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Abstract: Age-related bone disorders such as osteoporosis or osteoarthritis are a major public health
problem due to the functional disability for millions of people worldwide. Furthermore, fractures
are associated with a higher degree of morbidity and mortality in the long term, which generates
greater financial and health costs. As the world population becomes older, the incidence of this
type of disease increases and this effect seems notably greater in those countries that present a more
westernized lifestyle. Thus, increased efforts are directed toward reducing risks that need to focus
not only on the prevention of bone diseases, but also on the treatment of persons already afflicted.
Evidence is accumulating that dietary lipids play an important role in bone health which results
relevant to develop effective interventions for prevent bone diseases or alterations, especially in the
elderly segment of the population. This review focuses on evidence about the effects of dietary lipids
on bone health and describes possible mechanisms to explain how lipids act on bone metabolism
during aging. Little work, however, has been accomplished in humans, so this is a challenge for
future research.

Keywords: dietary lipids; hallmarks of aging; oxidative stress; saturated fat diet

1. Introduction

Musculoskeletal system is one of the most affected during aging [1]. Age-related
bone diseases such as osteoporosis or osteoarthritis are a major public health problem
due to the functional disability they generate. In this context, fractures of the hip, spine
and wrist have a huge economic and health impact. Furthermore, fractures are associated
with a higher degree of morbidity and mortality in the long term, which generates greater
financial and health costs [2]. The incidence of fractures is variable between populations.
Notwithstanding, this effect will be notably greater in those countries that present a
more westernized lifestyle [3]. However, as the world population becomes older, the
incidence of this type of disease will increase. Diet and hence nutrition are shown to
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be useful and modifiable tools for the prevention and management of metabolic bone
disorders. The present review focus on the main events related to aging and their impact
on bone health. Evidence on the effects of dietary lipids on bone health and the associated
molecular mechanisms are analyzed to explain how these nutrients interact between bone
metabolism and aging. With this objective, an initial search was performed in PubMed
for studies evaluating the effect of different nutritional interventions on bone health.
Those interventions modifying dietary fat were identify and then, an individual search for
research on the role of any of the identified interventions in bone health was carried out.

2. Bone Biology
2.1. Bone Structure

Bone is a mineralized connective tissue containing four different types of cells, namely
osteoblasts, osteoclasts, bone-lining cells and osteocytes. Osteoblasts are cuboidal cells
located along the bone surface responsible for bone formation that usually comprise be-
tween 4–6% of the total bone cells. Osteoclasts are multinucleated cells located on the
bone surface, isolated or gathered in small groups, responsible for bone resorption [4,5].
Bone-lining cells are flat quiescent osteoblasts that cover bone surfaces avoiding the in-
teraction between the bone matrix and the osteoclasts [6]. Lastly, osteocytes, the most
abundant cells in bone matrix, are cells with dendritic morphology located inside lagoons
surrounded by a mineralized bone matrix, although its morphology differs according to
the type of bone. In this way, osteocytes are interconnected to other neighboring osteocytes,
but also to osteoblasts and bone-lining cells on the bone surface, by gap junctions. This
organization constitutes the so-called lacuno-canalicular system (LCS) that connect all
cytoplasmic processes of the implicated cells and facilitates the intercellular transport of
signaling molecules contributing to osteoblast and osteoclast activity regulation [7]. On the
other hand, bone extracellular component is composed of inorganic salts and organic ma-
trix that contains collagen proteins (mainly type I collagen), but also non-collagen proteins
including proteoglycans and others as osteocalcin, osteopontin, osteonectin, fibronectin and
bone morphogenetic proteins (BMP) as well as growth factors and serum proteins [4–6].

2.2. Bone Remodeling Processes

Bone is a highly dynamic system that is in continuous renovation by means of a
process called bone remodeling by which the old bone is replaced by new bone, in a cycle
with three steps: initiation of bone resorption by osteoclasts, reversal period and formation
of bone matrix by osteoblasts. Bone resorption is performed by osteoclasts that release
enzymes such as tartrate-resistant acid phosphatase (TRAP) and H+ degrading organic
matrix components and acidifying extracellular medium that contributes to hydroxyapatite
crystal dissolution. Then, bone matrix synthesis is carried out by osteoblasts that firstly
secrete proteins to form the organic matrix and then lead newly formed organic matrix
mineralization. At the end of this phase, mature osteoblasts can be converted into bone-
lining cells or osteocytes, or directly undergo apoptosis [1–3].

2.3. Regulation of Bone Remodeling

Bone remodeling is necessary for maintenance and adaptation of the skeleton to
mechanical use, fracture healing as well as calcium homeostasis [4]. Importantly, bone
mass and bone morphology would be the result of the balance between bone formation
and resorption at different areas of the skeleton. This balance depends on the action of
several local and systemic factors including multiple cytokines and hormones as well as
some dietary components based on bone cell sensitivities to signaling conveyed though
such components [8].

Osteoclastogenesis (the formation of osteoclasts) starts with bone marrow-derived
mononuclear cells proliferation and differentiation to circulating pre-osteoclasts, an event
that requires the expression of the macrophage stimulating factor (M-CSF). Once in the
blood and in the presence of receptor activator of nuclear factor κB ligand (RANKL), the pre-



Int. J. Mol. Sci. 2021, 22, 6473 3 of 32

osteoclasts fuse with each other forming an immature osteoblast, whose differentiation to
mature osteoclast, as well as osteoclast survival, are carried out only in continuous presence
of RANKL that induces the expression of multiple gene. In turn, osteoprotegerin (OPG),
that is produced by osteoblasts and bone-marrow stromal cells (BMSCs) binds RANKL,
preventing the RANKL interaction with its receptor activator of nuclear factor κB (RANK)
in osteoclast precursor cells and osteoclasts, reducing osteoclastogenesis and osteoclast
lifespan. In turn, several inflammatory mediators including prostaglandin E2, IL-1β, IL-6,
IL-11, IL-17 and Tumor Necrosis Factor (TNF)-α have shown to act as osteoclastogenic
factors by inducing RANKL and suppressing OPG on calvarial cells [9,10].

