Aprendizaje invertido: Una estrategia para la enseñanza virtual en tiempos de pandemia con los estudiantes de la Unidad Educativa Fiscal Ahitana Ponce, periodo 2021-2022

Tesis Materias > Educación Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster
Cerrado Español El aula invertida o también conocida como el flipped classroom es considerado como un modelo pedagógico que provoca una cierta transformación en los procesos de aprendizaje fuera del aula. En este caso donde se está frente a una modalidad netamente en línea por motivos de la pandemia, este tipo de metodología surge como una experiencia innovadora que busca construir y fortalecer los saberes de los estudiantes de forma autónoma mediante la implementación de herramientas digitales que busquen la participación e integración de todos los alumnos en cada una de las actividades. En este sentido, es importante destacar que esta modalidad de estudio se ha convertido en una alternativa que promueve el aprendizaje activo y significativo, generando siempre la interacción y flexibilidad para adaptar la experiencia en el aprendizaje. Este ofrece un enfoque integral para incrementar el compromiso y la implicación del estudiante en la enseñanza haciendo de tal forma que sea parte de su propia forma de aprender. Esta investigación tuvo como objetivo analizar el uso del aprendizaje invertido como una estrategia para la enseñanza virtual en tiempos de pandemia con los estudiantes de la Unidad Educativa Fiscal Ahitana Ponce. Entre los principales enfoques teóricos en los que se sustentó este abordaje se basa en las variables obtenidas en relación a la temática, de hecho, en el apartado se hace relevancia al aula invertida, su importancia, beneficios, las ventajas, rol del docente y estudiante frente al aula invertida, integración del flipped classroom en la educación virtual, origen y evolución del flipped classroom, entre otros. La metodología que se utilizó en esta investigación se sustenta en un enfoque cualitativo, por medio de un estudio fenomenológico, basado en los métodos analítico, descriptivo, bibliográfico, utilizando como técnica la entrevista aplicada a cuatro de los docentes de la Unidad Educativa Fiscal Ahitana Ponce y la observación a los estudiantes del Bachillerato General Unificado y Bachillerato técnico. Entre los resultados que se pueden destacar está la importancia que tiene la implementación del aula invertida en los procesos de enseñanza-aprendizaje desde un contexto completamente virtual en el ámbito epidemiológico actual. Si bien los entrevistados reconocieron los beneficios que tiene esta estrategia educativa y resaltaron la necesidad de fomentar el uso de esta metodología en la educación en línea. Mediante la observación aplicada se pudo identificar que los estudiantes hacen uso de este modelo educativo generando mayor motivación, satisfacción, compromiso, competencia y habilidades en el pensamiento. Por tanto, se concluye que el aula invertida es una estrategia que permite promover los aprendizajes a través del uso de plataformas virtuales dentro de un modelo que crea un espacio colaborativo que facilita la interacción entre estudiantes y docentes, de hecho, esta herramienta promueve a la autonomía en la obtención de conocimientos fuera del aula, si bien entre los beneficios que se pueden destacar están en alcanzar que el estudiante tenga un mejor rendimiento y logre resultados en su aprendizaje y aptitudes del pensamiento. metadata Marriott Sanchez, Carla Jovana mail carla-sanchez1977@hotmail.com (2022) Aprendizaje invertido: Una estrategia para la enseñanza virtual en tiempos de pandemia con los estudiantes de la Unidad Educativa Fiscal Ahitana Ponce, periodo 2021-2022. Masters thesis, Universidad Internacional Iberoamericana México.

Texto completo no disponible.

