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Abstract: Parkinson’s disease (PD) is a neurodegenerative disease that affects the neural, behavioral,
and physiological systems of the brain. This disease is also known as tremor. The common symptoms
of this disease are a slowness of movement known as ‘bradykinesia’, loss of automatic movements,
speech/writing changes, and difficulty with walking at early stages. To solve these issues and to
enhance the diagnostic process of PD, machine learning (ML) algorithms have been implemented
for the categorization of subjective disease and healthy controls (HC) with comparable medical
appearances. To provide a far-reaching outline of data modalities and artificial intelligence techniques
that have been utilized in the analysis and diagnosis of PD, we conducted a literature analysis of
research papers published up until 2022. A total of 112 research papers were included in this study,
with an examination of their targets, data sources and different types of datasets, ML algorithms,
and associated outcomes. The results showed that ML approaches and new biomarkers have
a lot of promise for being used in clinical decision-making, resulting in a more systematic and
informed diagnosis of PD. In this study, some major challenges were addressed along with a future
recommendation.

Keywords: Parkinson’s disease; machine learning; artificial neural network; logistic regression;
support vector machine; classification

1. Introduction

The brain of humans is the main computing unit of the human body, and if there is
any minor accident in any part of the human body, then it will directly affect the other
organs. One of its silent effects is PD [1]. PD is a neurological disease that is incurable
and is progressive over time [2]. As of 2020, an estimated 9.4 million people were still
living with this disease worldwide [3]. This disease mostly affects people over the age
of 60 years, with only 4% of the cases occurring in people under the age of 50 [4]. The
symptoms of this disease are featured as motor and non-motor [5]. The main motor
symptoms are slowness of movement, tremor, rapid eye movement disorder, shivering,
gait issue, and unstable posture [6,7]. Non-motor symptoms include hypotension, sweating
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in the body, fatigue, constipation, urinary problems, and loss of weight [8]. Several studies
that have been conducted by researchers have shown that 90% of PD patients have speech
and voice acoustic problems [9], including microphonia, monochromatic, dysarthria, and
dysphonia [10]; thus, as a result, the initial symptom observed in patients with this disease
is a loss of voice [11]. At present, there is no established treatment for the disease [12];
however, there are a number of pharmacological therapies that can significantly reduce
symptoms, particularly in the early stages. The analysis of the frequency of voice is concise
and non-invasive. As a result, the frequency of voice can be used to track the progression
of this subjective disease [13]. To check the progression of this disease, many speech
experiments have been conducted. In the field of the medical (healthcare) sector, ML
approaches are being continuously used. ML algorithms are being used on a variety of data
modalities, including acoustic voice recording and handwritten patterns for the diagnosis
of PD. With the help of ML techniques, we may recognize the appropriate attributes that are
not traditionally applied in the medical diagnosis of PD and depend on these alternative
indicators to diagnose PD in its preclinical phases. In general, there are three phases to the
diagnosis of this disease, (1) pre-processing data, (2) extracting features, and (3) applying
classification techniques [14–16]. In the very first phase, the categorization of speech signals
with time frames is conducted. The filter method is used to remove any noise that may be
present. In the second phase, frequently used features are extracted from each segment.
Finally, in the last phase, the classification techniques are performed. The approach utilized
for feature extraction is heavily influenced by the classification technique’s performance.
Hence, choosing the appropriate classification technique is a big issue that needs to be
considered for this disease. The review discussed in this work aimed to look at the usage
of ML models trained on sensory data to assist PD patients, their careers, and physicians
throughout the stage of the treatment. Consequently, it presented the key findings of
several research publications that provide PD prediction and estimating models based
on cutting-edge IoT technology and ideal sensor installations. The goal was to provide
neurologists with important insights that may improve PD diagnosis and treatment by
shedding light on further unique techniques and presenting novel solutions that have not
been sufficiently covered in the reviews that have already been published. The contribution
of this paper is as follows:

• We introduce the background knowledge of Parkinson disease with main characteris-
tics and major motor and non-motor symptoms.

• We classified ML models and also analyzed the accuracy of ML models for the diagno-
sis of Parkinson disease on the basis of speech, handwriting, and gait parameters.

• In this paper, a different ML-based framework for the diagnosis of Parkinson disease
is also discussed, with the objective of enhancing Parkinson disease data.

• Finally, the article highlights the challenges and discusses the recommendations for
the future work.

The structure of the study is as follows: Section 2 discusses the methodology of the
study; Section 3 illustrates the term PD in detail with the clinical method used to diagnose
PD. Section 4 provides the ML techniques used to diagnose PD with the classification of the
ML algorithm. Section 5 examines the adaptation of the ML algorithm with the proposed
architecture of the voice dataset and a handwriting pattern to diagnose PD. Section 6
illustrates the discussion of challenges and recommendations. Finally, Section 7 defines
the conclusion.

2. Methodology of the Study
2.1. Data Acquisition

In this study, for diagnosis of the subjective disease, the scientometric data were
gathered from the Web of Science database, IEEE, ScienceDirect, and Scopus database,
with the latest from 2022. These databases have abstract and conceptual data from various
research publications. The Scopus database provides a homogenous and standardized
search technique, a significant exploration of relevant journals in a variety of diseases,
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including PD, and the diagnosis of the disease using artificial intelligence techniques. It
provides a faster indexing methodology and covers a wide range of publications, making
it much easier to access more recent research papers. Utilizing these resources has the
additional benefit of delivering excellent multidisciplinary coverage to other well-known
databases.

For this review article, a total number of 1432 documents were searched, including
the number of book chapters, patents, review articles, implemented research articles,
abstracts, and different categories of documents. Out of 1432 results acquired, 1211 were
research articles, reviews, book chapters, and patents. All of these records were filtered
in order to standardize the data. After filtration, only 50% of the 1211 research articles
were obtained. Finally, 112 articles were obtained after limiting the search to only include
English-language articles. In order to filter the works, abstracts were examined, and if
there was any uncertainty regarding the relevancy of the results, full-length articles were
retrieved. The final analyses, which focused on publications on the diagnosis of Parkinson’s
disease using ML techniques, were chosen from those articles to ensure the inclusion of
pertinent research.

2.2. Journals

A systematic analysis of the diagnosis of PD using the ML approach research was
performed by analyzing 103 articles published during 1996–2022. Figure 1 represents the
main journal publishing on the diagnosis of PD using various ML techniques. For this
current study, we studied the research articles from the Electronics journal of MDPI (8),
PubMed (18), IEEE Access (3), IEEE transactions (4), Elsevier (13), and Hindawi (3). The
studies considered in this review provide evidence that useful knowledge can be extracted
by using feature selection techniques with the help of ML algorithms, regarding motor
and non-motor symptoms of PD, allowing doctors to make evidence-based decisions on
the available dataset. Figure 2 is the graphical representation of the voice feature and
handwritten pattern dataset used to detect PD with an accuracy rate obtained by various
algorithms from the years 2015–2020.
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3. Parkinson’s Disease: Background

PD is a dynamic sensory system problem that influences the development of an indi-
vidual. Symptoms of PD start gradually and may begin with a hardly detectable tremor [17].
Tremors are common; however, disorders are often accompanied by rigorousness or slowed
mobility [18]. In the beginning phases of PD, one’s face might show slight or zero expres-
sions, and one’s arms may not swing when walking. Voice might turn out to be slurred
or soft [19]. PD symptoms deteriorate as the disease progresses over time. Although
there is no cure for PD, meds could alleviate the symptoms. Doctors may recommend
a medical procedure to control specific areas of the brain and further alleviate symptoms.
According to research, India has 7 million elderly people suffering from PD [20]. Medica-
tion and surgery are offered to control the symptoms of this subjective disease [21]. The
number of Americans living with this subjective disease is close to one million, which is
greater than the total number of persons with Lou Gehrig’s disease and multiple sclerosis.
By 2030, this number is expected to reach 1.2 million.