On the other hand, osteoblasts that derived from bone marrow mesenchymal stem
cells (BMCs) requires activation and overexpression of several transcription factors such
as runt-related transcription factor-2 (RUNX2). The newly formed preosteoblasts, that are
recognized by the synthesis of type I collagen and bone sialoprotein (BSP), form mature
osteoblasts through the expression of RUNX2, osterix (OSX) and several components of
the Wnt signaling pathway [11].

3. Aging at the Bone

As stated before, during aging one of the most affected systems is the musculoskeletal
system [1]. For improving the understanding of age-related bone disorders, the following
section will address the main events related to aging and their impact on bone health and
metabolism.

3.1. Age-Related Changes in Bone Structure

During aging, there is a decline of bone mineral density (BMD) attributed to the loss
of trabecular and cortical bone [12]. In humans, and in most of the studied animals, the loss
of bone mass is associated with a decrease in the remodeling rate at the trabecular bone
compartment but an increase in remodeling rate at the cortical compartment that results
in an increase in cortical porosity [13,14]. Consequently, bones become stiffer, and their
cross-sectional area decreases, increasing the risk of suffering fractures.

Other predominant feature of age-related bone loss is the accumulation of bone mar-
row fat [15] as revealed bone biopsies in animals and humans [16–18]. This seems to be the
consequence of the age-associated changes in growth factors levels and activity of lineage-
specific transcription factors that are involved in the differentiation of mesenchymal stem
cells (MSCs) into osteoblasts. The main lineage-specific transcription factor that drive MSCs
differentiation are RUNX2 for osteoblastogenesis and PPARγ2 for adipogenesis [15,19].
With aging, there is a predominant expression of PPARγ2 by MSCs with a concurrent
decrease in RUNX2 expression and, therefore, lower levels of osteoblast differentiation [20].
Such changes would facilitate the differentiation of MSC into adipocytes at the expense of
osteoblasts in bone marrow [21,22]. Furthermore, there is an inverse relationship between
bone marrow fat volume and bone volume that is independent of sex and that is correlated
with the changes observed in people with osteoporosis [23].

3.2. Age-Related Changes in Bone Remodeling Processes

Few studies have examined whether there are age-associated changes in the differenti-
ation processes of bone cells or their progenitors. In these context, human studies shown a
decrease in serum levels of bone formation markers such osteocalcin, alkaline phosphatase
(ALP) and the N-terminal propeptide of type I procollagen (PINP) in both gender during
aging [24]. These results are consistent with in vitro and in vivo studies which shown a
decrease in the expression of genes encoding for the bone formation markers OPG, ALP
and alpha I collagen during aging [25]. In addition, there is a decrease in osteoblast pre-
cursor cells lifespan as a consequence of the reduction in the number of stem cells during
aging [26].

In contrast, an age-associated increase of urinary bone resorption markers has been
reported in humans [24]. In addition, in vitro and studies in animals suggest that there is
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an increase of gene expression of RANKL and RANKL/OPG ratio during aging [25,27].
The reduction in osteoblasts and the increase of osteoclasts would explain, at least in part,
the age-associated decrease in the amount of bone deposited with each remodeling cycle,
which results in a decrease in BMD [28].

4. Dietary Lipids and Bone Health

Several epidemiological studies suggest that large amounts of fat, especially those
containing primarily saturated fatty acids (SFA), may have negative effects on bone health
contributing to reduce bone density and increased fracture risk, in older as well as younger
people [29–31]. That these effects are large enough to increase fracture risk among older
individuals is indicated by a study assessing 6250 postmenopausal women [32]. Most of
the studies evaluating the role of dietary lipids in bone health using animal models have
focused on the effects of high fat diets (HFD) that mostly were rich in saturated fatty acids
(SFA-HFD) based in lard or beef tallow (Table 1). Most of them have reported lower values
of bone mineral content (BMC) and/or BMD in SFA-HFD-fed animals from 8 to 38 weeks
in comparison with those receiving normolipid diets [33–37]. Moreover, these HFDs were
able to affect bone health if they were supplied during development [16,38–43], but also
in adult and aged animals. Regarding bone microarchitecture parameters most of studies
described a lower quality in animals fed SFA-HFD compared with those maintained on
standard diets [16,33,40,42]. Lastly, structural consequences of consuming HFDs also have
been reflected in biomechanical properties of the evaluated bones [16,44]. Likewise, feeding
on a HFD for 20 weeks led to lower values of cancellous BMC and bone strength respect
than a low-fat diet in adult (40-week-old) rooster fed in such diets respect than a low-fat
diet. However, no effects of the amount of dietary fat on mature cortical bone mechanical
properties, geometric structure or BMC were observed [45]. Taken together, these reports
indicate that HFD have negative effects on bones in rodents at different ages. In addition,
these results in confirmed that dietary fat also affect bone health in animals as in humans,
indicating that animal models are useful for mechanistic studies regarding the effects of
total fat on bone health. Table 1 shows animal studies regarding high-fat diets and bone.

Table 1. Studies in animal models investigating the role of high-fat diet on bone tissue.

Model; Age Experimental Diet vs. Control Diet;Duration Main Changes vs. Control Diet Ref.

Growing animals

Male Wistar
rat; 3 wks

SFA-HFD al (40%E beef tallow) vs. SD al (AIN-93G with
soybean oil asa fat source); 8 wks

↓ BMC, BMC/bw, BMD of spine and
BV/TV of tibia

↑ Serum t-ALP and b-ALP levels
[38]

n-6 PUFA-rich HFD al (40%E soybean oil) vs.
SFA-HFD al (40%E beef tallow); 8 wks

↓ BMD of spine
↓ Serum b-ALP levels [38]

n-6 PUFA-rich HFD al (40%E corn oil) vs. SFA-HFD al

(40%E beef tallow); 8 wks
↓ Serum b-ALP levels [38]

n-3 PUFA- rich HFD al (40%E linseed oil) vs.
SFA-HFD al (40%E beef tallow); 8 wks

↑ BV/TV of tibia [38]

n-3 PUFA- rich HFD al (40%E linseed oil) vs. SD al

(AIN-93G with soybean oil as fat source); 8 wks
↑ Serum b-ALP levels [38]
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Table 1. Cont.

