wireless acoustic sensor networks in combination with deep learn-

ing method provide a noninvasive, cost-effective, and efficient means of continuous

monitoring, even in vast and complex regions like Eastern Africa. There have been numerous

studies conducted on the classification of audio based on raw audio signals [11, 12]. The raw

audio signal can be transformed into images of mel-spectrograms that potentially have a sig-

nificant impact on the analysis. Mel spectrogram images offer a valuable approach for classify-

ing bird species through audio data due to their ability to represent frequency patterns

effectively. By breaking down audio signals into distinct frequency components over time,

mel-spectrograms serve as a powerful feature extraction technique [13]. Mel-spectrograms

also provide a visually interpretable representation, aiding in both model validation and

human analysis of acoustic characteristics. Furthermore, their dimensionality reduction com-

pared to raw waveforms facilitates computational efficiency. This approach has demonstrated

success in various audio classification tasks, making it a reliable choice for bird species identifi-

cation. Authors in [14] shows that mel spectrogram images perform better as pre-processing

for audio classification than raw audio data. The use of mel spectrogram images further

enhances the accuracy and generalizability of classification models.

For image classification problems, some pre-trained Convolutional neural network (CNN)

models such as VGG16 [15], Resnet [16], and EfficientNet [17] show outstanding perfor-

mance. Pre-trained models are thus applicable to perform audio classification tasks like music

genre categorization [18], environmental sound classification [19], and owl classification [20]

which is based on mel spectrogram images derived from audio signals. EfficientNet is the most

lightweight and has state-of-the-art performance among the aforementioned pre-trained mod-

els. As converting raw audio data to mel spectrogram images provides a better pre-processing

step for audio data, there are several explorations towards classifying bird species using mel

spectrogram images with CNN architectures [21, 22].

CNN models that exhibit greater performance generally possess broader architectures with

encompass a vast number of parameters, necessitating a substantial volume of data for effective

training and optimal performance [23]. In this particular context, to lessen the duration
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required for training and to mitigate the challenges associated with training using extensive

data sets, a number of methodologies employ the technique of transfer learning with updating

weights of pre-trained models by fine-tuning [24–27]. However, in order to effectively adopt

the temporal relationships included in sequence data, RNNs such as LSTM [28] and GRU [29]

have demonstrated notably superior performance. Hybrid models leverage the inherent

advantages of convolutional and recurrent neural networks to effectively acquire knowledge

from temporal or sequential data. Convolutional layers are employed to extract localized pat-

terns at each temporal instance, followed by integrating the acquired representations over

numerous temporal instances by utilizing a recurrent component. Recent studies described in

the literature [30–32] have demonstrated that hybrid models exhibit enhanced performance

compared to baseline single CNN models across a range of sound detection tasks.

This study aims to develop robust models for accurately identifying and classifying Eastern

African bird species based on their vocalizations, represented as mel spectrogram images. The

advantages of transfer learning from a larger image classification model embedded with RNNs

is applied to achieve to develop robust models for accurately identifying and classifying East-

ern African bird species. To the best of our knowledge, there is a lack of research conducted

utilizing this dataset, which encompasses a substantial number of species groups. By leveraging

transfer learning, specifically through pre-trained models like EfficientNet, the accuracy and

efficiency of our classification model can be improved. Moreover, including RNN layers allows

us to effectively capture the sequential dependencies included in the mel spectrogram images.

This integration improves the classification performance of our model, specifically for Eastern

African bird species. In general, the main contributions of this study are listed as follows.

• The application of the mel spectrogram transformation is performed on a predetermined

section of audio in order to produce mel spectrogram images.

• A novel fine tuned EfficientNet-B7-based architecture for classifying Eastern African bird

species is proposed in this study.

• Experimenting several combinations of fine-tuned EfficientNet and RNN variants, including

LSTM and GRU models.

• Conducting a comparative investigation and selecting a robust model for the accurate and

efficient identification of Eastern African bird species.

The remainder of this paper is organized as follows. Section provides an overview of related

work concerning bird species classification based on audio and deep learning techniques. Sec-

tion details the proposed methodology, including a description of the BirdCLEF 2023 dataset,

pre-processing steps, training hyperparameters, the environmental setting for training, pro-

posed models, and the evaluation metrics used in our study. Section represents the experimen-

tal results and evaluation metrics. Section discusses the performance of different models

employed in our study. Finally, Section concludes the article and discusses directions for future

work.

