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Abstract: Telephysiotherapy has emerged as a vital solution for delivering remote healthcare, par-
ticularly in response to global challenges such as the COVID-19 pandemic. This study seeks to
enhance telephysiotherapy by developing a system capable of accurately classifying physiotherapeu-
tic exercises using PoseNet, a state-of-the-art pose estimation model. A dataset was collected from
49 participants (35 males, 14 females) performing seven distinct exercises, with twelve anatomical
landmarks then extracted using the Google MediaPipe library. Each landmark was represented
by four features, which were used for classification. The core challenge addressed in this research
involves ensuring accurate and real-time exercise classification across diverse body morphologies
and exercise types. Several tree-based classifiers, including Random Forest, Extra Tree Classifier,
XGBoost, LightGBM, and Hist Gradient Boosting, were employed. Furthermore, two novel ensemble
models called RandomLightHist Fusion and StackedXLightRF are proposed to enhance classification
accuracy. The RandomLightHist Fusion model achieved superior accuracy of 99.6%, demonstrating
the system’s robustness and effectiveness. This innovation offers a practical solution for providing
real-time feedback in telephysiotherapy, with potential to improve patient outcomes through accurate
monitoring and assessment of exercise performance.

Keywords: telephysiotherapy; PoseNet; exercise classification; machine learning; ensemble models;
healthcare technology; Google MediaPipe

1. Introduction

Telehealth encompasses the provision of healthcare services such as diagnosis, consul-
tation, and education through electronic devices such as computers, laptops, and mobile
phones [1]. This approach meets the evolving needs of an aging global population, which
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is expected to see the percentage of individuals aged 60 and above rise from 12% to 22%
by 2050, nearly doubling from 2015 figures [2]. For elderly people with chronic diseases,
the physical burden of traveling long distances to obtain healthcare presents a significant
challenge. Telehealth offers a vital solution that facilitates remote access to healthcare
services and effectively addresses these barriers. The COVID-19 pandemic has accelerated
the adoption of telehealth, leading to improvements in service delivery [3]. Research
shows that about 90% of patients and caregivers feel more secure with telehealth appoint-
ments compared to traditional in-person visits [4], highlighting its growing importance in
improving healthcare accessibility and patient confidence.

Telehealth has also proven beneficial for remote physiotherapy, which focuses on
diagnosing and treating impairments that hinder functional activities [5]. Physiotherapy
often involves exercises that are crucial for patient rehabilitation. Consistent and accurate
execution of these exercises allows therapists to adjust treatment as needed [6]. Traditional
physical therapy involves direct interaction with the therapists who guide the patients to
correct for exercise errors. However, the long duration and frequency of physiotherapy ses-
sions make it challenging for patients to adhere to their regimens. Remote physical therapy
via telehealth addresses these challenges by providing ongoing support and monitoring,
thereby improving patient engagement and adherence to prescribed exercises. This paper
presents a system that utilizes machine learning (ML) and PoseNet to appropriately catego-
rize exercises. This novel technology contains an advanced method to accurately identify
and classify different physical activities. The technology utilizes ML techniques and the
PoseNet algorithm to examine the postures and movements of individuals while perform-
ing exercise routines. This comprehensive comprehension enables tailored feedback and
assistance, thereby enhancing the efficacy of the rehabilitation process. The combination
of ML with PoseNet in exercise categorization demonstrates the capacity of advanced
technology to significantly improve the field of healthcare care, particularly in improving
the precision and effectiveness of physiotherapeutic treatments. The contributions of this
study are as follows:

• The dataset for this study was meticulously collected, comprising videos captured
using a high-quality Hiievpu 2K Webcam with a superior CMOS 1/s image sensor.
A total of 490 videos featuring subjects performing various exercises were included,
with 350 featuring male subjects and 140 featuring female subjects.

• The Google MediaPipe library was employed to extract PoseNet features, focusing
specifically on twelve key points related to exercises.

• This study introduces two innovative ensemble models, RandomLightHist Fusion
and StackedXLightRF, combining the strengths of individual classifiers. These stacked
models were trained on the standardized PoseNet features and evaluated on the
test set.

• To validate the robustness and generalization capabilities of the models, K-fold cross-
validation with five folds was employed.