Model; Age Experimental Diet vs. Control Diet;Duration Main Changes vs. Control Diet Ref.

Male Wistar
rats;
Weanling

MUFA-rich SD al (AIN-93 diet with 9.5%E extra virgin
olive oil) vs. n-6 PUFA-rich SD al (AIN-93 diet 9.5%E
sunflower oil); 6 m

↑ Serum osteocalcin [46]

MUFA-rich SD al (AIN-93 diet with 9.5%E extra virgin
olive oil) vs. n-6 PUFA-rich SD al (AIN-93 diet 9.5%E
sunflower oil); 6 m

↑ BMD of femur
↑ Serum OPG [46]

MUFA-rich SD al (AIN-93 diet with 9.5%E extra virgin
olive oil) vs. n-6 PUFA-rich SD al (AIN-93 diet 9.5%E
sunflower oil); 24 m

↓ Alveolar bone loss of mandibule [47]

n-3 PUFA-rich SD al (AIN-93 diet 9.5%E fish oil); vs. n-6
PUFA-rich SD al (AIN-93 diet 9.5%E sunflower oil); 24 m

↓ Alveolar bone loss of mandibule [47]

MUFA-rich SD al (AIN-93 diet with 9.5%E extra virgin
olive oil) vs. n-3 PUFA-rich SD al (AIN-93 diet 9.5%E
fish oil); 24 m

↓ Alveolar bone loss of mandible [47]

Male
Sprague-
Dawley rats;
Weanling

HFD al (AIN93G with added 70 g/kg of safflower oil +
menhaden oil) with n-6/n-3 PUFA ratio = 23.8, 9.8 2.6 or
1.2; 42 d

↑ Activities of serum ALP isoenzymes,
including b-ALP with lower with
n-6/n-3 PUFA ratios

[48]

Female
Sprague
Dawley rats;
4 wks

HFD al (12wt% tuna oil) vs. HFD al (12wt% corn oil);
8 wks

↑ BMD and BMC of tibia
↑ Bone microarchitecture quality of tibia
↑ Serum osteocalcin

[39]

HFD al (12wt% flaxseed oil) vs. HFD al (12wt% corn oil);
8 wks

↑ Bone microarchitecture quality of tibia
↑ Serum osteocalcin [39]

HFD al (12wt% menhaden oil) vs. HFD al (12wt% corn
oil); 8 wks

↑ Bone microarchitecture quality of tibia
↑ Serum osteocalcin [39]

Male
C57BL/6J
mice; 5 wks

SFA-HFD al (60%E lard) vs. SD al (D12450B chow with
10%E fat); 12 wks

↓ BV/TV of femur and tibia
↓ Bone microarchitecture quality of femur

and tibia
↓ Stiffness and maximal load of Femur and

tibia
↓ Adipocyte size and adipocyte

volume/BV in tibia
↓ Adipogenic formation in isolated MSCs

from femoral bone
↓ N.Oc/Tb.Ar and Oc.S/BS of tibia
↓ TRAP-positive osteoclast formation in

isolated MSCs from femoral bone

[40]

Male
C57BL/6J
mice; 6 wks

SFA-HFD al (60%E lard) vs. SD al (LabDiet 5LOD with
13.5% E lard); 20 wks

↓ BMC, BV/TV of femur and tibia
↓ Bone microarchitecture quality of femur

and tibia
↓ Maximun load, total work, yield load

and post yield work of femur
↑ bone marrow adipose tissue volume at

epiphysis of tibia and distal tibia

[16]
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Table 1. Cont.

Model; Age Experimental Diet vs. Control Diet;Duration Main Changes vs. Control Diet Ref.

Male C57BL/
6J mice;
6 wks

SFA-HFD al (60%E lard) vs. SD al (12%E fat); 12 wks
↑ bone marrow adiposity, adipocyte size

and adipocyte no. at femur [41]

Male C57BL/
6 mice; 4 wks SFA-HFD al (21.2%E lard) vs. SD al (4.8%E fat); 13 wks

↓ Plasma levels of P1CP
↑ plasma levels of NTX
↓ Gene expression of osteoblastogenesis

specific genes (OCN and COL1a1) and
MMP1a in femur and bone marrow

↑ Gene expression of osteoclastogenesis
specific genes (NOX2 and RANK) and
MMP9 in femur and bone marrow

[49]

Male
BALB/cByJ
mice; 7 wks

SFA-HFD al (45%E lard) vs. SD al (13.5%E fat); 15 wks

↓ BMD, cortical BV/TV, trabecular BV/TV
of femur

↓ Bone microarchitecture quality of femur
[42]

Male Wistar
rats; 9 wks

SFA-HFD al (24% fat with 100 g/kg of bw per day of
ground nut and 50 g/kg of bw per day dried coconut)
vs. SD al; 38 wks

↑ BMD, BMC, cross-sectional area and
BV/TV of tibia

↑ Bone microarchitecture of tibia
↑ Serum t-ALP levels

[50]

Male
Sprague-
Dawley rat;
40 d

SFA-HFD al (20wt% coconut oil) vs. n-3 PUFA-HFD al

(20wt% flaxseed oil) or n-6 PUFA-HFD al (20wt%
safflower oil); 65 d

- No differences in femur BMD
- No differences in biomechanical strength

properties
↓ Femur peak load adjusted by bw

[51]

Newly
hatched
chicks; 4 d

n-3-rich PUFA diet al (menhaden oil + safflower oil at
90 g/kg) vs. n-6-rich PUFA diet al (soybean oil +
safflower oil at 90 g/kg); 17 d

↑ Fractional labeled trabecular surface
↑ Tissue level bone formation rates
↑ Serum ALP activity

[52]

