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An enhanced approach 
for predicting air pollution using 
quantum support vector machine
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The essence of quantum machine learning is to optimize problem-solving by executing machine 
learning algorithms on quantum computers and exploiting potent laws such as superposition and 
entanglement. Support vector machine (SVM) is widely recognized as one of the most effective 
classification machine learning techniques currently available. Since, in conventional systems, the 
SVM kernel technique tends to sluggish down and even fail as datasets become increasingly complex 
or jumbled. To compare the execution time and accuracy of conventional SVM classification to that of 
quantum SVM classification, the appropriate quantum features for mapping need to be selected. As 
the dataset grows complex, the importance of selecting an appropriate feature map that outperforms 
or performs as well as the classification grows. This paper utilizes conventional SVM to select an 
optimal feature map and benchmark dataset for predicting air quality. Experimental evidence 
demonstrates that the precision of quantum SVM surpasses that of classical SVM for air quality 
assessment. Using quantum labs from IBM’s quantum computer cloud, conventional and quantum 
computing have been compared. When applied to the same dataset, the conventional SVM achieved 
an accuracy of 91% and 87% respectively, whereas the quantum SVM demonstrated an accuracy of 
97% and 94% respectively for air quality prediction. The study introduces the use of quantum Support 
Vector Machines (SVM) for predicting air quality. It emphasizes the novel method of choosing the 
best quantum feature maps. Through the utilization of quantum-enhanced feature mapping, our 
objective is to exceed the constraints of classical SVM and achieve unparalleled levels of precision and 
effectiveness. We conduct precise experiments utilizing IBM’s state-of-the-art quantum computer 
cloud to compare the performance of conventional and quantum SVM algorithms on a shared dataset.

Keywords Air quality prediction, Quantum encoding, Quantum support vector machine, Sustainable 
environment

The air we breathe in, contains many different gases, including oxygen (21%), nitrogen (78%), argon (1%), 
carbon dioxide (0.33%), hydrogen (0.33%), helium, and  neon13, but its composition can change depending on 
factors like latitude, elevation, and pollution. Pollen, ash, dust, and aerosols are major contributors to air pollu-
tion, as do harmful gases and  particles6,8,9,25. Air quality index (AQI) is a metric that calculates air quality rating 
at a given time and location. Particulate matter (PM2.5/PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), 
carbon monoxide (CO), ammonium (NH4), ozone (O3), and lead (Pb) are some other matrices, used in the 
existing literate to show air  quality31. A reading of 50 or below on the AQI is regarded as “excellent” and poses 
little harm to human health. A level between 51 and 100 on the AQI is considered “moderate” and can have a 
negative impact on sensitive populations. For levels ranging between 101 and 150, AQI is considered “unhealthy 
for sensitive groups”, and for levels between 151 and 200, the AQI is considered “unhealthy”. The threshold of 
201 to 300 is “extremely unhealthy” and an AQI of above 300 is regarded as “dangerous”31.

When the AQI is high, people should stay inside with the windows and doors closed and use air purifiers 
to protect themselves from the harmful effects of air pollution. Climate variables such as temperature, wind 
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speed, humidity, precipitation, and sun radiations must be studied in conjunction with air quality monitoring 
in order to determine the specific chemical reactions occurring in the  air15. The World Health Organization 
(WHO) reports that 99.99 percent of people around the world breathe polluted  air10. Since it can penetrate far 
into the lungs, PM 2.5 poses a particular health risk since it contains harmful particles like viruses. Prolonged 
exposure to PM 2.5 has been associated with an increased risk of respiratory and cardiovascular diseases like 
asthma, bronchitis, heart disease, stroke, and, more recently, COVID-19 (viral particles). In conclusion, due to 
its potential adverse health impacts, PM 2.5 is a major factor in the AQI. Manual methods such as gravimetric, 
optical microscopy, beta attenuation, and elemental analysis can be used to quantify PM 2.5, but it’s clear that 
due to new technological revolution, new monitoring of air quality has  begun5,17,27,30,32.

