A CAD System for Alzheimer’s Disease Classification Using Neuroimaging MRI 2D Slices

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Artículos y libros
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto Inglés Developments in medical care have inspired wide interest in the current decade, especially to their services to individuals living prolonged and healthier lives. Alzheimer’s disease (AD) is the most chronic neurodegeneration and dementia-causing disorder. Economic expense of treating AD patients is expected to grow. The requirement of developing a computer-aided technique for early AD categorization becomes even more essential. Deep learning (DL) models offer numerous benefits against machine learning tools. Several latest experiments that exploited brain magnetic resonance imaging (MRI) scans and convolutional neural networks (CNN) for AD classification showed promising conclusions. CNN’s receptive field aids in the extraction of main recognizable features from these MRI scans. In order to increase classification accuracy, a new adaptive model based on CNN and support vector machines (SVM) is presented in the research, combining both the CNN’s capabilities in feature extraction and SVM in classification. The objective of this research is to build a hybrid CNN-SVM model for classifying AD using the MRI ADNI dataset. Experimental results reveal that the hybrid CNN-SVM model outperforms the CNN model alone, with relative improvements of 3.4%, 1.09%, 0.85%, and 2.82% on the testing dataset for AD vs. cognitive normal (CN), CN vs. mild cognitive impairment (MCI), AD vs. MCI, and CN vs. MCI vs. AD, respectively. Finally, the proposed approach has been further experimented on OASIS dataset leading to accuracy of 86.2%. metadata Sethi, Monika; Rani, Shalli; Singh, Aman; Vidal Mazón, Juan Luis y Bhatia, Surbhi mail SIN ESPECIFICAR, SIN ESPECIFICAR, aman.singh@uneatlantico.es, juanluis.vidal@uneatlantico.es, SIN ESPECIFICAR (2022) A CAD System for Alzheimer’s Disease Classification Using Neuroimaging MRI 2D Slices. Computational and Mathematical Methods in Medicine, 2022. pp. 1-11. ISSN 1748-670X

[img] Texto
8680737.pdf
Available under License Creative Commons Attribution.

Descargar (904kB)

Resumen

Developments in medical care have inspired wide interest in the current decade, especially to their services to individuals living prolonged and healthier lives. Alzheimer’s disease (AD) is the most chronic neurodegeneration and dementia-causing disorder. Economic expense of treating AD patients is expected to grow. The requirement of developing a computer-aided technique for early AD categorization becomes even more essential. Deep learning (DL) models offer numerous benefits against machine learning tools. Several latest experiments that exploited brain magnetic resonance imaging (MRI) scans and convolutional neural networks (CNN) for AD classification showed promising conclusions. CNN’s receptive field aids in the extraction of main recognizable features from these MRI scans. In order to increase classification accuracy, a new adaptive model based on CNN and support vector machines (SVM) is presented in the research, combining both the CNN’s capabilities in feature extraction and SVM in classification. The objective of this research is to build a hybrid CNN-SVM model for classifying AD using the MRI ADNI dataset. Experimental results reveal that the hybrid CNN-SVM model outperforms the CNN model alone, with relative improvements of 3.4%, 1.09%, 0.85%, and 2.82% on the testing dataset for AD vs. cognitive normal (CN), CN vs. mild cognitive impairment (MCI), AD vs. MCI, and CN vs. MCI vs. AD, respectively. Finally, the proposed approach has been further experimented on OASIS dataset leading to accuracy of 86.2%.

Tipo de Documento: Artículo
Clasificación temática: Materias > Ingeniería
Divisiones: Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Artículos y libros
Universidad Internacional do Cuanza > Investigación > Producción Científica
Depositado: 06 Sep 2022 17:30
Ultima Modificación: 11 Jul 2023 23:30
URI: https://repositorio.unini.edu.mx/id/eprint/3484

Acciones (logins necesarios)

Ver Objeto Ver Objeto

<a href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Influence of E-learning training on the acquisition of competences in basketball coaches in Cantabria

The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.

Producción Científica

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,

Alemany Iturriaga

<a href="/15625/1/s41598-024-74127-8.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Smart agriculture: utilizing machine learning and deep learning for drought stress identification in crops

Plant stress reduction research has advanced significantly with the use of Artificial Intelligence (AI) techniques, such as machine learning and deep learning. This is a significant step toward sustainable agriculture. Innovative insights into the physiological responses of plants mostly crops to drought stress have been revealed through the use of complex algorithms like gradient boosting, support vector machines (SVM), recurrent neural network (RNN), and long short-term memory (LSTM), combined with a thorough examination of the TYRKC and RBR-E3 domains in stress-associated signaling proteins across a range of crop species. Modern resources were used in this study, including the UniProt protein database for crop physiochemical properties associated with specific signaling domains and the SMART database for signaling protein domains. These insights were then applied to deep learning and machine learning techniques after careful data processing. The rigorous metric evaluations and ablation analysis that typified the study’s approach highlighted the algorithms’ effectiveness and dependability in recognizing and classifying stress events. Notably, the accuracy of SVM was 82%, while gradient boosting and RNN showed 96%, and 94%, respectively and LSTM obtained an astounding 97% accuracy. The study observed these successes but also highlights the ongoing obstacles to AI adoption in agriculture, emphasizing the need for creative thinking and interdisciplinary cooperation. In addition to its scholarly value, the collected data has significant implications for improving resource efficiency, directing precision agricultural methods, and supporting global food security programs. Notably, the gradient boosting and LSTM algorithm outperformed the others with an exceptional accuracy of 96% and 97%, demonstrating their potential for accurate stress categorization. This work highlights the revolutionary potential of AI to completely disrupt the agricultural industry while simultaneously advancing our understanding of plant stress responses.