Adult animals

Male
Sprague-
Dawley rat;
200 g

Cholesterol-enriched HFD al (10.0 g cholesterol, 20.0 g
sodium-cholate, and 112.0 g crude fat %per kg dry
matter) vs. SD al (50.83 g crude fat %per kg dry matter);
114 d

↑ Serum b-ALP
↓ Bone calcium loss [35]

Male F344 ×
BNF1 rats;
12 m

n-3 PUFA-rich diet (167 g safflower oil + 33 g menhaden
oil) vs. n-6 PUFA-rich diet (200 g safflower oil) or n-3 +
n-6 PUFA-rich diet (190 menhaden oil + 10 g corn oil);
20 wks

↑ BMC and cortical + subcortical BMD
↑ serum b-ALP activity
↑ serum pyridinoline
↑ urinary Ca

[53]

Male F344 ×
BNF1 rats;
12 m

n-3 PUFA-rich diet (167 g safflower oil + 33 g menhaden
oil) vs. n-6 PUFA-rich diet (200 g safflower oil) or n-3 +
n-6 PUFA-rich diet (190 menhaden oil + 10 g corn oil);
20 wks

↑ Peak load, ultimate stiffness and Young’s
modulus

↓ Bone formation rate
↓ Osteoclast no. and eroded surface in

proximal tibia
↑ Periosteal mineral apposition and

formation rates in tibia shaft

[44]
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Table 1. Cont.

Model; Age Experimental Diet vs. Control Diet;Duration Main Changes vs. Control Diet Ref.

Male C57BL/
6J mice;
8 wks

SFA-HFD al (35wt% lard) vs. SD al (6wt% fat); 20 wks

↓ Recruitment of progenitor cells to
osteoblastic cells

↓ Mineral apposition rate in tibia and
vertebrae and bone formation rate tibia

↑ Bone marrow adiposity, adipocyte size
and adipocyte no. of proximal tibia

↓ Trabecular BM and cortical thickness
↓ Serum levels of P1NP but not CTX-1
↓ Percentage of CD73+ and Sca1/CD140a+

cells in MSCs isolated from bone marrow
↓ Short-term proliferation rate and

colony-forming units-fibroblast of
primary cultures

↑ Gene expression of adipogenic genes
(Pparγ2, Lep, Adipoq, Fsp27)

1. b-ALP activity in osteoblast
differentiated of isolated MSCs isolated
from bone marrow

[54]

Male C57BL/
6 mice; 3 m HFD al (45%E) vs. SD al (12%E fat); 11 wks

↑ Trabecular BMD and BV/TV of tibia
↑ Bone microarchitecture quality of tibia
↓ mineral apposition rate and bone

formation rate in tibia
↓ Ec.MS/BS in tibia
↑ PmoI and Imax/Cmax in tibia
↓ Serum b-ALP
↑ Serum TRAP activity

[55]

Male
C57BL/6J;
4 m

HFD al (45%E) vs. SD al (11%E fat); 8 wks
↑ Bone marrow adiposity and adipocyte

size of distal femur metaphysis [56]

Female
C57BL/6J
mice; 8 m

SFA-HFD al (45%E lard) vs. SD al (10%E fat); 8 wks ↓ BMD and BMC of femur [33]

MUFA-rich HFD al (45%E olive oil) vs. SFA-HFD al

(45%E lard); 8 wks

↑ BV/TV of femur
↑ Tb.Th of femur [33]

Female
C57BL/6J
mice; 13 m

n-6 PUFA-rich HFD al (19.5%E corn oil) al vs. SD al

(9.5%E fat); 26 wks

↑ Gene expression of PPARγ at bone
marrow adipocytes of femur

↑ Bone marrow adiposity at femur
[57]

n-3 PUFA-rich HFD al (19.5%E fish oil) vs. n-6
PUFA-rich HFD al (19.5%E corn oil); 26 wks

↓ Adipocyte vacuole area of femur
↓ Gene expression of PPARγ at bone

marrow adipocytes of femur
[57]
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Table 1. Cont.

Model; Age Experimental Diet vs. Control Diet;Duration Main Changes vs. Control Diet Ref.

Roosters;
40 wks

HFD al (8% palmitic acid) vs. LFD al (8% cellulose);
20 wks

↓ cancellous BMC of femoral condyles and
tibial plateau

↓ mechanical properties (bone strength) of
the cancellous bone of femoral condyles
and tibial plateau

- No differences in cortical bone
mechanical properties, geometric
structure or BMC of tarsometatarsus

[45]

C57BL/
6 mice

Cholesterol-enriched HFD al (15.8wt% fat + 1.25wt%
cholesterol) vs. SD al (6wt% fat), 7 m

↓ BMD and BMC of femur and vertebral
BMC

↓ Osteocalcin expression in bone marrow
[36]

C3H/HeJ
mice

Cholesterol-enriched HFD al (15.8wt% fat + 1.25wt%
cholesterol) vs. SD al (6wt% fat), 7 m

- No changes in BMD and BMC [36]

Aged animals

OVX female
Sprague
Dawley; 3 m

DHA-rich diets (HP5 and LP5) High-PUFA diet vs.
low-PUFA diet with a ratio of n-6/n-3 PUFAs of 5:1 or
10:1 (110.4 g/kg of fat from safflower oil (110.4 g/kg of
high-oleate safflower oil blended with n-3 PUFAs);
12 wks

Fatty acid analyses confirmed that the dietary
ratio of 5:1 significantly elevated the amount of
DHA in the periosteum, marrow and cortical
and trabecular bones of the femur.