People with PD (PWP) have significant variances in their symptoms, reactions to
medicines, and adverse treatment effects. Understanding the genetic variations among
Parkinson’s patients might provide crucial hints regarding how and why each person’s
experience with PD differs. Although the actual etiology of PD is unknown, scientists
predict that a mix of genetic and environmental factors causes it. Each factor’s impact
varies depending on the individual. Researchers do not know why some people develop
Parkinson’s and others do not. About 10 to 15% of Parkinson’s cases are genetic in nature.
In certain families, variations (or mutations) in particular genes are inherited or handed
down from generation to generation [22]. The molecular basis of this neurodegenerative
disease is still not fully known over two decades after the discovery of the first mutation
linked to PD. Initially, research on the genetics of Parkinson’s disease (PD) concentrated on
uncommon family variants of the condition; however, six genes—LRRK2, alpha-synuclein,
Parkin, VPS35, DJ-1, and PINK1—have now been conclusively linked to either an autosomal
dominant or recessive form of the disease. Major advancements in the field have been
made with the introduction of genome-wide association studies (GWAS) and the use
of new technologies, such as next-generation sequencing (NGS) and exome sequencing.
A wave of genetic association studies later implicated a number of genetic variants in the
disease pathogenesis/protection [23].

Proteomic biomarkers, ideally a biomarker that is predicted to properly represent
a disease process, should be available for investigation in the afflicted tissue, such as in
the suffering dopaminergic neurons in the case of PD. One of the biggest challenges to
creating causal or disease-modifying medicines for PD is the fact that this is not achievable.
The benefits of this strategy are clear, for instance, in contemporary tumor treatment that
may be customized based on the specific hormone receptor status of the malignant cells.
Proteomic disease-associated modifications must be looked for inaccessible bodily fluids
such as blood plasma or CSF, as well as in peripheral tissues, as this technique cannot
be used in PD. Although it initially appears unlikely, there are signs that the observed
mutations may in fact represent at least some components of the disease process in the
brain [24].

In terms of risk factors, although the specific reasons for PD are anonymous, certain
cases are frequently caused by natural and other factors that play a significant influence
in the progression of the disease. Head traumas, an inadequate diet that includes a large
number of pesticides or chemical exposure, and sedentary lifestyles are all risk factors.
Figure 3 represents the major symptoms of this disease.

Risk factors for PD include age (this disease rarely affects young adults; it typically
manifests in middle or later life, and the risk rises with age), hereditary factors (having close
relatives who have the disorder increases your probability of having it), sex (men are more
likely to get PD than women), and exposure to toxins (ongoing exposure to herbicides and
pesticides may slightly increase risk of PD) [25]. Genetic indicators for PD have been used
to identify people who have a higher risk of acquiring this disease, to track the disease’s
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development, and to look at how well treatment prevents the depletion of dopaminergic
neurons. Early diagnostic tools for PD include markers including cerebrospinal fluid
testing, non-motor clinical signs of PD, and several imaging modalities [26].
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Clinical Methods Used to Diagnose Parkinson’s Disease

PD is largely diagnosed based on its typical symptoms. The disease cannot be verified
by an X-ray or blood test. Although, non-invasive diagnostic imaging, including positron
emission tomography (PET), can assist a surgeon in making a diagnosis. Conventional
methods for diagnosing Parkinsonism include the presence of two or more primary symp-
toms, the absence of additional neurological symptoms upon examination, the lack of
a history of additional potential causes, such as the use of tranquilizer drugs, head trauma,
or stroke, and responsiveness to levodopa or other Parkinson’s medications [27]. Even
while the clinical neurological and neuropathological overlap of two or more neurodegen-
erative disorders (ND) is not unusual, it is still underdiagnosed. The presence or absence
of distinctive neuropathologic lesions together with clinical presentation determine the
diagnosis of a specific ND. However, in recent years, there has been a growing amount of
interest in ND overlaps. To our knowledge, not much research has looked at how often
these overlaps are. A single patient may have overlapping NDs due to shared molecu-
lar pathogeneses. For instance, both individuals with frontotemporal lobar degeneration
(FTLD) and those with amyotrophic lateral sclerosis have the accumulation of misfolded
TAR DNA-binding protein-43 (TDP-43) in their bodies (ALS). The idea that diagnostic
omission may result in the therapy of one disease while unconsciously allowing the other
disease to proceed without intervention is the clinical significance of multiple NDs that
overlap with one another. Early detection of overlapping NDs would enable the proper
care of each ND before the disease progressed to an advanced state. Clinically recogniz-
ing overlapping instances of Lewy body dementia (LBD) is crucial since it can increase
morbidity and mortality due to the extreme neuroleptic sensitivity brought on by drugs
used to treat other types of dementia. It is also possible for overlapping neurodegenerative
disease processes to aggravate symptoms or reduce the threshold of pathology needed
for symptoms to appear. For instance, patients who have both Alzheimer’s disease (AD)
and LBD may have more severe cognitive or behavioral abnormalities than those who just
have AD or LBD. Alternately, for cognitive or behavioral abnormalities to show clinically,
a lower threshold of either AD and/or LBD pathogenic changes may be necessary. Al-
though overlapping NDs are not a novel idea, they appear to be underdiagnosed in clinical
practice. One of the reasons might be that the symptoms of one ND disguise those of
another ND that are occurring concurrently. In neuropathological practice, there may be
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circumstances when the search for a potential concurrent ND is discontinued after discov-
ering evidence of one ND. Increased awareness and comprehension of the pathophysiology
of overlapping NDs might also pave the way for the creation of future treatment plans that
might handle numerous NDs together rather than each ND individually [28]. Following
are some clinical methods that are used to diagnose PD:

a. Medical Treatment

In most cases, medication is used to treat Parkinson’s patients in order to reduce
their disease symptoms. Levodopa drugs or anticholinergic pharmaceuticals stimulate
the residual substantia nigra cells to create further dopamine, while levodopa medica-
tions suppress part of the acetylcholine production, which restores the homeostasis of
the brain’s chemical production. There are a wide variety of side effects associated with
each medication class [27]. Levodopa, which was created more than four decades ago,
is frequently referred to as the standard of Parkinson’s treatment. Levodopa is used in
lower doses in order to reduce symptoms. This development significantly lessens acute
vomiting and nausea that are frequently encountered as levodopa side effects. Levodopa
often lessens the tremor, stiffness, and slowness symptoms in individuals. Patients with
a lack of spontaneous movement and muscular stiffness benefit the most from it [29].