Related work

Implementing deep learning techniques, specifically CNN, has sparked notable interest in rec-

ognizing bird species through vocalizations. These recent developments are crucial to improv-

ing our knowledge of avian biodiversity and fostering the development of more effective

conservation strategies. Authors in [8] pioneered the application of CNNs to identify bird spe-

cies from audio recordings. The authors of the paper used a CNN with five convolutional lay-

ers and one dense layer. They processed the audio data by dividing it into a signal part
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containing bird vocalizations and a noise part representing background noise. Spectrograms

were computed for both parts and split into fixed-length segments. They applied their

approach to the BirdCLEF 2016 bird identification task and achieved a mean average precision

score of 0.686.

Furthermore, authors in [33] also approached the bird identification task with their custom

CNN model. The authors used mel-spectrograms of processed audio data, applied data aug-

mentation and normalization techniques, and segmented the recordings into fixed-length seg-

ments. In the BirdCLEF 2017 dataset, they achieved a mean average precision score of 0.605.

Hybrid models leverage convolutional and recurrent neural network (RNN) strengths to

learn from temporal or sequence data. Some works are on CNN + RNN hybrid models [34,

35]. Authors in [35] experimented with state-of-the-art image classification methods based on

transfer learning (ResNet18, ResNet50, VGG16) and obtained the highest accuracy of 61.9%

with VGG16. They enhanced their model performance using the embedded hybrid CNN and

RNN model, getting the highest accuracy of 67%. They used the Cornell Bird Challenge 2020

dataset. This dataset contains 264 classes of bird species. However, they used only 100 classes

of bird species to handle class imbalance problems.

In [36], the authors also used the Cornell Bird Challenge 2020 dataset. They used all bird

classes. The proposed model architecture for the CNN framework used residual learning and

attention mechanisms to generate attention-aware features, which enhanced the overall accu-

racy of bird call identification. They got the highest accuracy, up to 64.37%.

Although substantial progress has been reported in classifying birds, there are still unex-

plored ways to maximize output. One of these avenues is the transfer of knowledge from larger

pre-trained image classification models embedded with RNNs to process temporal data. Our

novel approach investigates this avenue, contributing to the expanding body of knowledge and

paving the way for enhanced bird monitoring, biodiversity assessment, and conservation

efforts. In particular, our study uses the BirdCLEF 2023 dataset, and it is intended to resolve

the limitations and expand on the work of previous researchers. This study represents the pio-

neering effort to investigate the BirdCLEF 2023 dataset to classify Eastern African birds.

Materials and methods

This study aims to develop an accurate and efficient audio-based bird species classification sys-

tem by using mel spectrogram images and deep learning techniques. The study is divided into

several steps. First, the BirdCLEF2023 dataset is collected, which focuses on identifying bird

calls in soundscapes, from Kaggle [37]. Subsequently, pre-processing steps are performed,

which involve converting audio data into mel spectrogram images. In addition our dataset is

split into training, testing, and validation sets and applied random upsampling on the training

set to minority classes in order to solve class imbalance issues, followed by image augmenta-

tion techniques. In the next step, the fine-tuned EfficientNet network using the pre-processed

dataset is trained. Additionally, the LSTM and GRU models are assembled with EfficientNet to

explore the effectiveness of recurrent neural networks in the classification task. Finally, the

model was optimized with experimenting several structure of top layers, identify the best-per-

forming model, and thoroughly evaluate all the models developed. The entire process of the

work is depicted in Fig 1.

Data collection and pre-processing

In order to attain precise and effective categorization, the present study uses the BirdCLEF

2023 dataset (https://www.kaggle.com/competitions/birdclef-2023/data), which was specifi-

cally curated to classify avian species. Table 1 presents some basic dataset statistics. The
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collection consists of 16,753 audio signals, each with a sample rate of 32,000 Hz, representing

audios from 264 distinct species.

However, the dataset presents class imbalance issues that require appropriate techniques to

address them. Random minority upsampling was implemented to ensure sufficient representa-

tion of rare and endangered species in the training data. By overcoming class imbalance chal-

lenges and using deep learning techniques, the approach proposed in this study offers a

versatile approach to monitoring and conserving bird populations, enabling a better under-

standing of environmental changes and supporting regional conservation efforts.

The dataset focuses on bird audio recordings and associated metadata. The main compo-

nent of the data set is the “train_audio” directory, which contains a collection of short record-

ings of individual bird calls. These recordings were generously uploaded by users of

xenocanto.org, a platform dedicated to sharing bird sounds. The audio files were down-sam-

pled to 32 kHz, where applicable, to match the test set audio, and converted to the ogg format.

In addition to the audio files, the dataset includes the “train_metadata.csv” file, which provides

extensive metadata for the training data. One of the key fields in this file is the “primary_label,”

which represents the code for the bird species associated with each recording. Fig 2 shows the

distribution of bird species’ images.

To pre-process the dataset and facilitate subsequent analysis, the following steps were

undertaken:

Fig 1. The workflow of proposed method.

https://doi.org/10.1371/journal.pone.0305708.g001

Table 1. Basic statistics of dataset.