2. Literature Review

An extensive examination of the pertinent literature reveals a wide range of approaches
and advancements designed to improve the effectiveness of physical therapy exercises,
ensure correct body alignment, and facilitate remote monitoring of exercise sessions. This
section presents significant research work, each with distinct viewpoints and approaches
which contribute to the overall understanding of the topic. The study conducted by [7]
presented a method that aims to aid patients in their physiotherapy activities by promoting
correct postures and reducing the likelihood of injuries. The Home Based Physiotherapy
Exercise (HPTE) dataset was utilized, which consists of eight exercises specifically designed
for the shoulder and knee. The system incorporates seven exercises with a range of modi-
fications, with a focus on improving the user experience. Pose estimation techniques are
used to identify important anatomical landmarks, which are then compared using dynamic
time warping during training sessions. An intuitive desktop application with a three-
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dimensional avatar provides guidance to patients, assigning numerical values to exercises
to provide feedback. The technology guarantees exceptional precision in determining and
comparing position and orientation, establishing a threshold of precision 80%. In another
approach, Ranasinghe et al. [8] aimed to revolutionize home-based exercises by merging
Human–Computer Interaction (HCI) technologies with ML. Their system utilizes pose
estimation, reinforcement learning, and a web-based application to monitor and deliver
autonomous feedback on physiological movements. The level of exercise intensity is tai-
lored according to the specific muscle strength of each individual, and complete reports
with detailed information about the activity are produced. This system accommodates
a wide range of users, including individuals engaged in therapy and fitness enthusiasts,
improving their ability to achieve training goals in the comfort of their own homes.

In [9], the authors developed a virtual personal trainer system that uses Kinect cameras
specifically for yoga and physiotherapy workouts. The Open Kinect driver acquires RGB
and depth images, while the Kinect SDK retrieves real-time skeleton data. Users are guided
by visual signals and audio instructions, which contribute to the development of a thorough
training program. The installation of the Kinect sensor and software on a computer allows
users to interact with the virtual personal trainer. The ePhysio system, developed by [10] is
designed to remotely monitor musculoskeletal therapy. This is achieved through the use of
Inertial Measurement Units (IMUs) and textile sensors. A wireless connection enables the
transmission of data to a cloud system, facilitating the analysis of patient progress and the
provision of feedback by healthcare professionals. The data stored in the cloud are utilized
for continuous training and prediction of machine learning models. In [11], the authors
employed PoseNet and K-Nearest Neighbors (KNN) in the field of yoga to achieve precise
detection of yoga poses. Users are guided through a video presentation and provided
with step-by-step directions to ensure proper posture. The model demonstrates a training
accuracy of 93.56% and a performance accuracy of 98.51%.

In [12], the authors introduced BodyMTS, an innovative approach for categorizing
strength and conditioning programs based on video recordings. Their study specifically
examined issues related to storage and computing in military press activity. They tackled
these challenges by utilizing body posture tracking to transform movies into time series
data. BodyMTS demonstrates precision and robustness against interference by utilizing
multivariate time series classifiers for training and prediction. BodyMTS shows comparable
accuracy to deep learning algorithms while offering faster processing times and decreased
model engineering needs. The system utilizes Human Pose Estimation and Multivariate
Time Series Classification to offer feedback to physiotherapists, coaches, and patients.
Despite the presence of intrinsic noise, the system attains an average accuracy of 87%,
surpassing that of human experts. In [13], the authors presented an approach that utilizes
video to categorize human movement by integrating Human Pose Estimation, Multivari-
ate Time Series Classification, and Interpretation. Their objective was to provide input
to physiotherapists, coaches, and rehabilitation patients. Instead of using sensor-based
methods, their study employed video data captured by mobile cameras. The approach
entails transforming videos into time series data using human posture estimation and sub-
sequently training time series classifiers. Although there may be noise in the video capture
and pose estimate, their system showed an incredible precision rate of 81%, highlighting
the efficiency of the methodology in assessing CrossFit Workout Activities.

In [14], the authors developed an advanced deep learning model for monitoring and
classifying human exercises. This was achieved through the use of posture estimation
and a spatial–temporal graph convolutional network (ST-GCN). The model was trained
using a dataset obtained from the internet. Using MediaPipe BlazePose, they extracted
33 essential points that describe the human body. The ST-GCN model, which has been
assessed for accuracy in the top-1% and top-5% categories, has four different versions. Op-
timal performance was accomplished by dividing the spatial configuration into partitions
and assigning weights to the importance of the edges that can be learned, leading to a top-1
accuracy of 41.75% and top-5 accuracy of 89.32%. In [15], the authors proposed a yoga
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posture coaching system that employs an interactive display and transfer learning. Their
study aimed to avoid health problems caused by inappropriate yoga postures. It involved
capturing fourteen poses using an RGB camera, with individuals executing each stance
many times. Their study utilized data augmentation to evaluate six transfer learning mod-
els. Among these models, the TL-MobileNet-DA model was chosen due to its exceptional
overall accuracy of 98.43%, sensitivity of 98.30%, specificity of 99.88%, and high Matthews
correlation value of 0.9831. In [16], the authors developed an AI Gym Trainer posture esti-
mation system that utilizes MediaPipe and OpenCV technology. Their solution effortlessly
incorporates pretrained MediaPipe models to estimate posture, and flawlessly connects
with OpenCV for image and video processing. The system records the user’s video input,
identifies key points on the body using MediaPipe, then measures the angles between
these points using OpenCV to analyze posture. The user receives prompt feedback and
corrected recommendations, which were evaluated using bicep curls as a test scenario. The
system is designed to perform well under different lighting conditions and to be resistant
to obstructions. Its approach includes gathering and preprocessing data, training a pipeline
using backpropagation, and evaluating the model. The evaluation criteria consisted of
mean average precision (MAP) and mean per-joint position error (MPJPE), which were
used to quantify the overall accuracy (visibility) as 90%.