b. COMT Inhibitors

Inhibitors of catechol-O-methyl transferase (COMT) are among the amino groups
that contribute to the stability of levodopa levels. Entacapone, tolcapone, and opicapone
are the three main COMT inhibitors. These medications work by inhibiting the COMT
enzyme, which raises the blood levels of levodopa without causing it to be peripherally
degraded into 3-O-methyldopa (3-OMD) [30,31]. Dyskinesia and diarrhea may be possible
side effects [27].

c. Anticholinergic medications

The function of the neurotransmitter acetylcholine (ACh) in the central and autonomic
nervous systems is blocked by anticholinergic medicines, which leads to a wide range
of both beneficial and undesirable consequences. Since many of the most often given
medications for seniors are indicated for problems common to the age, one-third to one-half
of these medications contain anticholinergic effects [32]. These medications are particularly
effective in treating tremors, stiffness of the muscles, and antidepressants Parkinsonism.
Due to difficulties and major adverse effects, they are typically not advised for prolonged
use in elderly individuals [27].

d. Amantadine

Levodopa-related dyskinesia is typically treated with amantadine as an add-on med-
ication, although more recently, novel long-acting amantadine formulations have been
created with additional indications to treat motor fluctuations. Amantadine is hardly
associated with impulse control problems and has not been found to produce dyskine-
sia [33]. Levodopa or anticholinergic medicine may occasionally be used with amantadine.
Some of its adverse effects include confusion, sleeplessness, nightmares, irritability, and
hallucinations. It may also cause leg swelling [27].

Similar to Parkinson’s disease, Spinocerebellar Ataxia (SCA) can manifest as it, par-
ticularly in SCA2, SCA3, and SCA17. SCA2 and SCA17 are more widespread in Asian
groups, but SCA3 is more common in western ones. Parkinsonism can occasionally be
seen in people with SCA6 and SCA8. The crucial thing to remember is that SCA2 and
SCA17 may closely resemble Parkinson’s disease and are a prevalent hereditary cause of
Parkinsonism in Asian countries, even in instances that occur sporadically. SCA2, SCA3,
and SCA17 screening may thus be necessary in PD patients. The cerebellum and its associ-
ated components are impacted by the progressive, autosomal dominant neurodegenerative
condition known as spinocerebellar ataxia (SCA). Even while ataxia predominates in the
majority of cases, different SCA subtypes exhibit a wide range of clinical traits associated
with the brainstem and spinal cord, with and without ataxia. Different SCA subtypes
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also exhibit a variety of extrapyramidal symptoms, including Parkinsonism. Despite the
fact that this patient’s symptoms did not exactly mimic those of idiopathic PD, SCA3 or
Machado-Joseph disease (MJD) was the first genetically verified SCA subtype in a patient
with the levodopa-responsive Parkinson’s disease (PD) similar phenotype. Many SCA
subtypes, including SCA2, SCA6, SCA8, and SCA17, have now been classified as both
levodopa-responsive Parkinson’s disease (PD) and typical Parkinsonism [34].

4. Machine Learning Techniques Used to Diagnose Parkinson’s Disease

This review article identified the potential to correctly estimate the severity of PD, as
measured by clinical metrics, using ML techniques such as SVM, ANN, KNN, naïve Bayes,
logistic regression, CART, decision tree, etc. ANN is mostly used in classification and
regression problems, where existing nearby features are considered to be relatable. Training
datasets and test data are used in the ML algorithm. A technique that gains experience
from its previous data and improves itself accordingly is known as ML. It is basically an
analysis of algorithms that can generate data automatically. An ML classifier is categorized
into two types, supervised and unsupervised. Labeled data fall under supervised, where
different approaches of algorithms are used to train models. The categorization of ML
algorithms is shown in Figure 4. Artificial Neural Network (ANN) [35] and Multilayer
perceptron (MLP) with a back propagation algorithm [36] are also used to diagnose PD.
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The ML-based diagnosis of this subjective disease can be achieved by using symptoms
as an attribute for the algorithm. The ML algorithm is used to diagnose the PD severity from
the handwriting of an individual [37]. Speech analysis and tremors are also important risk
factors used to diagnose PD [38]. Over time, several initiatives have been taken to diagnose
PD by various researchers. The following discussion defines a brief review of major work
performed for diagnosing PD from the speech record dataset. In [39], the author discussed
a unique methodology to discriminate a healthy person from a person with Parkinson’s
disease (PWP) by detecting dysphonia. They introduced a new reliable dysphonia test
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called pitch period entropy (PPE). It is unaffected by a variety of uncontrolled confounding
factors such as loud acoustic surroundings and natural, healthy changes in the voice
frequency. The dataset was obtained from thirty-one people, where twenty-three were
subjective disease patients and eight were healthy, and it contained 195 persistent vowel
phonations. The methodology that was used in this article is categorized into three steps:
the calculation of feature refinement, the pre-processing and pre-selection of features, and
the classification of models. To diagnose the subjective disease, a kernel support vector
machine (SVM) classifier was used. By using this algorithm, the model accomplished
an accuracy rate of 91.4%.

The main purpose of this [40] article is to differentiate a healthy person from a PWP. In
their work, to create a method for diagnosing PD patients using voice disorders, they used
a dataset containing 34 persistent vowels, from 34 individuals, where 17 were subjective
patients and 17 were healthy. For classification, the SVM technique was used and achieved
an accuracy rate of 91.17% by using the first twelve coefficients of the Mel Frequency
Cepstral Coefficients (MFCC) by kernel SVM.

To distinguish healthy individuals from subjective diseases, Ref. [41] used a supervised
ML algorithm, SVM, for classification purposes. All the data were processed in a tool called
weka. Libsvm was used to find the best plausible accuracy on various kernel values for the
given dataset. The linear kernel SVM accomplished an accuracy rate of 65.2174%. Similarly,
the poly-kernel and RBF kernel accomplished an accuracy rate of 60.8696%.

In [42], the authors discuss a methodology to diagnose PD. Weka tools were used
to develop the algorithms for the pre-processing of data, classification methods, cluster-
ing, and the analysis of a given dataset. From the experimental results of this article,
the accuracy rate achieved from K-nearest neighbor (KNN) + Adaboost.M1 was 91.28%,
KNN + Bagging scores 90.76%, and KNN + MLP score 91.28%.

The author proposed a methodology for distinguishing between healthy persons and
subjective disease patients. In their research, the data were obtained from 40 individuals
where 20 were healthy and 20 were subjective disease patients [43]. A total of 26 speech
samples were taken from each individual, including phrases, sentences, words, and numer-
als. For classification and cross-validation, they used SVM and KNN. The KNN classifier
produced an accuracy of 82.50%, whereas the SVM classifier reported an accuracy of 85%.

In [44], the authors examined several voice signal analysis techniques for the diagnosis
of this subjective disease. A novel feature termed tunable Q-factor wavelet transform
(TQWT) was presented in their work. TQWT excelled in state-of-the-art voice signal com-
putational methods adopted for feature extraction in PD detection. Distinct classifiers were
applied to different feature subsets, and the predictions of the classifiers were aggregated
using ensemble methods. The best accuracy of the model was reached by MFCCs and
TQWT, which are thus key aspects in the problem of PD classification. As a data preparation
phase, the minimum redundancy-maximum relevance (mRMR) feature selection approach
was applied. In all the feature subsets, Radial Basis Function (RBF) kernel SVM had the
greatest accuracy of 86%.