Items Value

Number of bird sounds / audio recordings 16753

Number of bird species 264

Number of sampling rate of audios 32000 Hz

https://doi.org/10.1371/journal.pone.0305708.t001
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1. The files and their associated labels were collected from the database.

2. The audio data was partitioned into 5-second segments, and segments with durations

shorter than 5 seconds were cyclically padded to meet the necessary duration.

3. The mel spectrogramtransformation was applied to each 5-second segment of audio data

with the parameters given in Table 2.

4. The spectrograms were transformed into a decibel scale and then normalized to the uint8

image range. Fig 3 provides an example of the resulting spectrograms, showing the repre-

sentation of an audio file following the proposed transformation process. Fig 3(a) to 3(f)

depict mel spectrogram images of six bird species out of a total of 264 species.

5. The primary label was assigned to each of these created spectrogram images. The primary

label denotes the predominant avian species or the auditory classification within the given

time segment. The relation between the primary label and the corresponding spectrum

images is crucial for training and classification purposes.

Following these pre-processing steps, the dataset was transformed into mel spectrogram

images, with primary labels assigned to each interval, padding applied for minimal durations,

and independent image creation. Pre-processing laid the foundation for further exploration,

feature extraction, and model development for identifying and classifying bird species.

Training hyper-parameters

The training hyper-parameters is a multiclass and supervised learning classification task.

Therefore, the following loss function, binary cross-entropy, was calculated in each batch for

Fig 2. Distribution of birds’ species data.

https://doi.org/10.1371/journal.pone.0305708.g002

Table 2. Table of parameters and values.

Parameter Value

Samples Between Consecutive Windows 2048

Number of Mel Frequency Bands 128

Minimum frequency of the Mel Filter Bank (Hz) 500

Maximum frequency of the Mel Filter Bank (Hz) 12500

Centered False

https://doi.org/10.1371/journal.pone.0305708.t002
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each class separately:

Lðyi; ŷiÞ ¼ � ½yi logðŷiÞ þ ð1 � yiÞ logð1 � ŷiÞ� ð1Þ

where, yi is the ground truth label for the ith class, and ŷi is the predicted probability generated

by the model output for the ith class. In each training epoch, the mean loss was calculated by

summing up the binary cross-entropy loss for each class and each batch and dividing it by the

number of classes and batches. The mean loss was optimized during the epochs.

This study employed the ‘Adam’ optimizer for the training process, using an initial learning

rate of 1 × 10−4. Adam Optimizer was chosen for its ability to adapt to the adjustment of learn-

ing rates, contributing to more efficient and stable training. The Adam optimizer optimizes

the model parameters during training by utilizing adaptive learning rates.

Following established practices in deep learning, For our experiments, a batch size of 128 is

carefully selected. It is crucial to consider that smaller batch sizes might result in a slower con-

vergence rate, but are often necessary when dealing with larger models due to memory limita-

tions. On the contrary, larger batch sizes can lead to unstable graphics memory usage,

potentially causing training algorithm failures. Therefore, our choice of batch size strikes a

well-balanced approach between computational efficiency and model stability, ensuring a

smooth and effective training process.

Environmental setting

To ensure a high-quality implementation of our methodology, TensorFlow version 2.11.0

along with the TensorFlow I/O library version 0.29.0 and Keras-CV version 0.4.2 were effec-

tively used. Using a GPU P100, model training was conducted in a Kaggle environment. The

training procedure was supported by the computational environment provided by the Kaggle

environment. GPU P100, in conjunction with Kaggle configuration, ensured optimal perfor-

mance and efficient execution of computationally intensive training procedure tasks.

Fig 3. Mel-spectogram images of some bird species audio.

https://doi.org/10.1371/journal.pone.0305708.g003
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Proposed models

The audio files were initially converted to mel spectrogram images, visually representing the

frequency content of bird vocalizations over time. The conversion process allowed the extrac-

tion of relevant features from the audio data. To mitigate the problem of class imbalance, ran-

dom minority upsampling procedures were used. The proposed technique helps to overcome

the imbalance in the number of samples available for different species of birds, ensuring that

each class was a sufficient representation in the training data. The three different model archi-

tectures are experimented in this study. Several considerations influenced our choice to

employ these particular models. The choices are discussed in the following subsections:

EfficientNet-B7. The introduction of EfficientNet in the study [17] that revolutionized the

field of model scaling in CNNs. Unlike traditional approaches that arbitrarily scaled network

dimensions, EfficientNet introduced a novel method that uniformly scales all three dimensions

(width, depth, and resolution) using a composite coefficient. Among the various members of

the EfficientNet family, EfficientNet-B7 [17] stands out as the most significant variant, demon-

strating exceptional performance on the ImageNet dataset and achieving new accuracy records.