↑ BMC and BMD of femur and tibia
↓ Rats fed the LP diets displayed the

lowest overall serum pyridinoline and
deoxypyridinoline

Serum osteocalcin was lowest in the HP
groups.
Regardless of the dietary PUFA content, DHA
in the 5:1 diets (HP5 and LP5) preserved rat
femur BMC in the absence of estrogen

[58]

OVX female
C57BL/6J
mice; 8 wks

AIN-93 diet al (10%E virgin olive oil) vs. AIN-93 diet al

(10%E refined olive oil); 4 wks

- No differences in BMD, BV/TV and BMC
- No differences in Bone microarchitecture [59]

Marrow stromal cells from C57BL/6 mice fed a
high fat, atherogenic diet failed to undergo
osteogenic differentiation in vitro

[37]

Female
Wistar rats;
56 m

HFD al (31%E peanut + canola seed oil); 19 wks ↓ Serum osteocalcin [59]

Mice were classified as growing (less than 2 months), adults (from 3 to 14 months) or aged (more than 14 months) animals following the
recommendation of the Jackson Laboratory [60]. Rats were classified as growing (less than 6 months), adults (from 6 to 18 months) or aged
(more than 20 months) according to Sengupta et al. [61]. An exception was made for ovariectomized animals that were considered aged
animals since it is an experimental model to replicate the features of human menopause, a major aging-associated change related to bone
loss in women. Abbreviations: al: ad libitum, b-ALP levels: bone-specific alkaline phosphatase, BMC: bone mass content, BMD: bone mass
density, BS: bone surface, BV: bone volume, BV: Bone volume, bw: body weight, Ca: calcium, CTX-1: C-telopeptide of type I collagen, HFD:
high-fat diet, Imax/Cmax: resistance to bending measured across the bone, LFD: low fat diet, m: months, MSCs: mesenchymal stem cells,
N.Oc: number of osteoclast, NTX: N-telopeptides of type I collagen, Oc.S: osteoclast surface, OPG: osteoprotegerin, OVX: ovariectomized,
P1CP: procollagen type 1 N-terminal propeptide, pMOI: polar moment of inertia, SD: standard diet, SFA: Saturated fatty acids, SFA-HFD:
high fat diet rich in saturated fat, t-ALP: total alkaline phosphatase, Tb.Ar: trabecular bone area, Tb.TMD: trabecular tissue mineral density,
TRAP: tartrate-resistant acid phosphatase, TV: total volume, vs.: versus, wk: weeks.

In most of the mentioned studies, it was reported that the SFA-HFD effects on BMD
and bone microarchitecture correlated with decreased levels of different circulating bone
formation biomarkers. These reduced biomarkers included serum osteocalcin [59,62,63],
serum procollagen type 1 amino-terminal propeptide (P1NP) and plasma carboxy-terminal
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propeptide of type 1 procollagen (P1CP) [40,63]. On other hand, increased levels of the bone
resorption biomarkers plasma cross-linked N-telopeptides of bone type I collagen (NTx),
urine pyridinoline (Pyr) and deoxypyridinoline (Dpyr) [49,63] were found compared to
values observed in standard diet-fed animals.

The mentioned effects on bone remodeling processes are supported by other studies
that found increased expression of osteoclast-specific genes [49] in SFA-HFD-fed animals.
In turn, serum RANKL levels were higher in the HFD-fed male C57BL/6 mice, although
serum OPG levels were not altered [62]. Moreover, a higher number of osteoclasts in
trabecular bone area and osteoclast surface in bone surface [40] as well as TRAP activity
in serum were higher in SFA-HFD fed animals in comparison with those fed a standard
diet suggesting that osteoclastogenesis was enhanced. Likewise, the numbers of colony
forming units (CFU)-fibroblastic and CFU-ALP-positive and mineralization nodule in
bone marrow stromal cells from male C57BL/6 mice fed a HFD were higher compared
with animals fed a standard diet [62]. Likewise, the osteoblast-specific genes including
BGLAP2, COL1a1, FGF23 and IGFBP2 were markedly down-regulated [63]. In addition,
osteocalcin expression was reduced in bone marrow of HFD-SFA-fed C57BL/6 mice which
suggest that these types of diets also reduce bone formation by blocking differentiation
of osteoblast progenitor cells [36]. Dietary fats may exacerbate the uncoupling of bone
resorption and formation by inhibiting the formation of mature osteoblasts from their
stromal progenitor cells, and enhancing adipogenesis [64]. In this sense, histomorphome-
try of different bones from SFA-HFD-fed animals showed a significant increase in bone
marrow adiposity [16,40,41,54,56,65], which seems the result of enhanced BMSCs towards
adipocyte [16,40,65] in detriment of osteoblastogenesis [36,37,63].

However, some studies found higher values of BMD in SFA-HFD fed animals in
comparison with a low-fat diet and standard diets [50,55]. Likewise, one of the studies
reported higher values of trabecular BV/TB and trabecular and cortical thickness (Tb.Th)
as well as lower values of Tb.Sp in comparison with standard diet-fed animals. In addition,
this study indicates that the prolonged exposure to SFA-HFD decreases bone formation
and probably overall bone turnover, which on one hand may protect from bone loss due
to aging or estrogen deficiency but on the other hand may decrease bone quality and
may predispose to fractures [55]. Lastly, histomorphometric analyses results were in the
same sense with lower values of endocortical mineralizing, surface, mineral apposition
rate and bone formation rate [55]. In these studies, the SFA-HFD fed animals had higher
body weight than their respective controls and could generate greater mechanical load and
favoring bone formation.