ANN was used by [45] to identify PD. The dataset was obtained from the University
of California, Irvine’s machine learning library. 45 attributes were chosen as input values
and one outcome for categorization using the MATLAB tool. With an accuracy of 94.93%,
their suggested model was able to differentiate healthy individuals from PD subjects.

The author addressed the causes and symptoms of the disease. The severity of this
disease and its complications were discussed in their work. Furthermore, their studies
established the best detection range for classifying Parkinson’s symptoms [46].

The authors discovered a method for diagnosing PD that included ML and Kalman
filtering methods. Tremor activities were applied to detect Parkinson’s symptoms in this
method. Sleeping tremors were identified using ML approaches based on local field
potentials. The data were obtained from 12 people. The Kalman filter enhanced the
attributes of classified results based on the processed data [47].



Diagnostics 2022, 12, 2003 10 of 24

For evaluating this disease, Ref. [48] examined phonation and acoustic signals. Four
distinct ML approaches were used to preprocess and evaluate the data acquired about voice
frequencies. Various microphone devices, including smartphones, were used to record
the voice signals. For testing the measured accuracy rate and error rate in detection, the
voice features acquired using smartphones were loaded into an ML system. The acoustic
cardioid (AC) channel had a 94.55% accuracy, a 0.87 area under curve (AUC), and a 19.01%
equal error rate (EER). While, by using the smartphone channel, they achieved an accuracy
of 92.94%, an AUC of 0.92, and EER of 14.15%, respectively.

Using EEG signals recorded during the completion of verbal fluency tests,
Almalaq et al. [49] explored the connections and causality of distinct areas of the brain.
Mental demands, such as transitioning between one behavioral task and another, are chal-
lenging for those with the subjective disease. Motor and phonemic fluency are among the
behavioral tasks. Their approach included verbal generating skills, as well as stimulating
several Broca sections of the Brodmann areas (BA44 and BA45).

In [50], the authors presented a neural network (NN) approach for identifying symp-
toms of the subjective disease using speech data. The algorithm helped to classify symptoms
of this disease and balance the data features using the SMOTE algorithm. Furthermore,
the techniques of ensemble and Adaboost were used to improve the disease detection rate
(accuracy rate). The final AdaBoost ensemble classifier implementation of NNge achieved
an accuracy rate of 96.30%.

The authors examined PD subject detection using various ML techniques [51]. They
conducted their experiment on both training and test data, where they used 22 acoustic
features of 195 sound recordings. To diagnose PD, four machine learning classifiers were
used: KNN, SVM, Naive Bayes, and random forest. The Naive Bayes algorithm diagnosed
PD patients with 70.26% accuracy and a precision of 0.64 for test data.

In [52], the authors proposed a method to diagnose PD using the selection and extrac-
tion of features and pre-processing classification. In their work, for the feature selection
task, recursive feature elimination and feature importance methods were used. For clas-
sification, various ML algorithms were used, such as SVM, ANN, and Classification and
Regression Trees (CART). The accuracy of classification was measured before and after
feature selection. Before feature selection, SVM was shown to have 79.98% accuracy, and
after selection, it was shown to implement better than that.

The authors proposed a statistical method to detect the subjective disease using voice
features including vowels. They used two ML techniques, SVM and KNN, where the
accuracy rates obtained were 91.25% and 91.23%, respectively [53].

In [54], the authors suggested a method for evaluating feature sets by comparing
performance metrics with various feature sets, such as genetic algorithm-based feature sets
and Principal Component Analysis (PCA)-based feature reduction techniques. Using SVM
with RBF and genetic algorithm-based feature sets, they were able to achieve an accuracy
of 97.57%.

Using L1-norm SVM of feature selection, Ref. [55] suggested a method for identifying
PD patients from healthy people by generating a new subset of features from the PD dataset.
Their study was validated using the k-fold cross-validation approach. The results of their
study’s experiments imply that the suggested approach may be used to reliably forecast
the subjective disease and that it can be readily used in healthcare for diagnosis purposes.

According to [56], Linear Discriminant Analysis (LDA) performed better than PCA
for distinguishing HC subjects and PD patients; thus, LDA was used as input for the
clustering models. The performance of various models was evaluated by comparing the
results of the clustering algorithms with the ground truth after a follow-up. In terms
of sensitivity, specificity, and accuracy, Hierarchical clustering surpassed DBSCAN and
K-means algorithms by 78.13%, 38.89%, and 64%, respectively.

From the review above, it was observed that various ML techniques have been applied
in recent research works over voice-based PD detection and in handwritten patterns to
diagnose PD.
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Table 1 illustrates the review of ML techniques used to diagnose one of the major
symptoms of PD, speech recording, where data were collected from the UCI machine
learning repository and the University of Oxford (UO) for 20 studies. For diagnosis of the
subjective disease, various ML algorithms were used, such as linear kernel SVM, ANN,
KNN, naïve Bayes, logistic regression, CART, random forest, etc. For these studies, the
tools that were used are Weka, Matlab, OpenCV-2.49, R Programming, and Python. It
was observed from Table 1 that the highest accuracy to diagnose PD was obtained using
L1-Norm SVM with K-fold cross-validation; K = 10 having a 99% accuracy rate [55]. The
minimum accuracy was obtained from naïve Bayes, with an accuracy rate of 70.26% [51].

Table 1. Comparative studies of machine learning approaches in speech recording to diagnose PD.

Reference Machine Learning
Algorithms Used Objective Tools Used Source of Data No. of Subjects Outcomes

Benba, A. et al.,
2015 [40] Linear kernel SVM Classification

of PD from HC Not mentioned

Department of
Neurology
Cerrahpas‚
a Faculty of

Medicine, Istanbul
University

34, 17 PD + 17 HC Classification
Accuracy = 91.17%

Mathur, R. et al.,
2019 [41]

ANN, KNN with
K-fold cross

validation; K = 10

Classification
of PD from HC Weka UCI machine

learning repository
195 instances,
24 attributes

Accuracy of: KNN with
Adaboosta.M1—91.28%

KNN with
Bagging—90.76%

KNN with
MLP—91.28%

Sakar et al.,
2019 [44]

Naïve Bayes,
Logistic regression,

SVM (RBF and
Linear), KNN,
random Forest,

MLP

Classification
of PD from HC

JupyterLab with
python

programming
language

Collected from
participants 252, 188 PD + 64 HC

Highest accuracy
obtained from SVM

(RBF)—86%

Yasar, A. et al.,
2019 [45]

Artificial Neural
Network

Classification
of PD from HC MATLAB Collected from

participants 80, 40 PD + 40 HC Accuracy of
ANN—94.93%

Almeida, J.S. et al.,
2019 [48]

KNN, MLP,
Optimum Path

Forest (OPF), SVM
with RBF, Linear
and Polynomial

kernel

Classification
of PD from HC OpenCV-2.49

UCI machine
learning

repository
98, 63 PD + 35 HC acoustic cardioid (AC)

accuracy—94.55%

Alqahtani, E.J. et al.,
2018 [50]