PM 2.5 can be predicted using machine learning methods due to their ability to manage large and complex 
datasets. Machine learning models can learn from patterns and relationships in data, and produce accurate 
predictions, all of which have received a great deal of attention in recent years due to the rapid development and 
adaptation of artificial intelligence and machine learning techniques. The development of faster, more efficient, 
and massively powerful computers made it possible for machine learning algorithms to compute mathematical 
equations more quickly and efficiently.

Several machine learning methods are used to foretell air quality, for example, artificial neural networks 
(ANNs)1,21,23 are commonly used to predict air quality due to their ability to learn and model subtle relation-
ships in data. Support vector machine (SVM)12,18–20 supervised learning algorithms of the SVM type have been 
applied to air quality prediction. Random forest (RF)11,35 is an ensemble learning technique that combines many 
decision trees to make a forecast. K nearest neighbor (KNN)24,28 is a popular and easy-to-use machine learning 
approach for forecasting air quality. These works are just a few examples of how machine learning algorithms 
have been used to make air quality predictions. The success of machine learning algorithms is highly dependent 
on the kind, quantity, and quality of the provided data, as well as the nature of the problem being solved. Machine 
learning is useful for forecasting PM2.5 levels and air quality.

In recent years new era of quantum computing has emerged and quantum machine learning has become 
a promising area of study that can pave the way for breakthroughs in many other branches of science and 
 technology3. Combining quantum mechanics and machine learning, quantum machine learning has become a 
new  paradigm16. This new field of study has the potential to significantly improve computing speed and efficiency, 
as well as fundamentally alter how difficult data analysis problems are approached. Recent quantum machine 
learning research has centered on developing new algorithms and methods for increasing the efficiency of 
quantum computing systems. These efforts have led to the development of quantum-inspired machine learn-
ing models that have proven effective in a variety of contexts, including image and speech recognition, natural 
language processing (NLP), and drug discovery. In addition, quantum machine learning has the potential to 
address problems that are currently beyond the capabilities of conventional machine learning methods, thereby 
presenting new research  avenues2,4,14.

The potential of quantum SVM to address classification issues in established industries like economics, 
medicine, and ecology has been drawing increasing interest in recent years. Quantum SVM has also been used 
to improve the accuracy and efficiency of classification models for air quality data, which has been applied to 
the field of air quality research. Classification of air quality using the  AQI34, for tracking air pollution’s impact 
on human health, with the help of a quantum SVM. Typical convolutional neural network Utilizing quantum 
computing, the network model is benchmarked and compared with a quantum quanvolutional neural network, 
showing a striking improvement in detecting air  quality33. Another hybrid approach for forecasting air quality 
that takes into account climate-related parameters and uses feature selection and an evolving interval type-2 
quantum fuzzy neural network (eIT2QFNN)  is29.

A review of the existing literature indicates that air pollution in the environment plays a significant role in 
the spread of pandemics such as the Covid-19 virus; therefore, it is necessary to determine the relationship 
between air pollution factors such as PM10, PM2.5, NO2, O3, CO, and SO2 and Covid-19 spread. In addition, 
the study reveals that new pandemics, such as COVID-19, have a significant impact on human lives, and we 
are not prepared for such pandemics. WHO collects data on COVID-19-infected areas of the world, and the air 
quality  data31 can be used to train the system using quantum enhancement of machine learning for the COVID-
19 pandemic and predict the future spread of COVID-19 in these areas. Using preprocessed air pollution data, 
these can be trained and used to predict the future spread of air pollution.

This gap has been attributed to a lack of research into the application of quantum SVM to data on regional air 
quality. The purpose of this study is to predict how environmental factors affect air pollution levels using quan-
tum machine learning. The primary objective of this research is to improve quantum SVM over traditional SVM 
performance on the world air quality (WAQI)  dataset31 containing air quality factors PM 2.5 and temperature in 
selected cities. The project is a non-profit project that was started in 2007 for the awareness of people covering 
130 countries and 2000 cities. This study makes the following contributions

• Classification of AQI levels into different groups including good and satisfactory using machine learning.
• Implementation of quantum SVM on IBM lab to analyze its performance for air quality prediction using the 

WAQI dataset.
• Performance comparison between traditional SVM and quantum SVM concerning air quality assessment.