On the other hand, studies evaluating the role of dietary lipids in bone health from a
qualitative standpoint have been also performed in aged male Wistar rats. When isoener-
getic and normolipid diets using different fat sources (Virgin olive or sunflower oil) with
clear differences on their fatty acid profile (MUFA or n-6 PUFA-rich) have been compared,
it has been found that animals lifelong maintained on MUFA-rich diets had higher values
of BMD in comparison with those fed n-6 PUFA-rich diets [46]. A similar effect has been
observed for the same animals in relation to alveolar bone loss at mandible [47]. In contrast,
if PUFA-rich diets are compared with SFA-rich diets, some benefits are also observed for
PUFA. In this sense, the administration of supplement containing evening primrose oil (a
good source of γ-linolenic acid as well as the n-6 PUFA acid linoleic acid) and fish oil (FO)
to elderly women with osteoporosis or osteopenia prevented loss of BMD in the lumbar
spine, and BMD in the femur, relative to control women receiving coconut oil, which is rich
in SFA [66]. However, in other study where control group receiving no supplemental fat,
no effect of a combined evening primrose oil/FO supplement, although it was performed
in younger post- and premenopausal women [67]. Importantly, it seems that in PUFA-rich
diets, the relative amounts of n-6 and n-3 PUFA, also plays an important role in relation to
bone biology. In fact, several studies have shown that animals fed diets rich in n-3 PUFA,
usually by adding FO, or with a lower n-6/n-3 ratio had higher BMC and BMD respect
than those fed diets with a higher n-6/n-3 ratio [39,44,53,57]. Positive effects of the n-3
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PUFA content of the diet also was supported by bone microarchitecture parameters of tibia
and femur from growing rats [39]. Moreover, higher activities of serum ALP isoenzymes,
including b-ALP, were reported in weanling male Sprague-Dawley rats fed a AIN-93G diet
high in n-3 PUFA by adding (70 g/kg) safflower oil and menhaden oil respect than those
fed a diet with a lower n-6/n-3 PUFA ratio suggesting that the of n-3 PUFA on bone would
be due, at least in part, to these fatty acids (FAs) stimulated bone formation in growing
animals [48]. This effect on bone formation is in consistency with other studies reporting a
lower bone marrow adiposity in animals fed FO-rich diet in comparison with those fed
corn oil-rich diet [57]. Several studies indicate that when the differentiation process is
directed toward adipocyte formation, osteoblast formation may be compromised [64,68,69].
Activation of PPAR-γ by FAs, as well as a variety of linoleic acid peroxidation products, can
induce adipogenesis and inhibit osteoblastogenesis in vitro [70–72]. Therefore, some n-6
PUFA FAs can interact with PPAR-γ to inhibit differentiation of osteoblasts and promote
differentiation of adipocytes.

In other animal models, results were in a similar sense but less clear. Piglets receiving
a diet supplemented with the n-3 PUFA arachidonic acid (AA) and docosahexanoic acid
(DHA) for 14 d had higher weight and greater BMD of the whole body, lumbar spine and
femur, although no differences were observed in whole body length, calcium absorption
or biochemical markers of bone metabolism [73]. Likewise, newly hatched chicks fed
menhaden oil and safflower oil enriched diet (90 g/Kg) had increased fractional labeled
trabecular surface and tissue level bone formation rates compared with those fed a soybean
oil-enriched diet, although no differences were found for BMC which correlated with the
reduced serum ALP activity found [52]. Lastly, in rapidly growing rabbits, feeding on
FO-supplemented diet led to reduced tibial structural properties, smaller mid-diaphyseal
areal properties and shorter tibiae in comparison with control diet in a pair-fed-fed regimen,
but tibial stress at the proportional limit was not significantly affected [74].

Interestingly, dietary supplementation with n-3 PUFA or maintaining a lower n-
6/n-3 PUFA ratio in the diet also seem beneficial for bone health when animals were
maintained on HFDs. In growing (6 weeks old) male C57BL/6 mice, an HFD for 6 months
increased TRAP expression and decreased serum concentrations of osteocalcin and b-
ALP. However, if FO was used as dietary fat source, at least in part (3–9%), serum TRAP
decreased and higher bone mass was found. Importantly, animals receiving a lower
amount of FO had higher femoral BV/TV, Tb.N. Conn.D. and bone mass of second lumbar
vertebrae and lower femoral Tb.Sp. [75]. In contrast, no differences in femur BMD or
biomechanical strength properties were found in forty-day-old male Sprague–Dawley rats
maintained for 65 days on HFDs containing coconut oil, flaxseed oil or safflower oil or a
standard diet. Still, those fed high n-3 or high n-6 PUFA diets present stronger femur (as
measured by peak load) than those of the standard chow-fed group, after adjustment for
significant differences in body weight [51]. This evidenced that n-3 and n-6 PUFA may
be beneficial in appropriate amounts, but that diets with high concentrations of FAs may
be detrimental during development and in advanced age [48,74,76,77]. More research to
determine amounts of individual FAs, ratios among the FAs and interactions with other
dietary constituents across the life span is needed before recommendations appropriate to
different ages can be made. Figure 1 represents the effects of different diets on bone biology
reported in growing and adult animal models.
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  Figure 1. Effect of different dietary interventions concerning dietary fat on bone biology and metabolism reported in

growing (A) or adult (B) animal models. The effects refer changes respect than control diet (indicated after the term vs.
in any case) which depend on each study design. Dietary interventions have been subdivided in two categories, high
fat diet that, in turn, can be rich in different fat types or supplements with specifical fat types. Green arrows indicate
induction in the particular process. Red truncated lines indicate a decrease in the particular process. Abbreviations: MUFA:
monounsaturated fatty acids; n-3 PUFA: n-3 polyunsaturated fatty acids; n-6 polyunsaturated fatty acids; SFA: saturated
fatty acids, vs.: versus.

Despite results found in preclinical studies, only three randomized clinical studies
evaluating the effect of nutritional interventions involving dietary fat on bone health were
available in PubMed database. Notwithstanding, a search conducted in clinicaltrials.gov



Int. J. Mol. Sci. 2021, 22, 6473 12 of 32

database identified a total of nine registered clinical trials on this topic. Main results of the
mentioned studies are shown in Table 2. Most of studies addressing the role of HFD or
LFD in human bone metabolism was mainly carried out in the context of a hypocaloric
diet maintained for a period of one or two years. However, in contrast to animal studies,
all these dietary interventions were performed in middle-aged adults and older people.
Among these types of interventions, most of the studies found no differences in BMC and
BMD as well as in serum bone turnover markers between individuals receiving a HFD
and those receiving a standard diet [78,79] or LFD [80]. In contrast, higher BMC and BMD
were reported in women consuming a normocaloric LFD (<28%E from fat) respect than
those following a standard diet (30%E from fat). Interestingly the last study was initiated
in young adults and had a duration of 9 years [81]. The differences between this last one
and the previous studies could be also explained because caloric restriction is, by itself, a
dietary intervention that has shown a significant reduction of BMC and BMC values in
humans with an increase in serum CTX-1 and TRAP and a decrease in b-ALP suggesting
that bone resorption was enhanced in detriment of bone formation [82], which could mask
the potential role of fat in bone health. Thus, more research evaluating the role of HFD in
an isocaloric diet context is necessary.