NNge and
ensemble algorithm,
AdaBoostM1 with

10- fold cross
validation

Classification
of PD from HC Weka Collected from

participants 31, 23 PD + 8 HC Accuracy—96.30%

Avuçlu, E., Elen, A.,
2020 [51]

KNN, random
forest, naïve Bayes,

SVM

Classification
of PD from HC

JupyterLab with
python

programming
language

UCI machine
learning

repository
31, 23 PD + 8 HC

Highest accuracy
achieved from

SVM—88.72% and
lowest accuracy from
naïve Bayes—70.26%

Zehra Karapinar,
2020 [52] CART, ANN, SVM Classification

of PD from HC Weka Collected from
participants 31, 23 PD + 8 HC Highest accuracy from

SVM—93.84%

Yaman, O. et al.,
2019 [53] SVM, KNN Classification

of PD from HC MATLAB Collected from
participants 31, 23 PD + 8 HC

Accuracy rate of
SVM—91.25% and

KNN—91.23%

Aich, S. et al.,
2019 [54]

Random forest,
Bagging CART,

SVM, Boosted C5.0

Classification
of PD from HC Not mentioned Collected from

participants 31, 23 PD + 8 HC
Highest accuracy

obtained from SVM with
RBF kernel—97.57%

Haq, A.U. et al.,
2019 [55]

L1-Norm SVM with
K- fold cross

validation; K = 10

Classification
of PD from HC Python University of

Oxford (UO) 31, 23 PD + 8 HC Accuracy rate—99%
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Table 1. Cont.

Reference Machine Learning
Algorithms Used Objective Tools Used Source of Data No. of Subjects Outcomes

Wu et al.,
2017 [57]

Generalized
Logistic Regression
Analysis (GLRA),

SVM, Bagging
ensemble

Classification
of PD from HC Not mentioned Collected from

participants
31, 23 PD + 8 Healthy

control (HC)

Optimal result obtained
from bagging ensemble;

sensitivity—97.96%,
specificity—68.75%

Peker,
2016 [58]

SVM with RBF
kernel

Classification
of PD from HC Weka University of

Oxford (UO) 31, 23 PD + 8 HC Accuracy—98.95%

Montaña et al.,
2018 [59]

SVM with k-fold
cross validation;

k = 10

Classification
of PD from HC Weka

UCI machine
learning

repository
54, 27 PD + 27 HC Accuracy—94.4%

Kuresan et al.,
2019 [60]

Hidden Markov
Models (HMM),

SVM

Classification
of PD from HC MATLAB Collected from

participants 40, 20 PD + 20 HC

Highest accuracy
obtained from HMM

with accuracy—95.16%,
sensitivity—93.55%,
specificity—91.67%

Marar et al.,
2018 [61]

Naïve Bayes, ANN,
KNN, random

forest, SVM, logistic
regression, decision

tree (DT)

Classification
of PD from HC R programming Collected from

participants 31, 23 PD + 8 HC
Highest accuracy

obtained from
ANN—94.87%

Sheibani, R. et al.,
2019 [62]

Ensemble-based
method

Classification
of PD from HC

JupyterLab with
python

programming
language

UCI machine
learning

repository
31, 23 PD + 8 HC

Accuracy obtained from
ensemble

learning—90.6%,

Moharkan et al.,
2017 [63] KNN Classification

of PD from HC Python Collected from
participants 31, 23 PD + 8 HC Accuracy obtained from

KNN—90%,

Sztahó, D. et al.,
2019 [64]

ANN, KNN, SVM
with RBF and linear

kernel, DNN

Classification
of PD from HC Not mentioned

UCI machine
learning

repository
88, 55 PD + 33 HC

Highest accuracy
obtained from SVM with

RBF kernel—89.3%,
sensitivity—90.2%,
specificity—87.9%

Tracy, J.M. et al.,
2020 [65]

Logistic regression
(L2- Regularized),

random forest,
Gradient Boosted

trees

Classification
of PD from HC Python mPower

database 2289, 246 PD + 2023 HC

Highest accuracy
obtained from gradient

boosted trees
recall—79.7%,

precision—90.1%,
F1-score—83.6%

Table 2 represents the review of ML approaches in handwritten patterns to diagnose
PD; data were collected from the UCI machine learning repository, Parkinson’s Progression
Markers Initiative (PPMI) database, Parkinson’s disease Handwriting (PaHaW) database,
and the Picture Archiving and Communication System (PACS) for 20 studies. For this
study, various algorithms were used such as multilayer perceptron, logistic regression,
random forest, optimum path forest, ensemble AdaBoost, SVM, Soft margin multiple kernel
learning, KNN, ANN, etc. The maximum number of subjects considered in Table 2 is 961,
and these subjects were gathered from PPMI and local. A total of 657 subjects were collected
from PPMI, of which 448 were considered PD patients and 209 were considered healthy
controls, whereas 304 subjects were collected from local, of which 191 were PD patients
and 113 were healthy controls [66]. For these datasets, the outcomes were obtained using
the SVM algorithm. For local data, the accuracy ranged between 88 and 92%, and for PPMI,
it ranged from 95 to 97%. All the experiments were conducted using different tools, i.e.,
Weka, Matlab, Python, etc. It was observed that the best accuracy was obtained using
SVM (linear kernel) with an accuracy rate of 97.9% [67], having 652 subjects with 443 PD
patients and 209 healthy controls. The minimum accuracy was obtained using SVM with
an accuracy rate of 78.4% for 550 subjects, of which 342 were PD patients and the rest were
healthy controls.
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Table 2. Comparative studies of machine learning approaches in handwritten patterns to diagnose PD.

Reference Machine Learning
Algorithms Used Objective Tools Used Source of Data No. of Subjects Outcomes

Taylor, J.C. and
Fenner, 2017 [66]

SVM with 10-fold
cross-validation

Classification
of PD from HC MATLAB PPMI and local

database

PPMI: 657, 448 PD +
209 HC and local:

304,191 PD + 113 HC

Local data: Accuracy
for local data range
between 88 to 92%

and for PPMI range
from 95 to 97%

Oliveira et al.,
2017 [67]

SVM with linear
kernel, logistic
regression with
LOOCV, KNN

Classification
of PD from HC

C++ Programming
language and

MATLAB R2014a
PPMI database 652, 443 PD + 209 HC

SVM (linear kernel)
with highest accuracy

rate—97.9%

de Souza et al.,
2018 [68]

OPF, naïve Bayes,
SVM (RBF) with
cross validation

Classification
of PD from HC Python HandPD 92, 74 PD + 18 HC

Highest accuracy
obtained from SVM

with RBF
kernel—85.54%

Drotár et al.,
2016 [69]

SVM, KNN,
Ensemble
AdaBoost

Classification
of PD from HC MATLAB PaHaW

database 75, 37 PD + 38 HC

Highest Accuracy
obtained from

SVM—81.3% with
specificity—80.9% and

sensitivity—87.4%

Hsu, S.-Y. et al.,
2019 [70]

SVM with RBF
kernel, logistic

regression

Classification
of PD from HC Weka PACS 202, 94 Severe PD +

102 mild PD + 6 HC

Highest accuracy
obtained from

SVM-RBF 83.2%,
having sensitivity

82.8%,
specificity 100%

Khatamino et al.,
2018 [71]

Convolutional
Neural Network

(CNN)

Classification
of PD from HC

Python
Programming

Collected from
participants 72, 57 PD + 15 HC Accuracy—88.89%

Kurt, İ.et al.,
2019 [72]

SVM (linear and
RBF kernel), KNN

Classification
of PD from HC Not mentioned

UCI machine
learning

repository
72, 57 PD + 15 HC

Highest accuracy
obtained from SVM

(linear)—97.52%.