The EfficientNet-B7 model excels in computational efficiency and high accuracy.

It was maintained trainable for the final 200 levels and continues to freeze the first 612 layers

for transfer learning from EfficientNet-B7. The intuition behind keeping trainable for the last

200 layers and keep freezing the first 612 layers during fine-tuning is the larger image classifica-

tion model’s learning pattern for the image classification task. The beginning layers of such

models focus on lower-level patterns such as edges, textures, and basic shapes. On the other

hand, the last layers learn complex object shapes, semantic concepts, and contextual informa-

tion that spans a broader area. As in spectrogram image classifications, it also requires pattern

recognition such as edges, textures, and basic shapes at the beginning, and the first several layers

remain frozen. However, as in our problem, complex patterns are unseen by the larger image

classification model; the last layers are kept trainable during fine-tuning to learn patterns of

complex patterns of spectrogram images for bird species classification. Fine-tuning allows us to

achieve a considerable improvement in performance over our baseline EfficientNet-B7 model.

EfficientNet-B7 embedded with LSTM. Using LSTM [28] in modeling sequential data has

become common practice in neural networks. LSTMs, a variant of RNNs, excel at capturing

long-range dependencies in data, making them particularly suitable for tasks such as natural lan-

guage processing, speech recognition, and machine translation. These networks were initially

introduced by Sepp Hochreiter and Jürgen Schmidhuber in 1997 as a solution to the vanishing-

gradient problem that can arise when training RNNs on lengthy data sequences. LSTMs employ

a gated mechanism to regulate the flow of information throughout the network. This mechanism

comprises three gates: the input gate, the forget gate, and the output gate. The input gate deter-

mines the amount of current input that should be stored in the cell state. In contrast, the forget

gate determines the degree to which the previous cell state should be disregarded. Lastly, the out-

put gate determines to what extent the cell state should be passed to the subsequent layer of the

network. By employing these gates, LSTMs can effectively control the information flow, mitigat-

ing the vanishing gradient problem, and enabling the modeling of long-term dependencies.

The rationale behind incorporating an LSTM with EfficientNet-B7 is to leverage the ability to

capture temporal patterns. The use of LSTM with EfficientNet-B7 network is particularly relevant

in scenarios where specific audio characteristics, such as temporal patterns exhibited by birds,

cannot be easily learned by the pre-trained CNN architecture of EfficientNet alone. By integrat-

ing an LSTM, the model can effectively recognize and understand these temporal patterns,

enhancing its overall performance in bird audio recognition tasks. A better performance was

achieved than the baseline EfficientNet-B7 architecture by applying the following architecture.
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EfficientNet-B7 embedded with GRU. GRUs [29] were introduced in 2014 by Kyun-

ghyun Cho et al. as a variant of RNNs. GRUs share similarities with LSTMs but have fewer

parameters, resulting in faster training times. Additionally, GRUs exhibit a simpler architec-

ture, which enhances their comprehensibility and ease of implementation. GRUs employ a

gated mechanism to regulate the flow of information within the network.

The gated mechanism with GRUs comprises two gates: the update gate and the forget gate.

The update gate determines the proportion of the previous hidden state that should be

retained. In contrast, the forget gate determines the amount of the previous hidden state that

should be ignored. The new hidden state is computed as a linear combination of the previous

and current input, with the update gate controlling the weights.

GRUs have gained popularity as an option for RNNs because of their advantageous charac-

teristics, such as speed, efficiency, and ease of understanding. To use the advantages of GRU’s

over LSTM, our fine-tuned EfficientNet-B7 architecture is embedded with GRU. By applying

the following architecture, the better performance was noticed by comparing to baseline Effi-

cientNet-B7 architecture and slightly better than EfficientNet-B7 embedded with LSTM. The

implementation of all the codes of this study is available in the website link: https://zenodo.

org/records/10732565.

Evaluation metrics

To evaluate the proposed models used in this study, a set of popular evaluation metrics have

been utilized for the classification task, including accuracy, macro average precision, recall,

and F1 score. Most metrics depend on the values of the confusion matrix, that is, true positive

(TP), true negative (TN), false positive (FP), and false negative (FN). A brief description of

those metrics is as follows.

• Accuracy: One way to judge the performance of a classification model is by its accuracy. Accu-

racy can be defined informally as the percentage of correct predictions made by our model

[38]. The Eq (2) to calculate the accuracy score of a binary classification model is as follows.