The rest of this paper is organized as. The proposed methodology, the dataset used in this study, and the work-
ing process of quantum computing are explained in section “Proposed solution”. Section “Results” discusses the 
experimental results while the conclusion is provided in section “Conclusions”.
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Proposed solution
In this research, we use the quantum machine learning technique of quantum SVM to predict air pollution from 
environmental factors. To do this, we benchmark the results using classical SVM and accumulate data from the 
WAQI  dataset31. A flowchart is presented in Fig. 1 to visually depict the implementation of both classical and 
quantum techniques that utilize the SVM model.

Data preparation
Dataset collection
The first step in the adopted methodology is acquiring the  WAQI31 dataset. It is followed by training both classi-
cal and quantum SVM models using the WAQI dataset and then comparing the results. The dataset has “Date”, 
“Country”, “City”, “Species”, “Count”, “Minimum”, “Maximum”, “Median”, and “Variance” columns that make up 
the 2020-03-06 dataset, as shown in Table 1.

Figure 1.  Flowchart illustrating the implementation of both classical and quantum approach utilizing SVM.
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The “Date” column of collected data indicates the date of collection. The two-digit country code, like GB, 
can be found in the “Country” field. City includes the name of the city, while “Species” details the several air 
quality categories, such as “aqi,” “co,” “dev,” “humadity,” “mepaqi,” “neph,” “no2,” “03,” “pm1,” “pm10,” “pm25,” 
“precipitation,” “pressure,” “so2,” “temperature,” “uvi,” “wd,” “wind-gust,” and “wind-speed”. The “Count” column 
shows the total number of records for a single day. The minimal value for that day is displayed in the “Minimum” 
column. The highest value for the day is given as the “Maximum” column. The “Median” statistic represents the 
midpoint of the data set, and the “Variance” statistic represents the standard deviation of the dataset. The dataset 
contains a total of almost 400,000 records.

Transform dataset
As rows of data, the “Specie” column of the dataset contains attributes pertaining to air quality, before we can 
train the data with air quality, we must transform the data into multiple features and then feed them to machine 
learning models such as SVM. Therefore, we promote the row data from the “Specie” column to a new column, 
renaming each feature such as temperature to “temperature min”, “temperature max”, “temperature median”, 
and “temperature variance” and pm25 to “pm25 min”, “pm25 max”, “pm25 median”, and “pm2 variance”, etc., 
increasing the number of columns from nine to ninety-six. The information regarding the classes is in the final 
column of the data.

In Table 2, the “Class” column takes into account PM2.5’s value because it is the principal component consist-
ing of particles with a size of 2.5 microns, such as Covid-19. Also shown in Table 3 is the AQI scale.

Algorithm 1 outlines the process of transforming a dataset in preparation for training a model.

Table 1.  A portion of the dataset containing more than 400,000 rows.

Date Country City Species Count Minimum Maximum Median Variance

2/5/2022 UG Kampala wind-gust 2 11.8 15.4 11.8 64.8

2/25/2022 UG Kampala wind-gust 2 12.8 12.8 12.8 0

1/9/2022 UG Kampala wind-gust 3 12.8 12.8 12.8 0

1/31/2022 GB London Co 96 1 15.7 3.1 176.17

2/7/2022 GB London Co 96 9.2 21.7 13.3 122.35

2/8/2022 GB London Co 96 8.3 11.9 9.8 11.85

2/26/2022 GB London Co 168 0.6 8.3 4.4 49.63

2/16/2022 GB London pm25 439 1 114 25 2590.35

2/19/2022 GB London pm25 471 2 85 25 2274.02

1/19/2022 GB London pm25 505 2 89 49 2871.53

2/3/2022 GB London pm25 437 2 74 25 1483.11

1/25/2022 GB London pm25 459 25 137 78 3631.95

2/12/2022 GB London pm25 488 5 72 34 1683.76

1/30/2022 GB London pm25 453 3 91 36 1633.97

2/13/2022 GB London pm25 481 5 78 31 1657.11

2/21/2022 GB London pm25 487 2 91 38 2339.31

Table 2.  Data transformation for a single feature.