Mabrouk et al.,
2019 [73]

Random forest,
SVM, MLP, KNN

Classification
of PD from HC Not mentioned PPMI Database

550, 342 PD + 157 HC
+ 51 Scan without

evidence of
dopaminergic deficit

(SWEDD)

For motor features,
highest accuracy

obtained from
SVM—78.4%, and for
non-motor features,

highest accuracy
obtained

from KNN—82.2%

Fabian Maass et al.,
2020 [74] SVM Classification

of PD from HC Weka
UCI machine

learning
repository

157, 82 PD + 68 HC +
7 Normal Pressure

Hydrocephalus (NPH)

Sensitivity—80%, and
specificity—83%

Mucha, J. et al.,
2018 [75]

Random forest
classifier

Classification
of PD from HC

Python
Programming

PaHaW
Database 69, 33 PD + 36 HC

Obtained classification
accuracy—90% with
sensitivity 89%, and

specificity 91%

Cibulka et al.,
2019 [76] Random forest Classification

of PD from HC Not mentioned Collected from
participants 270, 150 PD + 120 HC

Classification error for
rs11240569, rs708727,

rs823156 is 49.6%,
44.8%, 49.3%,
respectively.

Pereira, C.R. et al.,
2016 [77]

CNN with cross
validation

Classification
of PD from HC Not mentioned Collected from

participants 35, 14 PD + 21 HC Accuracy rate of
CNN—87.14%

Prashanth, R. et al.,
2016 [78]

Naïve Bayes,
random forest SVM,

boosted trees

Classification
of PD from HC MATLAB PPMI database 584, 401 PD + 183 HC

Highest accuracy
obtained from SVM

with RBF
kernel—96.40%

having sensitivity
97.03% and

specificity 95.01%

Shi, et al.,
2018 [79]

Soft margin
multiple kernel

learning (SMMKL)
with LOOCV

Classification
of PD from HC Not mentioned PPMI database 33, 15 PD + 18 HC

Accuracy
rate—84.85% with

sensitivity 80% and
specificity 88.89%

Trezzi, J. P et al.,
2017 [80]

Logistic
regression

Classification
of PD from HC Not mentioned

UCI machine
learning

repository
87, 44 PD + 43 HC Sensitivity 79.7% and

specificity 80%
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Table 2. Cont.

Reference Machine Learning
Algorithms Used Objective Tools Used Source of Data No. of Subjects Outcomes

Wenzel et al.,
2019 [81] CNN Classification

of PD from HC MATLAB PPMI database 645, 438 PD + 207 HC Accuracy—97.2%

Segovia, F. et al.,
2019 [82]

SVM with 10 cross
validation

Classification
of PD from HC

Python
programming

Virgen De La
Victoria
Hospital,

Malaga, Spain

189, 95 PD + 94 HC Accuracy—94.25%

Memedi, M. et al.,
2015 [83]

Random forest,
logistic regression,

MLP and non-linear
SVM

Classification
of PD from HC Weka PPMI database 75, 65 PD + 10 HC

Highest accuracy
obtained from

MLP—84% having
sensitivity—75.7%

and specificity—88.9%

Nõmm, S. et al.,
2018 [84]

Random forest,
decision tree, KNN,

AdaBoost, SVM

Classification
of PD from HC

Python
programming
(Scikit–Learn

Library)

Collected from
participants 30, 15 PD + 15 HC

Highest accuracy
obtained from

Random forest—91%

Challa et al.,
2016 [85]

MLP, BayesNet,
boosted logistic

regression,
random forest

Classification
of PD from HC Weka

Parkinson’s
Progression

Markers Initiative
(PPMI)

database

586, 402 PD + 184 HC

Optimal result
obtained from boosted

logistic
regression having
accuracy—97.16%

5. Adaptation of the ML Framework

Multiple input variables led to various interpretations. When the input variable is
an acoustic voice feature, ML algorithms are preferred to diagnose PD. In the instance
of acoustic voice datasets, the primary interpretation for the application of ML was to
diagnose the initial signs of PD [86]. In other instances, it was assumed that training models
may be quite effective for the early screening of PD because the gold standard was readily
available. A particular combination of ML methods, including PCA, was used since the
input dataset’s dimensions were reduced. A decision tree or k-mean clustering algorithms
are more suitable for analyzing the speech database’s characteristics, and these classifiers
may be used to classify voice data for control vs. PD. Due to the fact that the acoustic speech
data violated the data in components, it was considered that learning the acoustic speech
data using ML techniques such as HMM would be the best approach, which would then be
followed by the detection procedure. To determine the risk of PD, a deep CNN classifier
using transfer learning and data augmentation approaches can be implemented. Due to
the small amount of data, using handwriting data to predict PD presents a significant
classification difficulty in the early stages. To achieve high accuracy, the independent usage
of the ImageNet and MNIST databases as input sources was utilized.

5.1. Architecture Based on Acoustic Voice Dataset as Input

In [87], the authors proposed a methodology to diagnose PD using stochastic gradient
descent (SGD), logistic regression, Extreme Gradient Boosting (XGB), KNN, random forest,
and decision tree ML classifier, as shown in Figure 5. In their study, the authors first
extracted certain attributes to classify for better understanding. By extracting attributes
from the input data, feature extraction improves the accuracy of trained models. By
getting rid of the redundant records, this stage decreases the dimensionality of the data.
Naturally, it speeds up categorization. By choosing and merging variables into features, it
helps acquire the optimum feature from such enormous data sets, while also significantly
reducing the volume of data. These characteristics are simple to use while still accurately
and uniquely describing the real data set. Secondly, they applied some data mining
approaches to classify the HC and affected patients based on various acoustic voice features
to predict the accuracy rate. For that, the authors first set the target variables, i.e., the health
status of PD patients. Once the target attribute was set, they modified the dataset column
that was used as the input after being extracted from the dataset. Finally, the authors made
a comparison among all the ML algorithms to check the best accuracy result, which was
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obtained by a random forest classifier with an accuracy rate of 97.10%, and a minimum
accuracy was obtained by SGD and logistic regression, with an accuracy rate of 91.66% for
both classifiers.
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5.2. Architecture Based on Handwritten Patterns as Input

A structural Co-occurrence Matrix (SCM)-based technique to diagnose PD as shown
in Figure 4 was proposed by [68]. In their research, the features were extracted from the
spiral and meander handwriting exams of the Hand PD datasets [88]. Figure 6 represents
a methodology with combinations of an exam template (b) and handwritten trace (c).
First, the exam segmentation is performed, and it generates two new images: an exam
template (b) and a handwritten trace (c). By using digital image processing techniques on a
handwritten trace, these images are produced. Secondly, the segmentation of the exam is
converted into grayscale for the next level. The third phase is feature extraction from the
grayscale images that have been segmented and converted. As shown in Figure 4, these
images serve as the SCM’s input images.
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Analyzing the connection between signals, in this example in a two-dimensional space,
is conducted by feature extraction through the SCM.