Accuracy ¼
TP þ TN

TP þ TN þ FPþ FN
ð2Þ

• Precision and Macro Averaged Precision: The precision score indicates the percentage of

correct affirmative identifications that were [39]. Another way to describe the precision

score is macro-averaged precision (mAP); it is calculated after taking class-wise precision

scores and then averaging those scores. Eqs (3) and (4) equation are used to calculate preci-

sion and macro averaged precision.

PrecisionðPÞ ¼
TP

TP þ FP
ð3Þ

mAP ¼
P1 þ P2 þ . . .þ Pn

n
ð4Þ

where, there are n classes, 1, 2, . . . n, and the precision scores are P1, P2, . . . Pn, respectively.
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• Recall/Sensitivity: In what percentage were true positives properly diagnosed, is based on

the recall to define it [40]. The Eq (5) is used to perform the following computation:

Recall=Sensitivity ¼
TP

TP þ FN
ð5Þ

• F1 Score: In contrast to accuracy, which focuses on the overall performance of the model,

the F1 score evaluates the predictive capacity of the model by delving into its performance in

each class. Model precision and recall are two separate criteria. However, the F1 score aver-

ages them together [38].

F1 ¼
2� Precision� Recall
Precisionþ Recall

¼
2� TP

2� TP þ FP þ FN
ð6Þ

• Cohen’s kappa score: The Kappa coefficient is a statistical measure that compares the agree-

ment between observed accuracy and expected accuracy. The Kappa coefficient is a metric

used to evaluate the effectiveness of a classification model by comparing its performance to

that of a random classifier. The metric Kappa can be computed using (7), where TACC rep-

resents total accuracy and RACC represents random accuracy.

K ¼
TACC � RACC

1 � RACC
ð7Þ

• Log loss: The log-loss metric quantifies the uncertainty of a probabilistic approach by evalu-

ating its accuracy in predicting true labels. A log-loss score that is relatively low indicates a

high level of accuracy in the forecast. The application of (8) enables the calculation of the log

loss of a model [39] where x represents the level of the destination variable and p(x) denotes

the projected probability associated with the specific value of interest.

L � loss ¼ �
1

N

XN

i¼1

yi � log p xið Þð Þ þ 1 � xið Þ � log 1 � p xið Þð ð8Þ

Results

Our results were evaluated locally by performing a dataset split into 80% for training, 10% for

testing, and 10% for validation. To preserve the original label distribution, the scikit-learn’s

‘train_test_split’ function was utilized, which handles the class distribution by stratifying the

splits. In this work, the three deep neural network models were applied: EfficientNet-B7, Effi-

cientNet-B7 with LSTM, and EfficientNet-B7 with GRU. The performances of our models

were evaluated using four evaluation metrics: accuracy, recall, F1 score, and macro-average

precision. The models were trained for multiple epochs, and their specific results are discussed

in the following subsections:

Training results of EfficientNet-B7

The baseline model EfficientNet-B7 was trained for 70 epochs, resulting in a training accuracy

of 84.10% and a validation accuracy of 81.96%. On the test dataset, the model achieved an
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accuracy of 81.82%. Furthermore, the model performance metrics on the test dataset were as

follows: recall of 0.7129, F1 score of 0.7424, macro-average precision of 0.8048, Cohen’s kappa

score of 0.8152, and log loss of 3.34.

In Fig 4, epoch-wise train/valid loss and accuracy scores in epoch are depicted. The left side

of the figure shows the train/valid loss decreasing over the epochs. On the contrary, the right

side shows the train/valid accuracy increasing over the epochs. Once the model reached

approximately 70 epochs, its loss neared convergence, indicating that further training would

lead to overfitting. Therefore, the training at that point was concluded.

Training results of EfficientNet-B7 + LSTM

For the later model, EfficientNet-B7 with LSTM was implemented. The model was trained for

69 epochs, resulting in a training accuracy of 89.56% and a validation accuracy of 84.03%. On

the test dataset, the model achieved an accuracy of 83.67%. Additionally, the model’s perfor-

mance metrics on the test dataset were as follows: recall of 0.7552, F1 score of 0.7816, macro-

average precision of 0.8326, Cohen’s kappa score of 0.8339, and log loss of 3.67.

In Fig 5, epoch-wise train/valid loss and accuracy scores are depicted in the epoch. The left

side of the figure shows the train/valid loss decreasing over the epochs. On the contrary, the

right side shows the train/valid accuracy increasing over the epochs. After completing 69

epochs, the model’s loss demonstrates a tendency towards convergence. Subsequently, a minor

overfitting of the model occurs. Our work was engaged in training until the occurrence of

overfitting was noticed.

The model consistently outperforms the base model in all aspects. Specifically, it shows a

better performance of 3% accuracy and macro-average precision than the base model. Further-

more, the recall and F1 scores demonstrate a remarkable improvement of almost 4% over the

Fig 4. Accuracy and loss of fine-tuned EfficientNet-B7 transfer learning model.

https://doi.org/10.1371/journal.pone.0305708.g004
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base model. These findings highlight the enhanced capabilities and effectiveness of this model

compared to the baseline.