Producción Científica

Tariq Ali mail , Saif Ur Rehman mail , Shamshair Ali mail , Khalid Mahmood mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Tahir Khurshaid mail , Imran Ashraf mail ,

Ali

<a href="/15198/1/nutrients-16-03859.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Carotenoids Intake and Cardiovascular Prevention: A Systematic Review

Background: Cardiovascular diseases (CVDs) encompass a variety of conditions that affect the heart and blood vessels. Carotenoids, a group of fat-soluble organic pigments synthesized by plants, fungi, algae, and some bacteria, may have a beneficial effect in reducing cardiovascular disease (CVD) risk. This study aims to examine and synthesize current research on the relationship between carotenoids and CVDs. Methods: A systematic review was conducted using MEDLINE and the Cochrane Library to identify relevant studies on the efficacy of carotenoid supplementation for CVD prevention. Interventional analytical studies (randomized and non-randomized clinical trials) published in English from January 2011 to February 2024 were included. Results: A total of 38 studies were included in the qualitative analysis. Of these, 17 epidemiological studies assessed the relationship between carotenoids and CVDs, 9 examined the effect of carotenoid supplementation, and 12 evaluated dietary interventions. Conclusions: Elevated serum carotenoid levels are associated with reduced CVD risk factors and inflammatory markers. Increasing the consumption of carotenoid-rich foods appears to be more effective than supplementation, though the specific effects of individual carotenoids on CVD risk remain uncertain.

Producción Científica

Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Thomas Prola mail thomas.prola@uneatlantico.es, Raquel Martínez Díaz mail raquel.martinez@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,

Sumalla Cano

<a class="ep_document_link" href="/15333/1/nutrients-16-03907.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Youth Healthy Eating Index (YHEI) and Diet Adequacy in Relation to Country-Specific National Dietary Recommendations in Children and Adolescents in Five Mediterranean Countries from the DELICIOUS Project

Background/Objectives: The diet quality of younger individuals is decreasing globally, with alarming trends also in the Mediterranean region. The aim of this study was to assess diet quality and adequacy in relation to country-specific dietary recommendations for children and adolescents living in the Mediterranean area. Methods: A cross-sectional survey was conducted of 2011 parents of the target population participating in the DELICIOUS EU-PRIMA project. Dietary data and cross-references with food-based recommendations and the application of the youth healthy eating index (YHEI) was assessed through 24 h recalls and food frequency questionnaires. Results: Adherence to recommendations on plant-based foods was low (less than ∼20%), including fruit and vegetables adequacy in all countries, legume adequacy in all countries except for Italy, and cereal adequacy in all countries except for Portugal. For animal products and dietary fats, the adequacy in relation to the national food-based dietary recommendations was slightly better (∼40% on average) in most countries, although the Eastern countries reported worse rates. Higher scores on the YHEI predicted adequacy in relation to vegetables (except Egypt), fruit (except Lebanon), cereals (except Spain), and legumes (except Spain) in most countries. Younger children (p < 0.005) reporting having 8–10 h adequate sleep duration (p < 0.001), <2 h/day screen time (p < 0.001), and a medium/high physical activity level (p < 0.001) displayed a better diet quality. Moreover, older respondents (p < 0.001) with a medium/high educational level (p = 0.001) and living with a partner (p = 0.003) reported that their children had a better diet quality. Conclusions: Plant-based food groups, including fruit, vegetables, legumes, and even (whole-grain) cereals are underrepresented in the diets of Mediterranean children and adolescents. Moreover, the adequate consumption of other important dietary components, such as milk and dairy products, is rather disregarded, leading to substantially suboptimal diets and poor adequacy in relation to dietary guidelines.

Producción Científica

Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Alice Rosi mail , Francesca Scazzina mail , Evelyn Frias-Toral mail , Osama Abdelkarim mail , Mohamed Aly mail , Raynier Zambrano-Villacres mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Lorenzo Monasta mail , Ana Mata mail , María Isabel Pardo mail , Pablo Busó mail , Giuseppe Grosso mail ,

Giampieri

<a class="ep_document_link" href="/15440/1/fcimb-1-1515641.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Editorial: Host-bacteria interactions in fish pathogens

In order to promote the sustainable development of aquaculture, it is of great importance to better understand fish diseases caused by classic and emerging bacterial pathogens. Strains of classic fish pathogens such as Aeromonas, Vibrio, Photobacterium, Edwardsiella, Yersinia, Flavobacterium, or Piscirickettsia.

Producción Científica

José Ramos-Vivas mail jose.ramos@uneatlantico.es, Félix Acosta mail ,

Ramos-Vivas