For this study [68], datasets were collected from 92 individuals, of which 74 were PD
patients and 18 were HC. In their proposed work, various algorithms such as SVM, naïve
Bayes, and OPF classifiers were applied to the dataset. The highest accuracy was calculated
by combining the handwritten trace with the handwriting in a spiral format by using SVM
(85.54%).

5.3. Architecture Based on Gait Dataset as Input

A methodology in gait patterns to diagnose PD using ML algorithms was proposed
by [89]. According to the authors, gait pattern is very eccentric for each and every human
being, but there is a substantial transformation in the gait pattern of HC and PD patients.
Table 3 represents the review of ML approaches in gait data to diagnose PD for 18 studies.
For this study, the sources of data were the Laboratory for Gait and Neurodynamics,
Neurology Outpatient Clinic at Massachusetts General Hospital, Boston, MA, USA, and the
University of Michigan and were collected from the participants. The ML algorithms used
to diagnose PD for gait symptoms were the least square-SVM, particle swarm optimization,
fuzzy KNN, random forest, hidden Markov models, logistic regression, ANN, kernel fisher
discriminant, naïve Bayes, linear discriminant analysis, etc. The maximum number of
subjects considered in Table 3 is 424, with 156 PD patients and 268 healthy controls, with
an accuracy rate of 85.51% using the hidden Markov model algorithm. The minimum
number of subjects was 20, with 10 PD patients and 10 healthy controls with an accuracy
of 91.9% using a deep convolutional neural network algorithm. For experimental setup,
MATLAB R2013b and python were used. It was observed that the maximum accuracy was
achieved by using the SVM algorithm with a 100% accuracy rate for the 166 subjects, where
93 were PD patients and 73 were healthy controls. The minimum accuracy was achieved
by the random forest algorithm, with a 79.6% accuracy rate for the 80 subjects, where 40
were PD patients and 40 were healthy controls.

Table 3. Comparative studies of machine learning approaches in gait dataset to diagnose PD.

Reference Machine Learning
Algorithms Used Objective Tools Used Source of Data No. of Subjects Outcomes

Ye, Q. et al.,
2018 [90]

Least square
(LS)—SVM, particle

swarm
optimization (PSO)

Classification
of PD, ALS,

HD from HC
Not mentioned

Neurology
Outpatient Clinic at

Massachusetts
General

Hospital, Boston,
MA, USA [91]

64, 15 PD + 16 HC + 13
(Amyotrophic lateral

sclerosis disease (ALS))
+ 20 (Huntington’s

disease (HD))

Accuracy to diagnose
PD from

HC—90.32%,
accuracy to

diagnose HD from
HC—94.44%,
accuracy to

diagnose ALS from
HC—93.10%

Wahid, F. et al.,
2015 [92]

Random forest,
SVM, kernel Fisher
Discriminant (KFD)

Classification
of PD from HC MATLAB R2013b Collected from

participants 49, 23 PD + 26 HC

The accuracy obtained
from random forest,
SVM, and KFD was

92.6%, 80.4% and
86.2%, respectively.

Pham, T.D.and Yan, H.,
2018 [93] LS-SVM Classification

of PD from HC MATLAB
Laboratory for Gait

and
Neurodynamics

166, 93 PD + 73 HC Sensitivity—100% and
specificity—100%

Y. Mittra and
V. Rustagi,
2018 [94]

Logistic regression,
decision tree, SVM
(Linear, RBF, Poly

kernel), KNN

Classification
of PD from HC Not mentioned Collected from

participants 49, 23 PD + 26 HC

Highest accuracy
obtained from SVM
(RBF) and random

forest—90.39%

Klomsae, A. et al.,
2018 [95] Fuzzy KNN

Classification
of PD, ALS,

HD from HC
Not mentioned

Neurology
Outpatient Clinic at

Massachusetts
General Hospital,

Boston, MA,
USA [90]

64, 15 PD + 20 HD +
13 ALS + 16 HC

Accuracy to diagnose
PD from HC—96.43%,
accuracy to diagnose

HD from HC—97.22%,
accuracy to diagnose

ALS from
HC—96.88%
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Table 3. Cont.

Reference Machine Learning
Algorithms Used Objective Tools Used Source of Data No. of Subjects Outcomes

Milica et al.,
2017 [96] SVM-RBF Classification

of PD from HC Python

Collected from
participants from

Institute of
Neurology CCS,

School of Medicine,
University of

Belgrade

80, 40 PD + 40 HC Overall accuracy from
SVM-RBF—85%

Cuzzolin, F. et al.,
2017 [97] HMM Classification

of PD from HC Not mentioned Collected from
participants 424, 156 PD + 268 HC Accuracy—85.51%

Félix, J.P. et al.,
2019 [98]

SVM, KNN,
naïve Bayes, LDA,

decision tree

Classification
of PD from HC MATLAB R2017a

Neurology
Outpatient Clinic at

Massachusetts
General
Hospital,

Boston, MA,
USA [90]

31, 15 PD + 16 HC

Highest accuracy
obtained from SVM,
KNN, and decision

tree—96.8%

Baby, M.S. et al.,
2017 [99] ANN Classification

of PD from HC MATLAB
Laboratory for Gait

and
Neurodynamics

166, 93 PD + 73 HC Accuracy—86.75%

Andrei et al.,
2019 [100] SVM Classification

of PD from HC Not mentioned
Laboratory for Gait

and
Neurodynamics

166, 93 PD + 73 HC Accuracy—100%

Priya, S.J. et al.,
2021 [101] ANN Classification

of PD from HC MATLAB R2018b
Laboratory for Gait

and
Neurodynamics

166, 93 PD + 73 HC Accuracy—96.28%

Perumal, S.V. &
Sankar, R.,
2016 [102]

SVM, ANN Classification
of PD from HC MATLAB

Laboratory for Gait
and

Neurodynamics
166, 93 PD + 73 HC Average

Accuracy—86.9%

Nancy, Y. et al.,
2016 [103]

Q-Backpropagated
time delay neural

network
(Q-BTDNN)

Classification
of PD from HC MATLAB 2013

Laboratory for Gait
and

Neurodynamics
166, 93 PD + 73 HC Accuracy—91.49%

Oğul, et al.,
2020 [104] ANN Classification

of PD from HC MATLAB
Laboratory for Gait

and
Neurodynamics

166, 93 PD + 73 HC Classification
accuracy—98.3%

Li, B. et al.,
2020 [105] Deep CNN Classification

of PD from HC Not mentioned Collected from
participants 20, 10 PD + 10 HC Accuracy—91.9%

Gao, C. et al.,
2018 [106]

Logistic
regression,

random forests,
SVM, XGBoost

Classification
of PD from HC Not mentioned University of

Michigan 80, 40 PD + 40 HC
Highest accuracy

obtained from random
forests—79.6%

Rehman et al.,
2019 [107]

SVM, logistic
regression

Classification
of PD from HC

Python
programming Not mentioned 303, 119 PD + 184 HC Average

accuracy—97%

Natasa et al.,
2020 [108]

Random forest,
XGBoosting,

gradient
boosting,

SVM(RBF),
neural networks

Classification
of PD from HC Not mentioned Collected from the

participants 10 PD

Best performance
obtained from

SVM(RBF) with the
sensitivity value
72.34%, 91.49%,

75.00% and specificity
value 87.36%, 88.51%
and 93.62%, for the
FoG, transition and

normal activity
classes, respectively.