A study on physical therapy was undertaken in [17] by using motion history pho-
tographs to analyze squats. The accuracy of movement was determined using motion
image detection. Knee joint position and depth information was utilized to infer the lo-
cation of the joint. Calculation of the MHG (Motion History Gradient) was performed to
assess the presence of motion. The results were quantified by assessing the incidence of
motion, expressed as recall and precision, which were 83% and 85%, respectively. Another
study [18] aimed to classify nine upper extremity exercises using kinematic data captured
by an IMU-based system. The exercises included standing row, arm external rotation,
abduction 900, external rotation, bicep curl, forearm pronation/supination, wrist curls,
lateral arm raise, front arm raise, and horizontal abduction. The study involved a cohort
of fifty participants, each of whom conducted a series of exercises. Each exercise was
repeated ten times, resulting in a total of 4500 trials. IMU sensors were placed on the
right hand, forearm, upper arm, and chest. Multiple machine learning classifiers were
trained to identify and categorize the exercises. The Random Forest classifier achieved
the highest accuracy scores of 98.6% and 91.9% for detecting the triaxial join range. The
study conducted by by [19] focused on real-time assessment of rehabilitation activities
utilizing thermal imaging. A thermal camera was used to record real-time photographs
of three compensatory movements (shrug, body sway, and body twist). A convolutional
neural network (CNN) was trained specifically to identify compensating motions. The
precision and recall criteria produced scores of 93% and 97%, respectively. In [20], the
authors investigated the recognition of four rehabilitation exercises: the bird dog, cat camel,
cobra stretch, and pelvic tilt. This investigation employed a solitary camera devoid of
any further apparatus, to observe the patients. The OpenPose library was used to extract
25 essential points representing body joints. A total of thirteen and eight characteristics
were chosen for the training of a long-short term memory (LSTM) deep neural network,
attaining an accuracy of 97.50%. The study by [21] utilized a single camera to track human
skeletal movements during performance of squat exercises. Their study used open-source
MediaPipe technology to extract the essential parts of the human body. An evaluation
model was constructed using human skeletal monitoring through MediaPipe, joint an-
gle tracking, and signal filtering techniques (double exponential smoothing and mean
square error). The mean squared error was employed as a threshold to distinguish squat
exercise performance.

While the aforementioned studies contribute significantly to the domain of AI-assisted
exercise monitoring, they are not without limitations. Several studies depend on particular
datasets, which could limit the applicability of their suggested systems. The range of
exercises included in datasets and the differences in body shapes across individuals may
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not completely capture the intricacy of real-life situations. Furthermore, several studies
concentrated on specific workouts or body regions; thus, generalization of their results
to a wider variety of physical activities may necessitate additional investigations. In
addressing the limitations observed in existing studies, our proposed system aims for a
more comprehensive and adaptable AI-assisted exercise monitoring solution. To this end,
our proposed system leverages a diverse and extensive dataset encompassing a wide array
of exercises performed by individuals with varying body types and fitness levels.

3. Materials and Methods

The proposed methodology, depicted in Figure 1, presents a methodical strategy for
classifying tasks. The first phase entails capturing video data using a webcam. These data
are then sorted into several files labeled according to the type of exercise. These videos are
used to extract PoseNet features, which are essential in the subsequent stages of analysis.
After extracting the features, a standardization procedure is implemented to guarantee
uniformity and compatibility for subsequent processing. The standardized features are
divided into training and testing sets, which is a crucial stage in the machine learning
(ML) and deep learning (DL) pipeline. The training set is fed into appropriate ML and
DL classifiers, utilizing their ability to detect and understand intricate patterns in the data.
The classifiers undergo fine-tuning and optimization using the training data, enabling
them to efficiently learn and generalize exercise patterns. Afterwards, the classifiers are
evaluated using the specified test set, based on which their performance is measured using
different metrics such as the accuracy, precision, recall, and F1 score. These metrics offer a
thorough assessment of the classification model’s efficacy in precisely classifying exercises.
The proposed methodology follows a systematic and meticulous approach, incorporating
computer vision techniques along with ML and DL methodologies to attain strong and
dependable exercise categorization results.