Resumen

El aula invertida o también conocida como el flipped classroom es considerado como un modelo pedagógico que provoca una cierta transformación en los procesos de aprendizaje fuera del aula. En este caso donde se está frente a una modalidad netamente en línea por motivos de la pandemia, este tipo de metodología surge como una experiencia innovadora que busca construir y fortalecer los saberes de los estudiantes de forma autónoma mediante la implementación de herramientas digitales que busquen la participación e integración de todos los alumnos en cada una de las actividades. En este sentido, es importante destacar que esta modalidad de estudio se ha convertido en una alternativa que promueve el aprendizaje activo y significativo, generando siempre la interacción y flexibilidad para adaptar la experiencia en el aprendizaje. Este ofrece un enfoque integral para incrementar el compromiso y la implicación del estudiante en la enseñanza haciendo de tal forma que sea parte de su propia forma de aprender. Esta investigación tuvo como objetivo analizar el uso del aprendizaje invertido como una estrategia para la enseñanza virtual en tiempos de pandemia con los estudiantes de la Unidad Educativa Fiscal Ahitana Ponce. Entre los principales enfoques teóricos en los que se sustentó este abordaje se basa en las variables obtenidas en relación a la temática, de hecho, en el apartado se hace relevancia al aula invertida, su importancia, beneficios, las ventajas, rol del docente y estudiante frente al aula invertida, integración del flipped classroom en la educación virtual, origen y evolución del flipped classroom, entre otros. La metodología que se utilizó en esta investigación se sustenta en un enfoque cualitativo, por medio de un estudio fenomenológico, basado en los métodos analítico, descriptivo, bibliográfico, utilizando como técnica la entrevista aplicada a cuatro de los docentes de la Unidad Educativa Fiscal Ahitana Ponce y la observación a los estudiantes del Bachillerato General Unificado y Bachillerato técnico. Entre los resultados que se pueden destacar está la importancia que tiene la implementación del aula invertida en los procesos de enseñanza-aprendizaje desde un contexto completamente virtual en el ámbito epidemiológico actual. Si bien los entrevistados reconocieron los beneficios que tiene esta estrategia educativa y resaltaron la necesidad de fomentar el uso de esta metodología en la educación en línea. Mediante la observación aplicada se pudo identificar que los estudiantes hacen uso de este modelo educativo generando mayor motivación, satisfacción, compromiso, competencia y habilidades en el pensamiento. Por tanto, se concluye que el aula invertida es una estrategia que permite promover los aprendizajes a través del uso de plataformas virtuales dentro de un modelo que crea un espacio colaborativo que facilita la interacción entre estudiantes y docentes, de hecho, esta herramienta promueve a la autonomía en la obtención de conocimientos fuera del aula, si bien entre los beneficios que se pueden destacar están en alcanzar que el estudiante tenga un mejor rendimiento y logre resultados en su aprendizaje y aptitudes del pensamiento.

Tipo de Documento: Tesis (Masters)
Palabras Clave: Aprendizaje invertido, enseñanza virtual, pandemia, innovación pedagógica, integración.
Clasificación temática: Materias > Educación
Divisiones: Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana Puerto Rico > Docencia > Trabajos finales de Máster
Depositado: 31 Oct 2023 23:30
Ultima Modificación: 31 Oct 2023 23:30
URI: https://repositorio.unini.edu.mx/id/eprint/1434

Acciones (logins necesarios)

Ver Objeto Ver Objeto

en

close

Single-cell omics for nutrition research: an emerging opportunity for human-centric investigations

Understanding how dietary compounds affect human health is challenged by their molecular complexity and cell-type–specific effects. Conventional multi-cell type (bulk) analyses obscure cellular heterogeneity, while animal and standard in vitro models often fail to replicate human physiology. Single-cell omics technologies—such as single-cell RNA sequencing, as well as single-cell–resolved proteomic and metabolomic approaches—enable high-resolution investigation of nutrient–cell interactions and reveal mechanisms at a single-cell resolution. When combined with advanced human-derived in vitro systems like organoids and organ-on-chip platforms, they support mechanistic studies in physiologically relevant contexts. This review outlines emerging applications of single-cell omics in nutrition research, emphasizing their potential to uncover cell-specific dietary responses, identify nutrient-sensitive pathways, and capture interindividual variability. It also discusses key challenges—including technical limitations, model selection, and institutional biases—and identifies strategic directions to facilitate broader adoption in the field. Collectively, single-cell omics offer a transformative framework to advance human-centric nutrition research.