Date Country City pm25_count pm25_min pm25_max pm25_median pm25_variance Class

1/31/2022 GB London 419 1 82 26 1929.76 1

2/7/2022 GB London 477 3 82 33 1853.91 1

2/8/2022 GB London 442 1 155 19 1451.03 1

2/26/2022 GB London 460 2 102 50 2579.49 1

3/1/2022 GB London 383 2 87 36 2265.96 1

1/24/2022 GB London 464 5 134 64 3228.14 2

1/25/2022 GB London 459 25 137 78 3631.95 2

1/26/2022 GB London 438 21 119 64 2564.84 2

12/31/2021 GB London 387 3 72 34 2143.69 1
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Algorithm 1.  An algorithm for dataset transformation.

Standard scaling
Standard scaling, or standardization, is a tried-and-true data preparation technique for machine learning. Its 
goal is to ensure that all numbers in a dataset have a standard deviation of one and a mean of zero.

For preprocessing, we utilize the standard scaler method, as illustrated in Fig. 2. Before scaling, feature 1 is scaled 
from − 2.5 to 12.5; after scaling, the same data are scaled from − 2 to 2. Similarly, for feature 2, the range of values 
from 20 to 120 is scaled between − 1 and 4.

Scaling all attributes on the same scale has several advantages:

(1)z =
x − µ

σ

Table 3.  The AQI is a metric used to evaluate air pollution levels and their potential impact on human health. 
It divides air quality into distinct classes, with each class representing a distinct level of concern.

Class Daily AQI Color Levels of concern

1 Green Good

2 Yellow Moderate or fair

3 Orange Unhealthy for sensitive groups or poor

4 Red Unhealthy

5 Purple Very unhealthy

6 Maroon Hazardous
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• Due to the varied scales used for each feature, the algorithm could be biased if it gave greater weight to 
features with higher values. Standard scaling can mitigate this bias by giving all characteristics the same 
magnitude.

• Supporting algorithms that rely on distance and feature value similarity, such as SVM, which is utilized in 
this study after preprocessing to ensure that all features contribute equally to distance calculations.

Principal component analysis
Another step in dataset preprocessing is using the principal component analysis (PCA), which rotates the data 
and attempts to select the top k principal components (eigenvectors) associated with the highest eigenvalues by 
sorting them in descending order. These p-components capture the data’s most significant variance. Figure 3 
visualizes the appearance of data before and after PCA is applied.

Figure 2.  The graph depicts the effects of utilizing standard scaling prior to and following data transformation.

Figure 3.  Before and after data transformation, the graph depicts the effects of using the PCA algorithm.
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Normalization (Min–Max)
After applying PCA to the dataset, the MinMax function must be used to normalize it. MinMax is used with 
the following equation

To improve the performance of the models, a normalization technique is employed to rescale and modify the 
data. Min-max normalization, also known as feature scaling and min-max scaling, is one such technique. Min-
max normalization is used to rescale features of a dataset to a predetermined range between 0 and 1. Figure 4 
shows that the data for feature 1 between 2 and 3, is normalized between 0 and 1. Feature 2 data is also within 
the range 1 to 3, which is normalized between 0 and 1.

Training classical SVM
SVM is a supervised machine learning technique used for regression and classification. It identifies the optimal 
hyperplane that maximally divides the data into separate classes. As depicted in Fig. 5, support vectors, or the 
points farthest from the criterion border, are used to establish the hyperplane in the WAQI dataset used in this 
study. It clearly identifies the hyperplane and support vectors on normalized and 0 to 1 distributed data.