Figure 1. Diagram showing the proposed methodology for exercise classification.

3.1. Data Collection

This study was conducted with great attention to detail while showcasing a strong
dedication to established ethical principles, and received formal approval from the Khwaja
Fareed University of Engineering and Information Technology (KFUEIT) Ethics Committee.
The Ethics Committee conducted a thorough evaluation of the ethical aspects related to
the study, ensuring strict compliance with the principles specified in the Declaration of
Helsinki. This primary emphasis on ethical norms highlights the significant value placed
on protecting the welfare, rights, and privacy of all individuals participating in the research.
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The data collection process was carried out in the KFUEIT ICT building, with careful
attention paid to ensuring compliance with ethical and research standards.

The data collection phase involved a total of 49 subjects, comprising 34 males and
15 females falling within the age range of 21 to 29 years. Each participant engaged in a
series of seven distinct exercises, including RSA, LSA, BSA, SFU, SFD, Breaststroke, and
Boxing, as shown in Figure 2. The inclusion of these exercises was based on their relevance
to shoulder joint rehabilitation [22,23]. Notably, the exercise duration for each task was
standardized as 15 s, with a consistent distance of 2 m. Throughout the study, every subject
performed each exercise precisely ten times, contributing to a comprehensive dataset that
captures the nuances of the specific exercises in different participants.

Videos were recorded using a high-quality Hiievpu 2K Webcam [24], which is renowned
for its exceptional features. This webcam incorporates a CMOS 1/s image sensor, allowing
for the generation of high-definition images with an impressive resolution of 4 million
pixels (2560 × 1440 p) [24,25]. Thanks to its seamless operation at a frame rate of 30 frames
per second (fps), the advanced technological capabilities of this webcam facilitated the
capture of videos with superior quality. During the exercise sessions, the subjects were
provided with rest intervals between each set of exercises. The inclusion of rest periods
served to mitigate potential fatigue and ensure that participants could perform each exer-
cise with optimal effort and attention. This consideration for rest intervals not only aligns
with established exercise protocols but also acknowledges the wellbeing of the subjects,
promoting a safe and controlled environment for data collection.

Figure 2. Subjects performing exercises.

3.2. Feature Extraction and Standardization

To ensure precise representation of the subtle temporal attributes of physical activity,
frames were carefully extracted from the recorded videos at a rapid rate of 30 frames
per second (fps). The intentional selection of this accelerated frame rate was crucial in
accurately portraying the complexity and intricacy intrinsic in motion patterns. Next,
the chosen frames were subjected to extensive processing utilizing the PoseNet feature
extraction technique, which is a highly regarded algorithm recognized for its effectiveness
in estimating the positions of individuals [26]. PoseNet conducts a thorough examination
of the human body’s posture in every frame, identifying important anatomical landmarks
such as joint positions, angles, and critical anatomical points. Recognizing these established
landmarks provides significant insights into the spatial organization and dynamics of the
human body when engaged in physical activity. In order to implement this procedure,
our research used the Google MediaPipe library [27] as the main source to extract critical
components of posture. MediaPipe is an innovation from Google that provides researchers



Sensors 2024, 24, 6325 7 of 15

with the ability to build perception pipelines. The MediaPipe library possess the capability
to efficiently process and analyze a wide range of media inputs, including images and
videos, and exhibits outstanding performance in a wide array of tasks, including hand
movement tracking, body pose estimation, and face landmark recognition.

As depicted in Figure 2, the focus of this study is on exercises that predominantly
involve arm movements. As a result, a methodical selection procedure was utilized to
identify twelve crucial anatomical landmarks that are particularly pertinent to the arms:
the right shoulder, right elbow, right wrist, right pinky, right index finger, right thumb, left
shoulder, left elbow, left wrist, left pinky, left index finger, and left thumb. These points
were selected with discerning and meticulous care from a larger population of 33 landmarks
provided by the library. The selected landmarks allow for tracking the range of motion
and coordination between key joints (shoulders, elbows, and wrists), which are central
to exercises such as Right Shoulder Abduction (RSA), Left Shoulder Abduction (LSA),
Bilateral Shoulder Abduction (BSA), Shoulder Flexion Upward (SFU), Shoulder Flexion
Downward (SFD), Breaststroke, and Boxing. The X, Y, and Z coordinates of the key points
and their related visibility ratings were obtained using the Cartesian coordinate system [28].
In order to maintain the accuracy and reliability of the data, this information was carefully
maintained in a well organized file format known as Comma-Separated Values (CSV). The
CSV file structure guarantees that each row corresponds to a distinct instance or frame in
the video, while the columns indicate the X, Y, and Z coordinates of the posture markers
along with their corresponding visibility ratings and labels.