Producción Científica

Manuela Cassotta mail manucassotta@gmail.com, Yasmany Armas Diaz mail , Danila Cianciosi mail , Bei Yang mail , Zexiu Qi mail , Ge Chen mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Giuseppe Grosso mail , José L. Quiles mail , Jianbo Xiao mail , Maurizio Battino mail maurizio.battino@uneatlantico.es, Francesca Giampieri mail francesca.giampieri@uneatlantico.es,

Cassotta

<a class="ep_document_link" href="/17878/1/s13018-025-06422-7.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Shoulder ligamentoplasty, arthroscopic Latarjet, dynamic anterior stabilization, and arthroscopic trillat for the treatment of shoulder instability: a systematic review of original studies on surgical techniques

Background Anterior shoulder instability is a common condition, especially among young and active individuals, often associated with both osseous and soft tissue injuries. Recent innovations have introduced various surgical options for managing critical and subcritical instability. Therefore, the primary objective of this systematic review was to collect, synthesize, and integrate international research published across multiple scientific databases on shoulder ligamentoplasty, arthroscopic Latarjet, dynamic anterior stabilization (DAS), and arthroscopic Trillat techniques used in the treatment of shoulder instability. Method A structured search was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the PICOS model, up to January 30, 2025, in the MEDLINE/PubMed, Web of Science (WOS), ScienceDirect, Cochrane Library, SciELO, EMBASE, SPORTDiscus, and Scopus databases. The risk of bias was evaluated, and the PEDro scale was used to assess methodological quality. Results The initial search yielded a total of 964 articles. After applying the inclusion and exclusion criteria, the final sample consisted of 25 articles. These studies demonstrated a high standard of methodological quality. The review summarized the effects of ligamentoplasty, arthroscopic Latarjet, dynamic anterior stabilization, and arthroscopic Trillat techniques in treating shoulder instability, detailing the sample population, immobilization period, frequency of instability episodes—including recurrent dislocations and subluxations—surgical methods, study designs, assessed variables, main findings, and reported outcomes. Conclusions Arthroscopic ligamentoplasty is advantageous in preserving the patient’s native anatomy, maintaining joint integrity, and allowing for alternative interventions in case of failure. The arthroscopic Trillat technique offers a minimally invasive solution for anterior instability without significant bone loss. The DAS technique utilizes the biceps tendon to provide dynamic stabilization, aiming to generate a sling effect over the subscapularis muscle. The Latarjet procedure remains the gold standard for managing anterior glenoid bone loss greater than 20%. Each surgical option for anterior shoulder instability carries specific implications, and treatment decisions should be tailored based on bone loss severity, capsuloligamentous quality, and the patient’s functional needs.

Producción Científica

Carlos Galindo-Rubín mail , Yehinson Barajas Ramón mail , Fernando Maniega Legarda mail , Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es,

Galindo-Rubín

<a class="ep_document_link" href="/17880/1/nutrients-17-03613.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Image-Based Dietary Energy and Macronutrients Estimation with ChatGPT-5: Cross-Source Evaluation Across Escalating Context Scenarios

Background/Objectives: Estimating energy and macronutrients from food images is clinically relevant yet challenging, and rigorous evaluation requires transparent accuracy metrics with uncertainty and clear acknowledgement of reference data limitations across heterogeneous sources. This study assessed ChatGPT-5, a general-purpose vision-language model, across four scenarios differing in the amount and type of contextual information provided, using a composite dataset to quantify accuracy for calories and macronutrients. Methods: A total of 195 dishes were evaluated, sourced from Allrecipes.com, the SNAPMe dataset, and Home-prepared, weighed meals. Each dish was evaluated under Case 1 (image only), Case 2 (image plus standardized non-visual descriptors), Case 3 (image plus ingredient lists with amounts), and Case 4 (replicates Case 3 but excluding the image). The primary endpoint was kcal Mean Absolute Error (MAE); secondary endpoints included Median Absolute Error (MedAE) and Root Mean Square Error (RMSE) for kcal and macronutrients (protein, carbohydrates, and lipids), all reported with 95% Confidence Intervals (CIs) via dish-level bootstrap resampling and accompanied by absolute differences (Δ) between scenarios. Inference settings were standardized to support reproducibility and variance estimation. Source stratified analyses and quartile summaries were conducted to examine heterogeneity by curation level and nutrient ranges, with additional robustness checks for error complexity relationships. Results and Discussion: Accuracy improved from Case 1 to Case 2 and further in Case 3 for energy and all macronutrients when summarized by MAE, MedAE, and RMSE with 95% CIs, with absolute reductions (Δ) indicating material gains as contextual information increased. In contrast to Case 3, estimation accuracy declined in Case 4, underscoring the contribution of visual cues. Gains were largest in the Home-prepared dietitian-weighed subset and smaller yet consistent for Allrecipes.com and SNAPMe, reflecting differences in reference curation and measurement fidelity across sources. Scenario-level trends were concordant across sources, and stratified and quartile analyses showed coherent patterns of decreasing absolute errors with the provision of structured non-visual information and detailed ingredient data. Conclusions: ChatGPT-5 can deliver practically useful calorie and macronutrient estimates from food images, particularly when augmented with standardized nonvisual descriptors and detailed ingredients, as evidenced by reductions in MAE, MedAE, and RMSE with 95% CIs across scenarios. The decline in accuracy observed when the image was omitted, despite providing detailed ingredient information, indicates that visual cues contribute meaningfully to estimation performance and that improvements are not solely attributable to arithmetic from ingredient lists. Finally, to promote generalizability, it is recommended that future studies include repeated evaluations across diverse datasets, ensure public availability of prompts and outputs, and incorporate systematic comparisons with non-artificial-intelligence baselines.