SVM shows good performance but when the number of records and features grow in a dataset, the perfor-
mance of SVM is  affected7. The time complexity of SVM is O(n2) to O(n3) and an increase in the size of data 
significantly increases its computational complexity. Algorithm 2 delineates the procedural steps involved in 
training the conventional SVM model. We benchmark the performance of classical SVM using this algorithm.

(2)xnorm =
x − xmin

xmax − xmin

Figure 4.  The graph depicts the results of applying Normalization prior to and after data transformation.
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Algorithm 2.  Benchmark using classical SVM.

Training quantum SVM
To classify the data using a quantum computer called quantum classification we used the quantum SVM. After 
training on classical SVM, now we focus on using the same dataset with quantum SVM. Due to its potential 
to take advantage of quantum processing benefits, quantum SVM may outperform classical SVM in some use 
 cases26. Quantum computers are in their phase of evolution and only a few companies build such machines like 
IBM, Google, DWave, etc. IBM provides real and simulation of quantum computers for public use cloud technol-
ogy. So, we implement quantum SVM using IBM Qiskit (open source SDK works with quantum computers). To 
achieve quantum classification we followed three steps. 

1. Convert classical data into quantum data (quantum encoding)
2. Process the quantum data.
3. Measuring the results.

Figure 6 illustrates the process through which a quantum computer operates on a given dataset.

Quantum encoding
We have classical data that we would like to run on a quantum computer. We lack input data collected from 
quantum devices, so we rely on original classical data. Figure 7 depicts four types of data. classical data executed 
on classical devices (CC), classical data executed on quantum devices (CQ), quantum data executed on classical 
devices (QC), and quantum data executed on quantum devices (QQ). In our case, CQ data is used.

Figure 5.  A graphical illustration depicting the separation of data points by a hyperplane following the 
application of Classical Support Vector Machines (SVM).
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To convert the classical data into quantum data, we use a quantum feature map written as V(�(x)) , where V 
is the quantum circuit, and � is a classical function acting on classical data x. There are many feature maps avail-
able like the Z-Feature Map, ZZ-Feature Map, and Pauli Feature Map. To choose which feature map can be used 
in our experiment, we need to figure out what feature map best fits on data and what advantage we would like to 
have from the circuit. The Z-Feature Map only uses a single order gate with no interaction with other qubits. So, 
we choose ZZ-Feature Map Function 1 which represents two qubits (two data features) and an entangled state 
between the first and second qubits, as shown in Fig. 8.

Encoding is converting classical data into quantum states in Qiskit’s Aqua library ZZFeatureMap is also used 
to encode classical data into quantum state. ZZFeatureMap constructs a quantum circuit using qubits with con-
trolled Z (CZ) gates. Each qubit represents a single feature in data. Dataset has two features X[0] and X[1] which 
represent qubits q0 and q1 respectively. The function is used to create a circuit of two qubits-controlled Z gates.

The classical data is incorporated into the quantum state, enabling quantum algorithms to manipulate it 
within a space of greater dimensions. This feature map is especially valuable in quantum machine learning 
problems where the interplay between features (qubits) is crucial. This methodology utilizes the principles of 
quantum mechanics to potentially offer computational advantages for particular workloads in comparison to 
classical methods.

Listing 1: ZZFeatureMap function constructs classical data into Quantum data using qubits
We are utilizing two dimensions, and ’reps’ denotes that the circuit is repeated twice with linear entanglement. 

Each q0 and q1 horizontal line represents two qubits with ?H? representing Hadamard Gate then we have a dot 
with a vertical line and plus means we use Control Not Gate which is used to Control the target qubit (q1). It acts 
like a when the |0 > ket of q0 then q1 is unchanged and when q0 has |1 > then q1 values is changed.

Figure 6.  The application of quantum computing on a given dataset is explored in this context.

Figure 7.  different types of data for quantum computing.

Figure 8.  Sample of a quantum circuit designed for a 2-qubit system.
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Quantum backend
For selecting a quantum computer among the list of computers provided by IBM, we have to provide the quantum 
instance and get the backend computer or simulator selected from the list of available computers, as shown in 
Table 4. The function 2 is used to get the backend.