After feature extraction, the next crucial step is standardization, which was performed
using the widely recognized StandardScaler technique. This process ensures that all
features are uniform and comparable by standardizing them with respect to their own
mean and standard deviation. By removing the mean and then scaling each feature to
the unit variance, the StandardScaler technique minimizes potential biases and variations
that could arise from differences in the original measurement units. This standardized
representation strengthens the consistency and reliability of the dataset, providing a solid
foundation for subsequent machine learning and deep learning classification models.

3.3. Data Splitting

The dataset consisted of 490 videos showing subjects participating in workout ac-
tivities, with 350 videos presenting male participants and 140 videos featuring female
participants. The dataset was divided into two parts, with 70% used for training and
30% for testing, and was randomized prior to the split to ensure an even distribution and
minimize potential biases during model evaluation. More precisely, 70% of the dataset,
consisting of 343 videos (240 from males and 103 from females), was designated for training.
The remaining 30%, consisting of 147 videos (110 from males and 37 from females), was set
aside for testing. This deliberate division provides sufficient model training and rigorous
evaluation on unfamiliar data, improving the ability of the exercise categorization system
to generalize.

Every video in the dataset had a fixed duration of 15 s, helping to ensure uniformity
in the temporal dimension. Frames were retrieved with great precision at a constant rate of
30 fps, capturing the dynamic subtleties of each exercise. The distribution of frame counts
showed a precise balance within the dataset, as depicted in Figure 3. The equal distribution
of frame counts among different exercise categories ensures a reliable basis for training
models and conducting evaluations, demonstrating that our systematic methodology
resulted in a well-rounded dataset for exercise categorization.
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Figure 3. Frame distributions in the training and testing sets.

4. Results and Discussion

This section provides an extensive analysis and discussion of the results obtained from
the experiments carried out in this study. The objective is to provide a comprehensive
analysis of the results and to explain their significance within the framework of this research
endeavor. In addition, a substantial discussion delves into the implications and significance
of these results, contributing to a more nuanced understanding of the broader academic
and practical implications of these findings.

4.1. Experimental Setup

The HP EliteBook x360 1040 G6 was used as the primary computing platform for our
experimental investigations. The system was equipped with an Intel® Core™ i5-8365U
CPU @ 1.60 GHz (Intel Corporation, Santa Clara, CA, USA). which had a maximum
clock speed of 1.90 GHz. As a result, the system demonstrated impressive processing
capabilities. The CPU capability was enhanced by a significant 16.0 GB of RAM, providing
enhanced multitasking and data management efficiency. The system utilized a 64-bit
architecture and was equipped with Windows 11 Pro, demonstrating the smooth integration
of advanced hardware and software components. This technical setup highlights the
advanced capabilities utilized during the experimentation phase, guaranteeing a strong
and adaptable computing environment.

4.2. Performance of Classifiers

In this study, we explicitly chose a set of tree-based machine learning classifiers for
the classification tasks performed in our investigation: Random Forest (RF) [29], Extra
Tree Classifier (ETC) [30], XGBoost [31], Light Gradient Boosting Machine (LGBM) [32],
and Hist Gradient Boosting (HGB) [33]. These classifiers were chosen due to their robust
ability to handle high-dimensional data, their flexibility in managing both linear and
nonlinear relationships, and their proven effectiveness in multiclass classification tasks.
Tree-based classifiers are particularly well suited for datasets with diverse features, as they
can effectively manage feature interactions and are less prone to overfitting compared to
other models. Additionally, these classifiers offer interpretability, scalability, and the ability
to capture complex decision boundaries, making them ideal for the classification tasks in
this investigation. Their ensemble nature also enhances generalization, leading to more
accurate and reliable performance. In order to enhance the efficiency of these classifiers,
we carried out a thorough adjustment of their hyperparameters. The hyperparameter
values in Table 1 were meticulously selected using an exhaustive grid search, a systematic
procedure aimed at discovering the optimal configuration for each classifier; this procedure
guarantees that the classifiers are adjusted precisely to the subtleties of the dataset, thereby
improving their ability to detect and apply the complicated patterns inherent in the exercise
classification task.



Sensors 2024, 24, 6325 9 of 15

Table 1. Hyperparameters of the classifiers used in this study.