Producción Científica

Marcela Rodríguez- Jiménez mail , Gustavo Daniel Martín-del-Campo-Becerra mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Jorge Crespo-Álvarez mail jorge.crespo@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,

Rodríguez- Jiménez

<a href="/17862/1/sensors-25-06419.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Edge-Based Autonomous Fire and Smoke Detection Using MobileNetV2

Forest fires pose significant threats to ecosystems, human life, and the global climate, necessitating rapid and reliable detection systems. Traditional fire detection approaches, including sensor networks, satellite monitoring, and centralized image analysis, often suffer from delayed response, high false positives, and limited deployment in remote areas. Recent deep learning-based methods offer high classification accuracy but are typically computationally intensive and unsuitable for low-power, real-time edge devices. This study presents an autonomous, edge-based forest fire and smoke detection system using a lightweight MobileNetV2 convolutional neural network. The model is trained on a balanced dataset of fire, smoke, and non-fire images and optimized for deployment on resource-constrained edge devices. The system performs near real-time inference, achieving a test accuracy of 97.98% with an average end-to-end prediction latency of 0.77 s per frame (approximately 1.3 FPS) on the Raspberry Pi 5 edge device. Predictions include the class label, confidence score, and timestamp, all generated locally without reliance on cloud connectivity, thereby enhancing security and robustness against potential cyber threats. Experimental results demonstrate that the proposed solution maintains high predictive performance comparable to state-of-the-art methods while providing efficient, offline operation suitable for real-world environmental monitoring and early wildfire mitigation. This approach enables cost-effective, scalable deployment in remote forest regions, combining accuracy, speed, and autonomous edge processing for timely fire and smoke detection.

Producción Científica

Dilshod Sharobiddinov mail , Hafeez Ur Rehman Siddiqui mail , Adil Ali Saleem mail , Gerardo Méndez Mezquita mail , Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx, Isabel de la Torre Díez mail ,

Sharobiddinov

<a href="/17863/1/v16p4316.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Divulging Patterns: An Analytical Review for Machine Learning Methodologies for Breast Cancer Detection

Breast cancer is a lethal carcinoma impacting a considerable number of women across the globe. While preventive measures are limited, early detection remains the most effective strategy. Accurate classification of breast tumors into benign and malignant categories is important which may help physicians in diagnosing the disease faster. This survey investigates the emerging inclination and approaches in the area of machine learning (ML) for the diagnosis of breast cancer, pointing out the classification techniques based on both segmentation and feature selection. Certain datasets such as the Wisconsin Diagnostic Breast Cancer Dataset (WDBC), Wisconsin Breast Cancer Dataset Original (WBCD), Wisconsin Prognostic Breast Cancer Dataset (WPBC), BreakHis, and others are being evaluated in this study for the demonstration of their influence on the performance of the diagnostic tools and the accuracy of the models such as Support vector machine, Convolutional Neural Networks (CNNs) and ensemble approaches. The main shortcomings or research gaps such as prejudice of datasets, scarcity of generalizability, and interpretation challenges are highlighted. This research emphasizes the importance of the hybrid methodologies, cross-dataset validation, and the engineering of explainable AI to narrow these gaps and enhance the overall clinical acceptance of ML-based detection tools.

Producción Científica

Alveena Saleem mail , Muhammad Umair mail , Muhammad Tahir Naseem mail , Muhammad Zubair mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Shoaib Hassan mail , Imran Ashraf mail ,

Saleem