Listing 2: Creating an instance of a quantum simulator
To implement quantum SVM with the selected dataset, we choose ?ibmq_qasm_simulator? because it is a 

general-purpose simulator without the need for error correction and available most of the time without any 
queues of jobs. Most real quantum computers have queues of jobs and are shared between programmers around 
the world. The waiting time of the real quantum computer is now getting more and more and one has to wait for 
his turn to complete the job which will execute on a sharing basis.

To implement quantum SVM with the selected dataset, we choose ?ibmq_qasm_simulator? because it is a 
general-purpose simulator without the need for error correction and available most of the time without any 
queues of jobs. Most real quantum computers have queues of jobs and are shared between programmers around 
the world. The waiting time of the real quantum computer is now getting more and more and one has to wait for 
his turn to complete the job which will execute on a sharing basis.

Quantum kernel
Quantum kernels utilize quantum feature maps to transform classical data into quantum states. To assess similar-
ity, they calculate the inner product between these quantum states. Quantum kernels utilize the multi-dimen-
sional Hilbert space and principles of quantum mechanics to capture intricate patterns in data. They possess the 
capacity to offer computational benefits for specific machine learning tasks. Quantum kernels are a burgeoning 
field of study in quantum machine learning, providing novel methods for manipulating and examining data that 
exploit the distinctive characteristics of quantum computers.

The quantum kernel algorithm generates a kernel matrix using n-dimensional data points and a feature map. 
This kernel matrix produced by the quantum machine learning kernels function is advantageous for support 
vector classification and is discussed in Function 3.

Listing 3: The utilization of a quantum kernel feature map for the purpose of implementing a quantum trick
Some elements of the matrix generated by the kernel function are shown on the provided dataset which 

clearly shows the correlation between samples that on diagonal there is 1 and above and non-diagonal elements 
are less than 1. The similarity between any two samples is shown by the off-diagonal elements, with values near 
to 1 indicating a high degree of similarity in Listing 4.

Table 4.  IBM offers a range of quantum computer processors that are currently accessible. A few of them are 
listed here.

Name Qubits Processor

ibm_perth 7 Falcon r5.11H

ibmq_quito 5 Falcon r4T

ibmq_belem 5 Falcon r4T

simulator_mps 100 Matrix Product State

ibmq_qasm_simulator 32 General, context-aware

simulator_statevector 32 Schrodinger wavefunction
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Listing 4: The list that is a compilation of items that are produced by the utilization of the Quantum Kernel 
Function.

Quantum superposition
Superposition, the idea that quantum states can coexist in a variety of states at once, is central to quantum com-
puting. Quantum superposition enables qubits to concurrently represent and manipulate many states, resulting 
in a significant benefit of parallelism in quantum computing. Superposition in the setting of QSVMs allows for 
the efficient encoding of classical data into quantum states, the concurrent processing of data points, and the 
effective computing of quantum kernels. This can result in machine learning models that are more expressive 
and potentially more accurate than their traditional counterparts. In order to potentially speed up computation 
compared to standard SVM, quantum SVM uses superposition to assess the kernel function for several data 
points simultaneously. The primary objective of quantum SVM is finding the best hyperplane that segregates the 
data points in the quantum feature space via the solution of an optimization problem.

A quantum version of the sklearn.svm support vector machine from the scikit-learn function is given in 
Listing 5. SVC classifier adds the quantum_kernel option which returns the QSVC object.

Listing 5: Quantum version of Kernel function

Training

For training of QSVM, we inherit the SVC fit method 6 and pass the training dataset data and label it as y_train.

Listing 6: The class acquires its methods, such as fit, through inheritance from the scikit-learn library.
As soon as the quantum state is measured, as shown in Fig. 9, classical outcomes appear. Based on their 

distance from this best hyperplane, new input data points are classified.
Algorithm 3 outlines the procedural steps required for training the quantum QSVM model.

Figure 9.  The circuit diagram illustrates the measurement process of a 2-qubit quantum system.
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Algorithm 3.  Implementing quantum SVM.