Classifier Hyperparameters

HGB max_iter = 100, random_state = 42

LGBM default

XGBoost n_estimators = 1000, learning_rate = 0.1, max_depth = 6

ETC n_estimators = 100, max_depth = 200, random_state = 0

RF random_state = 142, max_depth = 150, n_estimators = 150

Subsequently, the selected classifiers were extensively trained using the training set.
After completing the training phase, the classifiers underwent extensive testing on the test
set, which allowed for a strict assessment of their ability to generalize to new and unseen
data. The findings of these classifications, which include measures of performance and
evaluation outcomes, were thoroughly recorded and are provided in Table 2 with careful
precision. This table shows how well and how differently each classifier performed in
exercise classification.

Table 2. Classification results of the classifiers on the test set.

Classifier Accuracy (%) Precision Recall F1-Score

RF 98.2 0.98 0.98 0.98

ETC 98.01 0.98 0.98 0.98

HGB 95.3 0.95 0.95 0.95

XGBoost 95.1 0.95 0.95 0.95

LGBM 94.88 0.95 0.95 0.95

The classification results in Table 2 exhibit the impressive performance of different
tree-based machine learning classifiers. In particular, RF stands out as the best performing
classifier, achieving an accuracy of 98.2%. This superior performance can be attributed to
the ensemble nature of RF, which combines multiple decision trees to mitigate overfitting
and enhance generalization. The ability of RF to effectively handle varied and intricate
patterns within the dataset adds to its outstanding performance in exercise classification.
Moreover, the ability of RF to capture the importance of features enables it to identify the
essential properties that are pertinent to exercise categorization, leading to the development
of a comprehensive and accurate model.

4.3. Performance of Stacked Classifiers

This paper presents an innovative ensemble model called RandomLightHist Fusion
that combines three robust classifiers: HGB, LGBM, and RF. In addition, a secondary model
called StackedXLightRF Fusion is built by merging XGBoost, LGBM, and RF. The hyper-
parameters used in these models are all in accordance with the configurations specified
in Table 1, ensuring a consistent and rigorous experimental setup. The training phase
consisted of providing the ensemble models with data from the training set, allowing them
to effectively combine the strengths of each individual classifier. Afterwards, the recently
developed stacked models were thoroughly evaluated on the test set, offering a detailed
assessment of their combined performance in exercise categorization. Table 3 presents the
classification scores and metrics obtained from this evaluation process, providing insight
into the effectiveness of the proposed RandomLightHist Fusion and StackedXLightRF
Fusion models.
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Table 3. Classification results of the stacked classifiers on the test set.

Classifier Accuracy (%) Precision Recall F1-Score

RandomLightHist 99.6 1.0 1.0 1.0

StackedXLightRF 99.2 0.99 0.99 0.99

The classification results displayed in Table 3 demonstrate the exceptional performance
of the RandomLightHist and StackedXLightRF ensemble models introduced above. The
RandomLightHist fusion algorithm demonstrates an exceptional accuracy of 99.6% along
with remarkable precision, recall, and F1 score. This exceptional performance can be
ascribed to the synergistic amalgamation of HGB, LGBM, and RF in this ensemble. The
RandomLightHist ensemble’s capacity to utilize the advantages of the individual classifiers
while minimizing their potential drawbacks leads to a very resilient and precise model.
This model’s exceptional precision, recall, and F1-score demonstrate its ability to accurately
classify exercise categories without any instances of false positives or false negatives.
Similarly, the StackedXLightRF Fusion model attains a commendable accuracy of 99.2%
with high precision, recall, and F1-score. The success of this outcome can be ascribed to
the meticulous incorporation of XGBoost, LGBM, and RF into the ensemble. The stacking
approach allows the component models to complement each other, compensating for their
individual limitations and collectively enhancing the model’s overall predictive power.

4.4. K-Fold Cross-Validation Results

The proposed models were validated using K-fold cross-validation, a robust technique
adopted in this study with a five-fold configuration. This method entails dividing the
dataset into five separate folds; each fold takes a turn as the validation set, while the other
folds together form the training set. This operation is iterated five times, guaranteeing that
each fold is employed as the validation set precisely once. The extensive outcomes of this
cross-validation process are thoroughly recorded in Table 4, offering a careful assessment
of the models’ ability to generalize across various subsets of the dataset.

Table 4. K-fold cross-validation results.