In the same way, there are 12 additional human studies evaluating dietary lipid role
in bone health from a qualitative standpoint. In this context, most of the clinical trials
addressing n-3 PUFA supplementation effects on bone biology in older people reported no
changes in serum OPG, RANKL, OPG/RANKL ratio, b-ALP, osteocalcin, CTX-1, NTx and
calcium levels as well as urinary Pyr, Dpyr and Pyr/Dpyr ratio when they are compared
with values obtained in individuals supplemented with n-6 PUFA [83,84], MUFA [85,86]
or SFA [87,88]. Indeed, some studies shown a slight reduction of bone turnover markers
such NTx and ALP without affect to bone resorption markers (Pyr and Dpyr) between
n-3 PUFA supplemented groups and those supplemented with n-6 PUFA [83] or SFA [87].
On the other hand, n-6 PUFA supplementation also did not affect to serum levels of
osteocalcin, b-ALP, CTX-1 and calcium as well as urinary NTx, Pyr, Dpyr and calcium
excretion levels in comparison with those supplemented with MUFA [89,90] or SFA [83]
in a similar age group. Likewise, no differences in BMD, serum calcium, t-ALP, b-ALP,
OPG as well as urinary Dpyr and calcium levels were found between extra virgin olive oil
(EVOO) (a MUFA-rich fat source) and nut (a n-6 PUFA source) supplementation [91–93].
However, a significant post-intervention increases in levels of osteocalcin and P1NP in the
supplemented with EVOO, but not in the nut-supplemented one. It should be noted that in
most of the reviewed supplementation studies, diet was not controlled beyond supplement,
which could increase risk of underestimating the effect of the supplements.

Table 2. Studies in humans investigating the role of fat intake on bone tissue.

Population; Age Intervention vs. Control Diet/Placebo;
Duration Main Changes vs. Control Diet or Placebo Ref.

42 women and 23 men;
51.3 ± 7.1 y HFD (61%E fat) vs. SD (30%E fat); 12 m

- No differences in BMC and BMD as
well as serum bone crosslaps and
urinary Ca excrection levels

[78]

208 women and
99 men; 45.5 + 9.7 y HFD (>45%E fat) vs. SD (30%E fat); 24 m - No differences in BMD of spine and hip [79]

242 women and
182 men; 51.8 ± 8.9 y HFD (40%E fat) vs. LFD (20%E fat); 24 m - No differences in BMD of spine,

femoral neck and hip
[80]

236 women; 44–50 y SD (32%E fat) vs. LFD (24%E fat); 18 m

- No differences in BMC of spine and hip
as well as BMD of spine

↑ BMD in hip
- No differences in serum P1NP and

osteocalcin levels

[94]
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Table 2. Cont.

Population; Age Intervention vs. Control Diet/Placebo;
Duration Main Changes vs. Control Diet or Placebo Ref.

230 women;
27.3 + 1.1 y LFD dc (<28%E fat) + vs. SD dc (30%E fat); 108 m ↑ BMC and BMD of whole body [81]

n-3 PUFA supplementation

3 women and 20 men;
49.3 + 1.6 y

n-3 PUFA rich HFD (37.6%E fat; 6.5%E ALA;
n-6/n-3 ratio: 1.6/1) vs. HFD (34.5%E fat; 0.8%E
ALA; n-6/n-3 ratio: 9.5/1); 6 wks

↓ serum NTx levels
- No differences in serum b-ALP levels

[83]

n-3 PUFA rich HFD (37.6%E fat; 6.5%E ALA;
n-6/n-3 ratio: 1.6/1) vs. n-6 PUFA rich HFD
(37.1%E fat; 3.6%E ALA; n-6/n-3 ratio: 3.5/1);
6 wks

- No differences in serum NTx and
b-ALP levels [83]

43 women and 2 men
with RA; 57.9 ± 10.8

NCD + n-3 PUFA supplement (2.4 g of n-3
PUFA/d; 1.1 g ALA+ 0.7 g EPA + 0.1 g DPA +
0.4 g DHA) vs. NCD + dairy supplement (2.4 g
of SFA/d); 3 m

↓ plasma ALP levels
- No differences in urinary Pyr, Dpyr

and Pyr/Dpyr ratio
[87]

87 woman and 26 men;
18–67 y

NCD + n-3 PUFA supplement (1.48 g EPA +
DHA/d) vs. NCD + placebo (NA g olive oil);
12 wks

- No differences in serum CTX-1 levels [85]

75 women and 6 men
with RA;
49.24 ± 10.46 y

NCD + n-3 PUFA supplement (2.090 g of EPA
and 1.165 g of DHA/d) vs. NCD + placebo (NA
g of high-oleic-acid sunflower oil); 16 wks

- No differences in serum Ca, b-ALP,
osteocalcin and CTX-1 levels [84]

126 women; 75 ± 7 y NCD + n-3 PUFA supplement (1.2 g EPA +
DHA/d) vs. NCD + placebo (NA g olive oil); 6 m

- No differences in serum b-ALP and
osteocalcin [86]

60 women and 15 men;
35–65 y

NCD + n-3 PUFA/MUFA enriched dairy
supplement (23.7 g saturated fat + 5.17 g oleic
acid + 0.14 g DHA + 0.20 g EPA/d) vs. NCD +
semiskimmed milk (70g saturated fat + 2.05 g
oleic acid); 12 m

- No differences in serum OPG, RANKL,
OPG/RANKL ratio

- No differences in osteocalcin and
CTX-1 levels

[88]

n-6 PUFA supplementation

3 women and 20 men;
49.3 + 1.6 y

n-6 PUFA rich HFD (37.1%E fat; 12.6%E LA;
n-6/n-3 ratio: 3.5/1) vs. HFD (34.5%E fat; 7.7%E
LA; n-6/n-3 ratio: 9.5/1); 6 wks