Training results of EfficientNet-B7 + GRU

In our third model, EfficientNet-B7 with GRU was implemented. The model was trained for

70 epochs, resulting in a training accuracy of 90.80% and a validation accuracy of 84.61%. On

the test dataset, the model achieved an accuracy of 84.03%. Additionally, the model’s perfor-

mance metrics on the test dataset were as follows: recall of 0.7738, F1 score of 0.7924, macro

average precision of 0.8342, Cohen’s kappa score of 0.8376, and log loss of 3.65. In Fig 6,

epoch-wise train/valid loss and accuracy scores are depicted. The left side of the figure shows

the train/valid loss decreasing over the epochs. On the contrary, the right side shows the train/

valid accuracy increasing over the epochs. After completing 70 epochs, the model loss

approached convergence, but a slight indication of overfitting became apparent. Therefore, it

was decided to conclude the training at that stage.

The performance of the model is slightly better than the EfficientNet-B7 + LSTM model’s

accuracy, macro-average precision, and F1 score. However, it exhibits significant improve-

ments in recall. These results highlight its superior capabilities to capture relevant information

and achieve higher precision on average.

Discussions

We mentioned earlier that we experimented with three models. We now wish to proceed with

the analysis of the findings of our investigation, compare the results, and find the best result.

The comparative results of the three proposed models on the test data are shown in Table 3.

These models were evaluated using accuracy, recall, F1 score, and macro average precision.

Fig 5. Accuracy and loss of fine-tuned EfficientNet-B7 embedded with LSTM.

https://doi.org/10.1371/journal.pone.0305708.g005
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The initial model, EfficientNet-B7, demonstrates a moderate level of accuracy at 0.8182,

indicating that it correctly identifies bird species in approximately 81.82% of cases. However, it

falls short in terms of recall (0.7129), F1 score (0.7424), macro-average precision (0.8048),

Cohen’s kappa score (0.8152), and log loss (3.34). These metrics suggest that while Efficient-

Net-B7 can accurately classify some species of birds, it can struggle to identify specific species

correctly.

However, adding LSTM to the EfficientNet-B7 model significantly improves its overall per-

formance. The EfficientNet-B7 + LSTM model shows notable enhancements in accuracy

(83.67%), recall (0.7552), F1 score (0.7816), macro-average precision (0.8326) and Cohen’s

kappa score (0.8339). These improvements indicate that the incorporation of LSTM helps cap-

ture temporal dependencies in audio data, resulting in better classification results.

Similarly, incorporating GRU also improves the overall performance of the model. The Effi-

cientNet-B7 + GRU model achieves an accuracy of 84.03%, slightly exceeding the LSTM

model. It also shows comparable improvements in EfficientNet-B7 + GRU model in recall

(0.7738), F1 score (0.7924), macro average precision (0.8342) and Cohen’s kappa score

(0.8376).

Therefore, it is evident that adding GRU to the EfficientNet-B7 architecture effectively

models temporal dependencies, contributing to improved classification results.

Fig 6. Accuracy and loss of fine-tuned EfficientNet-B7 embedded with GRU.

https://doi.org/10.1371/journal.pone.0305708.g006

Table 3. Comparative results of different models on test data.

Technique Accuracy Macro average precision Recall F1-score Cohen’s kappa score Log loss

EfficientNet-B7 81.82% 0.8048 0.7129 0.7424 0.8152 3.34

EfficientNet-B7 + LSTM 83.67% 0.8326 0.7552 0.7816 0.8339 3.67

EfficientNet-B7 + GRU 84.03% 0.8342 0.7738 0.7924 0.8376 3.65

https://doi.org/10.1371/journal.pone.0305708.t003
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The EfficientNet-B7 + LSTM and EfficientNet-B7 + GRU models outperform the stand-

alone EfficientNet-B7 model. They achieve higher precision, recall, F1 score, and macro-aver-

age precision, indicating their effectiveness in capturing relevant patterns specific to the

Eastern African bird species classification task. Incorporating LSTM and GRU enables the

models to leverage temporal dependencies in the audio data, resulting in more accurate and

reliable classification.

Conclusions

This study introduces a robust audio-based bird species classification system designed explic-

itly for Eastern African birds. The system achieves an impressive accuracy of 84.03% using the

BirdCLEF 2023 dataset. It consists of two main components: a mel spectrogramimage genera-

tor and a hybrid deep learning classifier. The mel spectrogramimage generator converts audio

recordings of bird vocalizations into mel spectrogram images, which are then used as input for

the deep learning classifier. The classifier combines the strengths of CNNs and RNNs, where

CNNs extract local patterns from the mel spectrogram images and RNNs capture temporal

dependencies within the audio data. By incorporating augmented techniques and exploring

various deep-learning architectures, this study significantly improves the accuracy and utility

of bird species classification. As a result, it makes a valuable contribution to bird conservation,

environmental monitoring, and wildlife research endeavors.