Classifier Accuracy/Std

RF 0.98 ± 0.002

ETC 0.98 ± 0.005

HGB 0.955 ± 0.003

XGBoost 0.95 ± 0.002

LGBM 0.95 ± 0.002

RandomLightHist 0.997 ± 0.002

StackedXLightRF 0.99 ± 0.002

The cross-validation scores presented in Table 4 offer a thorough view of the perfor-
mance and consistency of each classifier across various folds. The RF and ETC models have
similar mean accuracy of 0.98, with RF displaying a slightly smaller standard deviation
of 0.02. This suggests that RF had more stable and consistent performance over different
folds. HGB, XGBoost, and LGBM provide average accuracy of 0.955, 0.95, and 0.95, re-
spectively, with consistent standard deviations of 0.003 and 0.002. The RandomLightHist
and StackedXLightRF ensemble models showcase notably higher mean accuracy of 0.997
and 0.99, respectively, both with standard deviations of 0.002. The ensemble models not
only achieve high mean accuracy but also demonstrate low variability, underscoring their
robustness and stability across different subsets of the dataset.
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4.5. Comparison with Existing Studies

This study proposes two novel ensemble models, RandomLightHist Fusion and
StackedXLightRF, for real-time classification of exercises in telephysiotherapy. To evaluate
the effectiveness of these models, a performance comparison was conducted with several
existing methods from the literature. Figure 4 presents a comparative analysis of the accu-
racy of our proposed models alongside other prominent models discussed in the literature.
As illustrated, the RandomLightHist Fusion model achieves an impressive accuracy of
99.6%, outperforming all other models included in the comparison. This high level of
accuracy underscores the robustness of our ensemble approach in accurately classifying
physiotherapeutic exercises. In contrast, the models from [7,11] achieve accuracy of 93.56%
and 98.43%, respectively. While these models demonstrate strong performance, they fall
short of the accuracy achieved by our RandomLightHist fusion model. The difference in
performance highlights the potential of our ensemble approach to provide more precise
and reliable feedback in telephysiotherapy settings. Additionally, the StackedXLightRF
model shows competitive performance, with an accuracy of 99.2%, which is notably higher
than several existing models, including those from [8,15]. This further emphasizes the
efficacy of our models in enhancing the accuracy of exercise classification.

Figure 4. Comparison with existing studies.

The superior accuracy of the proposed models, as depicted in Figure 4, demonstrates
their potential to significantly improve real-time feedback in telephysiotherapy. Accurate
exercise classification is crucial for effective remote monitoring and assessment, especially
for individuals performing physiotherapeutic exercises from home. The ability of the
proposed models to achieve high accuracy across diverse body morphologies and exercise
types suggests that they can enhance patient outcomes by providing reliable and actionable
feedback. While our models show promising results, there are some limitations to consider.
The dataset used in this study included a limited number of participants and exercises,
which may have affected the generalizability of the results. Future work could involve
expanding the dataset to include a broader range of exercises and participants with varying
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body types and fitness levels. Additionally, incorporating real-time validation and testing
in diverse environments could further validate the models’ performance.

4.6. Validation of Results

To ensure the reliability of our findings, MediaPipe’s performance was validated
against the CVzone library using the same twelve anatomical landmarks: the right and left
shoulders, elbows, wrists, pinkies, index fingers, and thumbs. Both libraries were used to
extract features, then the accuracy of the classifiers generated from each set of features was
compared. The classifiers were applied to a series of seven distinct exercises: RSA, LSA,
BSA, SFU, SFD, Breaststroke, and Boxing. The results of this comparison are presented in
Table 5, showing that MediaPipe consistently demonstrated slightly higher accuracy across
all classifiers compared to CVzone. For instance, the RandomLightHist classifier achieved
99.6% accuracy using MediaPipe features, compared to 96.42% accuracy using CVzone
features; similarly, the StackedXLightRF classifier showed 99.2% accuracy for MediaPipe
and 97.84% for CVzone. Across all classifiers, MediaPipe outperformed CVzone in terms
of accuracy, with the differences ranging from approximately 0.2% to 3.2%.

Table 5. Accuracy results of the classifiers using features extracted from the Mediapipe and
CVzone libraries.

Classifier Accuracy Using Features
Extracted by Mediapipe (%)

Accuracy Using Features
Extracted by CVzone (%)

RandomLightHist 99.6 96.42
StackedXLightRF 99.2 97.84

RF 98.2 96.37
ETC 98.01 96.97
HGB 95.3 95.76

XGBoost 95.1 95.7
LGBM 94.88 94.57

To statistically compare the performance of MediaPipe and CVzone across the clas-
sifiers, a paired sample t-test was conducted to assess whether the difference in accuracy
between the two libraries was statistically significant. The null hypothesis (H0) states
that there is no significant difference between the accuracy results of the classifiers using
MediaPipe and CVzone, while the alternative hypothesis (H1) assumes that MediaPipe
produces significantly higher accuracy than CVzone.