6. Discussion: Challenges and Recommendations

The use of AI to help detect and treat diseases is of increasing interest to researchers
and clinicians. Mobile technologies such as smartphones and widely used low-cost sensors
produce large amounts of health data. These data may be used by AI to provide previously
unattainable insights on the prevalence of diseases and patient status in a setting where
people are free to move about and, furthermore, from clinical datasets. The use of AI can
help with global epidemiology initiatives and patient symptom monitoring. Despite how
stimulating these applications are, it is important to consider both the value and potential
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limitations of these cutting-edge analytical techniques. The most promising applications
of AI are yet futuristic. Future applications of AI to relevant datasets will, for instance,
help in characterizing the molecular subtypes of Parkinson’s disease. This will make it
possible for doctors to pair their patients with appropriate molecular treatments, which
will advance precision medicine. Prioritizing customized monitoring, AI will continue
to be most useful until it can demonstrate its ability to advance the field of precision
medicine [109]. We compiled the remaining drawbacks and challenges and we suggested
possible future recommendations that might result in effective ML techniques to solve
the problems.

6.1. Challenges

Although the predicted accuracy attained by various ML techniques proposed in
various automated PD detection studies was good, the adoption of the ML framework with
cloud computing and edge computing in medical healthcare is presently not
supported [110,111]. Neurologists and other medical professionals do not feel confident
using these technologies to diagnose Parkinson’s disease in their current state. This is
a result of several issues, which are described below:

• Manifold modeling

It has been extensively shown that PD is a multifaceted disorder; hence, PD progno-
sis or forecasting in its early stages have to carefully take into account multivariate data.
Conventional computational techniques have a significant barrier in figuring out how to
combine diverse data, including genetic, genomic, neuroimaging, clinical, social demogra-
phy, and environmental exposure data. The easiest technique to manage heterogeneous
data is to transform each type of data into a vector format before processing and then
carefully concatenate all of the vectors unique to each subject into a large vector. This has
traditionally been the most used method for PD diagnosis and phenotypic prediction.

• Model Interpretation

The interpretation of the model has long been a source of concern in machine learning,
particularly in the field of medicine, where it is crucial to have both the information needed
to make a choice and the performance of the model in generating predictions. For instance,
while identifying biomarkers, a researcher can anticipate that a certain gene’s expression
level will play a role in differentiating between PD and HCs, providing insight into the
model’s choice of the gene as a biomarker or its omission. The standard machine learning
models, such as Bayesian, rule-based models (decision tree and random forest), logistic
regression, SVM, etc., are intuitively able to estimate feature contributions when training
the models in this situation. This could be a factor in the fact that these methods are used
in the majority of the examined research.

6.2. Recommendations

We evaluated the selected articles in terms of both merits and demerits. We started our
search for potential avenues for future study after considering the suggestions for critical
reviews [112]. We categorized our findings that deal with identical or similar issues and
defined them as follows:

• The adoption of real-time and customized based devices with an advanced computing
unit is necessary to diagnosis Parkinson’s disease in real-time data through image
and sensory data. It has already been proven that ML models have the capability to
detect any anomalies of real-time data generated from the IoT-based devices. Edge
computing can be integrated with customized devices to compute data at the edge
network and provide the results at the same time.

• At present, the researchers have realized different ML models that diagnose Parkin-
son’s disease on the basis of individual symptoms. The researchers need to focus on
developing an ML model that combinedly uses all the symptoms as input parameters
for Parkinson’s disease. A light-weight portable device can be used to diagnose the
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various symptoms of PD by measuring several parameters such as accuracy, precision,
sensitivity, recall, etc. This device should be easily wearable and washable, and it
should be able to identify the different stages of the disease, along with analyze the
changes due to medication treatment.

• Currently wearable sensors are limited to the diagnosis of Parkinson’s disease on the
basis of gait parameters. There is a need for embedding the other modules in the
wearable device that is capable of detecting Parkinson’s disease. Researchers need
to focus on developing wearable sensor devices not only for one symptom but also
for diagnosing the other symptoms as well. For instance, a wrist-worn device may be
developed and it may be able to collect data continuously over a long period of time
and identify different PD symptoms.

• Cloud- and ML-based frame works diagnose Parkinson’s disease by analyzing indi-
vidual speech disorders, handwriting parameters, and many more symptoms of the
subjective disease based on a cloud computing platform. Here, a patient’s file will
be stored in the cloud database where patients can give their sample in the form of
a voice recording based through a portable device as shown in Figure 7. The data will
then be uploaded in the cloud platform for analysis and classification by using differ-
ent ML classifier models. Once the patients’ data (based on various symptoms) are
diagnosed by the ML classifiers in the cloud platform, the system will automatically
generate a decision on whether the patient has symptoms related to PD or not. If the
patient’s sample is positive based on PD symptoms, then the system will directly send
information to the concerned physician. Once the physician checks all the reports, he
will then upload his advice and recommendations to the cloud platform, and patients
can easily receive them by their portable device.
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• As future work, we intend to study the utilization of big data analytics tools along
with AI approaches to diagnose more severe infections and control their spread in
a timely manner.
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During the survey of the research articles, the major problem we faced was the
imbalanced dataset. We observed that, when applied to two distinct datasets, the same
classification model can perform completely differently. Refs. [9,12] asserted this, using
the example of vocal disability that sustained vowel function better than any other voice
patterns. The reading task yields the highest performance; the skewed dataset in the
two studies is the cause. As much data collecting as is feasible would be one option, but
there are still issues with large-scale data collection.

7. Conclusions

Managing PD in day-to-day life is very challenging for an individual. Therefore,
a good screening procedure will be beneficial, especially in circumstances where a physi-
cian’s treatment is not necessary. Thus, for the diagnosis of PD, ML algorithms were
evaluated. The main aim of this review was to identify existing ML-based research to
diagnose PD in terms of handwritten patterns, voice attributes, and gait dataset and to
determine the most appropriate technique to diagnose the PD with an accuracy rate. From
the review, it was observed that the best accuracy for voice features to diagnose PD was ob-
tained by L1-Norm SVM with K- fold cross-validation, with 99%; in handwritten patterns,
it was obtained by bagging ensemble, with 97.96%; and for gait analysis, it was obtained by
SVM with 100%. This review addressed various challenges and also provided some future
recommendations and opportunities, as we observed that there is still a lot of work that
has to be performed in the future. This review is also meaningful for the developments
in neural networks and related learning systems, which provide valuable insights and
guidelines for future progress.
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