Future work will focus on incorporating more effective augmentation techniques to

improve classification accuracy. Alternative deep learning architectures can also be employed

to explore additional improvements. Additionally, the system will be evaluated on other bird

species and various environmental conditions to ensure its versatility and generalizability.

Author Contributions

Conceptualization: Mrinal Kanti Baowaly, Bisnu Chandra Sarkar.

Data curation: Bisnu Chandra Sarkar, Md. Abdus Samad.

Formal analysis: Md. Abul Ala Walid, Md. Martuza Ahamad.

Funding acquisition: Eduardo Silva Alvarado.

Investigation: Eduardo Silva Alvarado, Imran Ashraf.

Methodology: Mrinal Kanti Baowaly, Bisnu Chandra Sarkar, Md. Abul Ala Walid.

Project administration: Mrinal Kanti Baowaly, Eduardo Silva Alvarado.

Resources: Bikash Chandra Singh.

Software: Md. Martuza Ahamad, Bikash Chandra Singh.

Supervision: Md. Abdus Samad.

Validation: Imran Ashraf, Md. Abdus Samad.

Visualization: Md. Martuza Ahamad, Bikash Chandra Singh.

Writing – original draft: Mrinal Kanti Baowaly, Bisnu Chandra Sarkar.

Writing – review & editing: Md. Abul Ala Walid, Imran Ashraf.

References
1. Remsen JV. The importance of continued collecting of bird specimens to ornithology and bird conserva-

tion. Bird Conservation International. 1995; 5:146–180. https://doi.org/10.1017/S095927090000099X

PLOS ONE Deep transfer learning-based bird species classification using mel spectrogram images

PLOS ONE | https://doi.org/10.1371/journal.pone.0305708 August 12, 2024 14 / 16

https://doi.org/10.1017/S095927090000099X
https://doi.org/10.1371/journal.pone.0305708


2. Gregory RD, Skorpilova J, Vorisek P, Butler S. An analysis of trends, uncertainty and species selection

shows contrasting trends of widespread forest and farmland birds in Europe. Ecological Indicators.

2019; 103:676–687. https://doi.org/10.1016/j.ecolind.2019.04.064

3. Yao S, Li X, Liu C, Zhang J, Li Y, Gan T, et al. New assessment indicator of habitat suitability for migra-

tory bird in wetland based on hydrodynamic model and vegetation growth threshold. Ecological Indica-

tors. 2020; 117:106556. https://doi.org/10.1016/j.ecolind.2020.106556

4. Young J, Watt A, Nowicki P, Alard D, Clitherow J, Henle K, et al. Towards sustainable land use: identify-

ing and managing the conflicts between human activities and biodiversity conservation in Europe. Biodi-

versity and Conservation. 2005; 14:1641–1661. https://doi.org/10.1007/s10531-004-0536-z

5. Morrison ML. In: Johnston RF, editor. Bird Populations as Indicators of Environmental Change. Boston,

MA: Springer US; 1986. p. 429–451. Available from: https://doi.org/10.1007/978-1-4615-6784-4_10.

6. Brooks TH, Balmford A, Burgess NE, Ansen LAH, Moore J, Rahbek C, et al. Conservation priorities for

birds and biodiversity: do East African Important Bird Areas represent species diversity in other terres-

trial vertebrate groups?;.

7. Wimmer J, Towsey M, Roe P, Williamson I. Sampling environmental acoustic recordings to determine

bird species richness. Ecological Applications. 2013; 23:1419–1428. https://doi.org/10.1890/12-2088.1

PMID: 24147413

8. Sprengel E, Jaggi M, Kilcher Y, Hofmann T. Audio based bird species identification using deep learning

techniques. LifeCLEF 2016. 2016; p. 547–559.

9. Xie J, Zhu M. Handcrafted features and late fusion with deep learning for bird sound classification. Eco-

logical Informatics. 2019; 52:74–81. https://doi.org/10.1016/j.ecoinf.2019.05.007

10. Lambert KTA, McDonald PG. A low-cost, yet simple and highly repeatable system for acoustically sur-

veying cryptic species. Austral Ecology. 2014; 39:779–785. https://doi.org/10.1111/aec.12143

11. Lee J, Kim T, Park J, Nam J. Raw Waveform-based Audio Classification Using Sample-level CNN

Architectures. ArXiv. 2017;abs/1712.00866.