Results
Experiments were conducted using both a conventional computer and a quantum computer simulator. Both of 
these experiments produce promising results despite the fact that they can only utilize two classes in their results. 
Classical SVM and quantum SVM are conducted on both classical and quantum computers, which increases 
the precision of quantum SVM. In the following section, the outcomes of classical SVM and quantum SVM on 
classical and quantum computers are elaborated. Experiments are carried out using 80% data as training while 
the remaining 20% is used for testing the models.

Result using classical SVM
Results were obtained from distinct datasets gathered for London and Lahore.

Result for London city (UK)
The classical SVM model demonstrates a classification accuracy of 91% when applied to two distinct classes, as 
shown in Table 5. Similarly, precision, recall, and F1 scores are also provided for both classes. Overall, class-wise 
results show better performance of classical SVM for class 1 (Good).

The reported results are achieved with the assistance of 35 data instances, of which 29 are classified as belong-
ing to class 1 (Good) and 6 are classified as belonging to class 2 (Moderate). The graph presented illustrates the 
accurate prediction of class 1 (Good) and a partial accuracy in predicting class 2 (Moderate), with 3 out of 6 
predictions being right. Figure 10 shows the confusion matrix of the classical SVM.

Result for Lahore city (Pakistan)
The classical SVM model demonstrates a classification accuracy of 87% when applied to two distinct classes, as 
shown in Table 6. Similarly, precision, recall, and F1 scores are also provided for both classes. Overall, class-wise 
results show better performance of classical SVM for class 5 (Very Unhealthy).
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The reported results are achieved with the assistance of 15 data instances, of which 9 are classified as belonging 
to class 5 (Very Unhealthy) and 6 are classified as belonging to class 6 (Hazardous). The graph presented illustrates 
the accurate prediction of class 5 (Very Unhealthy) and a partial accuracy in predicting class 6 (Hazardous), with 
2 out of 6 predictions being right. Figure 11 shows the confusion matrix of the classical SVM.

Result on IBM simulator (ibmq_qasm_simulator)
Results were obtained from distinct datasets gathered for London and Lahore.

Result for London city (UK)
The quantum SVM demonstrates a high level of accuracy, reaching 97%, when applied to a binary classification 
problem involving two classes, as shown in Table 7. Besides better accuracy, precision, recall, and F1 scores of 
quantum SVM are also better than classical SVM with 1, 0.97, and 0.98 for class 1 precision, recall, and F1 scores 
and 0.86, 1, and 0.92 for class 2, respectively.

The QSVM model is supported by a dataset consisting of 35 observations. Among these observations, 29 are 
classified as belonging to class 1 (Good), while the other 6 are classified as belonging to class 2 (Moderate). The 
graph presented illustrates the accuracy of the predictions for two classes: class 1 (Good) and class 2 (Moderate). 
It indicates that out of a total of 29 instances in class 1, 28 were accurately predicted. Similarly, for class 2, out of 
6 instances, 5 were predicted correctly. Figure 12 shows the confusion matrix of the quantum QSVM.

Table 5.  The outcome of employing the classical SVM algorithm for the classification of two distinct classes 
for London city.

Precision Recall F1-score Support

1 (Good) 0.91 1 0.95 29

2 (Moderate) 1 0.5 0.67 6

Accuracy – – 0.91 35

Macro avg. 0.95 0.75 0.81 35

Weighted avg. 0.92 0.91 0.90 35

Figure 10.  The confusion matrix of the conventional SVM exhibits two unique categories for prediction 
outcomes, namely “Good” and “Moderate”.

Table 6.  The outcome of employing the classical SVM algorithm for the classification of two distinct classes 
for Lahore city.