Mean precision for MediaPipe: 97.47%
Mean precision for CVzone: 96.66%
Mean difference: 0.81%
After performing the paired t-test, the resulting p-value was found to be below 0.05,

indicating that the difference in classifier accuracy between MediaPipe and CVzone is sta-
tistically significant. Therefore, the null hypothesis can be rejected, and it can be concluded
that the classifiers using features extracted by MediaPipe performed significantly better
than those using features from CVzone.

4.7. Discussion

The comprehensive evaluation of the classifiers and ensemble models provides signifi-
cant insights into their efficiency and stability for exercise classification. The RF classifier
demonstrated robust performance, achieving an accuracy of 98.2% on the test set. This
performance is further supported by the K-fold cross-validation results, which yielded a
mean accuracy of 0.98 and a small standard deviation of 0.002, highlighting the classifier’s
stability and effectiveness in managing multiclass classification problems. These results
underscore the suitability of RF for exercise recognition due to its ability to handle diverse
classes and its resilience against overfitting.
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In comparison, the RandomLightHist fusion ensemble model exhibited superior
performance, achieving exceptional accuracy of 99.6% on the test set. The model also had
outstanding precision, recall, and F1 score metrics. The K-fold cross-validation results
demonstrated high consistency, with a mean accuracy of 0.997 and a minimal standard
deviation of 0.002. The impressive performance of the RandomLightHist model can be
attributed to its integration of three powerful classifiers: Hist Gradient Boosting (HGB),
LightGBM (LGBM), and RF. The synergistic effect of these models enhances gradient
boosting capabilities and improves precision, while RF’s ensemble nature helps to mitigate
overfitting and promotes generalization. The high precision of RandomLightHist, with no
false positives, is particularly crucial for accurate exercise categorization, where precise
classification is essential for effective feedback and assessment.

Regarding the impact of gender imbalance on model performance, separate testing of
the model on male and female data revealed an accuracy of 99.4% for male data and 99.2%
for female data, as shown in Table 6. This minimal performance disparity between genders
indicates that the model performs consistently across different body types, maintaining
its effectiveness regardless of gender. These results suggest that the gender imbalance in
the sample does not significantly impact the model’s performance. The slight variations
observed here are attributed to natural differences in body structure, and do not substan-
tially affect the overall classification accuracy. This indicates that the model is robust and
performs consistently across diverse body morphologies. The high accuracy achieved for
both male and female data further highlights the model’s robustness and adaptability in
real-world applications.

Table 6. Model performance metrics for male and female data.

Gender Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Male 99.4 99.5 99.4 99.4
Female 99.2 99.3 99.2 99.2

5. Conclusions

This study advances the field of telephysiotherapy by developing a novel system
for accurate exercise classification using PoseNet, addressing key technical challenges
such as real-time classification, adaptability to diverse body morphologies, and variations
in exercise movements. We meticulously assembled a dataset from 49 participants who
were recorded performing seven distinct exercises, from which we used twelve anatomical
landmarks extracted using the Google MediaPipe library to ensure the generalizability
and robustness of the proposed system. The introduction of the Random Forest, Extra
Tree Classifier, XGBoost, Light Gradient Boosting Machine, and Hist Gradient Boosting
tree-based classifiers provided a strong foundation for classification; however, it is the
development of two ensemble models, RandomLightHist Fusion and StackedXLightRF,
that sets this research apart. The RandomLightHist Fusion model achieved an impressive
accuracy of 99.6%, significantly outperforming the individual classifiers and demonstrating
the power of ensemble learning in exercise classification. The innovation in this research
lies in its combination of advanced pose estimation with machine learning, which not
only enhances classification accuracy but also facilitates real-time monitoring of exercise
performance. This capability is particularly significant in telephysiotherapy, where the
absence of physical presence makes accurate assessment and guidance critical to patient
progress. By offering precise automated feedback on exercise execution, the proposed
system has the potential to substantially improve remote physiotherapy services, reducing
the burden on healthcare professionals while ensuring that patients receive consistent and
high-quality care. Several promising directions for future work have been identified. These
include exploring additional anatomical landmarks to improve the precision of exercise
classification and body posture detection. Advanced deep learning techniques could be
integrated to allow for a more sophisticated analysis of physical movements. The system
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could be extended to handle more complex exercises and larger, more diverse datasets
of participants, enhancing its applicability in telephysiotherapy scenarios. Additionally,
the inclusion of derived features such as the rate of change, movement frequency, and
distance between points could lead to a more sophisticated model. This would provide
further insights into exercise dynamics and improve the system’s interpretability. Other
potential advances include the incorporation of motion analysis, joint angle estimation, and
real-time correction suggestions to provide immediate feedback during therapy sessions.
These improvements will be essential in making the system more adaptable and practical
for clinical use, ultimately enhancing its effectiveness in telephysiotherapy.
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