12. Dieleman S, Schrauwen B. End-to-end learning for music audio. IEEE; 2014. p. 6964–6968.

13. Maclean K, Triguero I. Identifying bird species by their calls in Soundscapes. Applied Intelligence. 2023;

53(19):21485–21499. https://doi.org/10.1007/s10489-023-04486-8

14. Choi K, Fazekas G, Sandler M, Cho K. A Comparison of Audio Signal Preprocessing Methods for Deep

Neural Networks on Music Tagging. IEEE; 2018. p. 1870–1874.

15. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition.

arxiv. 2014;.

16. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. IEEE; 2016. p. 770–778.

17. Tan M, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. vol. 97. PMLR;

2019. p. 6105–6114. Available from: https://proceedings.mlr.press/v97/tan19a.html.

18. Mehta J, Gandhi D, Thakur G, Kanani P. Music Genre Classification using Transfer Learning on log-

based MEL Spectrogram. IEEE; 2021. p. 1101–1107.

19. Mushtaq Z, Su SF. Efficient Classification of Environmental Sounds through Multiple Features Aggrega-

tion and Data Enhancement Techniques for Spectrogram Images. Symmetry. 2020; 12:1822. https://

doi.org/10.3390/sym12111822

20. Gunawan KW, Hidayat AA, Cenggoro TW, Pardamean B. A Transfer Learning Strategy for Owl Sound

Classification by Using Image Classification Model with Audio Spectrogram. International Journal on

Electrical Engineering and Informatics. 2021; 13:546–553. https://doi.org/10.15676/ijeei.2021.13.3.3

21. Narasimhan R, Fern XZ, Raich R. Simultaneous segmentation and classification of bird song using

CNN. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE; 2017. p. 146–150.

22. Sankupellay M, Konovalov D. Bird Call Recognition using Deep Convolutional Neural Network, ResNet-

50; 2018. Available from: http://www.din.uem.br/yandre/birds/bird_songs_46.tar.gz.

23. Hossain MM, Walid MAA, Galib SMS, Azad MM, Rahman W, Shafi ASM, et al. COVID-19 detection

from chest CT images using optimized deep features and ensemble classification. Systems and Soft

Computing. 2024; 6:200077. https://doi.org/10.1016/j.sasc.2024.200077

24. Zhang L, Wang D, Bao C, Wang Y, Xu K. Large-Scale Whale-Call Classification by Transfer Learning

on Multi-Scale Waveforms and Time-Frequency Features. Applied Sciences. 2019; 9:1020. https://doi.

org/10.3390/app9051020

25. Tsalera E, Papadakis A, Samarakou M. Comparison of Pre-Trained CNNs for Audio Classification

Using Transfer Learning. Journal of Sensor and Actuator Networks. 2021; 10:72. https://doi.org/10.

3390/jsan10040072

PLOS ONE Deep transfer learning-based bird species classification using mel spectrogram images

PLOS ONE | https://doi.org/10.1371/journal.pone.0305708 August 12, 2024 15 / 16

https://doi.org/10.1016/j.ecolind.2019.04.064
https://doi.org/10.1016/j.ecolind.2020.106556
https://doi.org/10.1007/s10531-004-0536-z
https://doi.org/10.1007/978-1-4615-6784-4_10
https://doi.org/10.1890/12-2088.1
http://www.ncbi.nlm.nih.gov/pubmed/24147413
https://doi.org/10.1016/j.ecoinf.2019.05.007
https://doi.org/10.1111/aec.12143
https://doi.org/10.1007/s10489-023-04486-8
https://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.3390/sym12111822
https://doi.org/10.3390/sym12111822
https://doi.org/10.15676/ijeei.2021.13.3.3
http://www.din.uem.br/yandre/birds/bird_songs_46.tar.gz
https://doi.org/10.1016/j.sasc.2024.200077
https://doi.org/10.3390/app9051020
https://doi.org/10.3390/app9051020
https://doi.org/10.3390/jsan10040072
https://doi.org/10.3390/jsan10040072
https://doi.org/10.1371/journal.pone.0305708


26. Ashurov A, Zhou Y, Shi L, Zhao Y, Liu H. Environmental Sound Classification Based on Transfer-Learn-

ing Techniques with Multiple Optimizers. Electronics. 2022; 11:2279. https://doi.org/10.3390/

electronics11152279

27. Fukumura T, Aratame H, Ito A, Koike M, Hibino K, Kawamura Y. An Efficient Learning Method for

Sound Classification using Transfer Learning for Hammering Test. IEEE; 2020. p. 1–4.

28. Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Computation. 1997; 9:1735–1780.

https://doi.org/10.1162/neco.1997.9.8.1735 PMID: 9377276
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