Precision Recall F1-score Support

5 (Very Unhealthy) 0.82 1 0.90 9

6 (Hazardous) 1 0.67 0.80 6

Accuracy – – 0.87 15

Macro avg. 0.91 0.83 0.85 15

Weighted avg. 0.89 0.87 0.86 15
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Result for Lahore city (Pakistan)
The quantum SVM demonstrates a high level of accuracy, reaching 94%, when applied to a binary classification 
problem involving two classes, as shown in Table 8. Besides better accuracy, precision, recall, and F1 scores of 
quantum SVM are also better than classical SVM with 1, 0.91, and 0.95 for class 5 precision, recall, and F1 scores 
and 0.95, 0.94, and 0.94 for class 6, respectively.

The QSVM model is supported by a dataset consisting of 35 observations. Among these observations, 16 are 
classified as belonging to class 5 (Very Unhealthy), while the other 6 are classified as belonging to class 6 (Haz-
ardous). The graph presented illustrates the accuracy of the predictions for two classes: class 5 (Very Unhealthy) 
and class 6 (Hazardous). It indicates that out of a total of 16 instances in class 5, 10 were accurately predicted. 

Figure 11.  The confusion matrix of the conventional SVM exhibits two unique categories for prediction 
outcomes, namely “Very Unhealthy” and “Hazardous”.

Table 7.  The outcome of employing the quantum SVM algorithm for the classification of two distinct classes.

Percision Recall F1-score Support

1 (Good) 1 0.97 0.98 29

2 (Moderate) 0.86 1 0.92 6

Accuracy – – 0.97 35

Macro avg. 0.93 0.98 0.95 35

Weighted avg. 0.98 0.97 0.97 35

Figure 12.  The confusion matrix of the quantum SVM exhibits two unique categories for classical predictions, 
namely “Good” and “Moderate”.
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Similarly, for class 6, out of 5 instances, 5 were predicted correctly. Figure 13 shows the confusion matrix of the 
quantum QSVM.

In addition to the performance of quantum SVM compared to classical SVM, the computational complexity 
is another important factor. The time complexity of classical SVM is O(n2) to O(n3)7 and the time complexity of 
quantum SVM is O(log(n))22. Quantum computers use the power of qubits which can be found in superposition 
and entanglement which makes them use parallelism to achieve big data tasks more efficiently.

Conclusions
The objective of this study is to analyze the performance of quantum SVM on the WAQI dataset compared to 
that of conventional SVM. Air quality PM2.5 and temperature are two of the parameters studied in this type of 
research on specific cities. As quantum computers are still in their infancy, it is recommended to train the dataset 
using both classical SVM and quantum SVM on the two characteristics of PM2.5 and temperature. We compare 
and contrast the results of conventional SVM trained with the same features and data as quantum SVM trained 
with the same features and data. Because quantum computers are in their early stages of development that is why 
we chose to run our program into a quantum simulator also provided by IBM (ibmq_qasm_simulator). We limit 
our dataset to two features because of the early development of quantum computers and the limited number of 
qubits available. After standardization and normalization of data, it is used both with classical and quantum SVM. 
Results indicate that quantum SVM performs much better than the traditional SVM model. As the number of 
features increases, quantum computers can perform well in terms of time complexity and accuracy due to the 
nature of the implementation of parallelism using superposition and entanglement. Classical SVM shows an 
accuracy of 91% and quantum SVM shows an accuracy of 97%. The study finds that due to the limitation of the 
early stages of development quantum takes more time but in the near future when qubits are increased with less 
noise and error corrections quantum computers perform far better results in terms of time and accuracy but this 
part needs more research in upcoming years.

Data availability
The datasets used and/or analyzed during the present study are available from the corresponding author upon 
reasonable request
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Table 8.  The outcome of employing the quantum SVM algorithm for the classification of two distinct classes.

Precision Recall F1-score Support

5 (Very Unhealthy) 1 0.91 0.95 10

6 (Hazardous) 0.95 0.94 0.94 6

Accuracy – – 0.94 16

Macro avg. 0.92 0.95 0.93 16

Weighted avg. 0.95 0.94 0.94 16

Figure 13.  The confusion matrix of the quantum SVM exhibits two unique categories for classical predictions, 
namely “Very Unhealthy” and “Hazardous”.
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