- No differences in serum NTx and
b-ALP levels [83]

n-6 PUFA rich HFD (37.1%E fat; 12.6%E LA;
n-6/n-3 ratio: 3.5/1) n-3 PUFA rich HFD (37.6%E
fat; 10.5%E LA; n-6/n-3 ratio: 1.6/1); 6 wks

- No differences in serum NTx and
b-ALP levels [83]

38 women and 6 men
with RA; 46.2 ± 13.1 y

NCD + n-6 PUFA supplement (2.5 g CLA/d) vs.
NCD + placebo (2.5 g of high-oleic-acid
sunflower oil); 3 m

↑ osteocalcin and CTX-1 levels
- No differences in serum b-ALP levels [90]

60 men; 49.1+ 6.2 y
NCD + n-6 PUFA supplement (3 g CLA/d) vs.
NCD + placebo (NA g palm and bean oil
blend/d); 8 wks

- No differences in serum osteocalcin,
b-ALP, CTX-1 and Ca as well as urinary
NTx, Pyr, Dpyr and Ca levels

[89]
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Table 2. Cont.

Population; Age Intervention vs. Control Diet/Placebo;
Duration Main Changes vs. Control Diet or Placebo Ref.

MUFA supplementation

127 men; 67.9 ± 6.9
CD + EVOO supplementation (>50 mL
EVOO/d) vs. CD + nuts supplementation (30 g
of mixed walnuts, almonds and hazelnuts); 2 y

↑ osteocalcin and P1NP levels but not
with nuts supplementation [93]

98 women and
104 men; 67.8 ± 6.5

CD + EVOO supplementation (15L EVOO/3 m)
vs. CD + nuts supplementation (1350 g of mixed
walnuts, almonds and hazelnuts/3 m); 1 y

- No differences in serum Ca, t-ALP,
b-ALP, OPG as well as urinary Dpyr
and Ca levels

[91]

104 women and 7 men
severely obese; 18–40 y

CD + EVOO supplementation (52 mL EVOO/d)
vs. CD; 12 wks

- No differences in Pre-post BMD of
spine and hip [92]

Abbreviations: ALA: α-linolenic acid, b-ALP levels: bone-specific alkaline phosphatase, BMC: bone mass content, BMD: bone mass
density, Ca: calcium, CD: diet was controlled and proportionate by researchers; CLA: conjugated linoleic acid, CTX-1: C-telopeptide of
type I collagen, dc: dietary counseling, DHA: docosahexaenoic acid, DPA: Docosapentaenoic acid, Dpyr: deoxypyridinoline, E: energy,
EPA: Eicosapentaenoic acid, EVOO: extra virgin olive oil, HFD: high-fat diet, LA: Linoleic acid, LFD: low fat diet, m: months, MUFA:
monounsaturated fatty acid, NA: not available, NCD: CD: diet was not controlled and proportionate by researchers, NTX: N-telopeptides
of type I collagen, OPG: Osteoprotegerin, PUFA: Polyunsaturared faty acid, Pyr: pyridinoline, P1NP: procollagen type 1 N-terminal
propeptide, RA: rheumatoid arthritis, SD: standard diet, SFA: Saturated fatty acids, t-ALP: total alkaline phosphatase, vs.: versus, wk:
weeks, y: years.

5. Molecular Mechanisms Operating under the Observed Effects of Dietary Lipids on
Bone Health of Interest in Relation to Aging
5.1. Mitochondrial Dysfunction and Oxidative Stress

According to the results from some experiments in rodents, the consumption of HFD-
SFA diets would lead to increased ROS production at bone in growing (4 weeks old)
mice [63]. Several ways for HFD to increase ROS production have been proposed. One
is that excessive free fatty acids (FFAs) can enhance the activity of the tricarboxylic acid
cycle leading to the increased generation of the reductive equivalent NADH and FADH2,
which will overload mitochondria and eventually lead to a ROS increase [95]. Another
possible explanation lies in the fact of that the excessive deposition of fat contributes to
the overclearance of FFAs by mitochondrial β-oxidation, which increases the electron flow
of cytochrome c oxidase and the accumulation of ROS [96]. The increase in bone marrow
adiposity reported in SFA-HFD-fed animals could also contribute to oxidative stress since
FFAs released by the adipocytes contributes to ROS generation and lipid peroxidation as
well as to a decrease in superoxide dismutase (SOD) and glutathione peroxidase (GPX),
affecting to phosphorylation of Akt, ERK and p38 MAPK [95]. In fact, some studies also
found that antioxidants enzymes SOD, catalase (CAT), GPX and glutathione transferase
(GST) levels or activity as well as total antioxidant capacity (TAC) at bone were reduced
in SFA-HFD-fed groups [63,97–99], which is in consistency with decreased expression of
NRF1 and NRF2 also reported in SFA-HFD-fed animals [59]. This is supported by the
decreased ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) found in
femur of male C57BL/6 mice maintained on an SFA-HFD [63].

On the other hand, the impaired bone antioxidant system and the increased generation
of ROS would explain the increases levels of oxidative damage markers including malon-
dialdehyde (MDA) found in femur and tibiae [63,97]. In this way, it was also observed a
negative correlation between MDA concentrations in the liver and the femoral metaphysic
BMD and a positive correlation between SOD, CAT and GPX activity in the liver and the
femoral metaphysic BMD in adult female Sprague Dawley rats. Indeed, a strong negative
correlation of plasma bone resorption biomarkers NTx with GSH/GSSG ratio and TAC and
a strong positive correlation of plasma bone formation biomarkers P1CP with GSH/GSSG
ratio and TAC in male C57BL/6 mice have been reported [63]. Oxidative damage markers
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also were higher in animals fed PUFA-supplemented or -rich diet respect than values
found in those receiving other unsaturated fats. For example, supplementation with DHA
resulted in oxidative DNA damage in the bone marrow of aged rats, and diets containing
large amounts of borage oil (n-6 PUFA-rich) reduced tibia biomechanical properties in aged
rats [100]. In a similar way, systemic oxidative damage markers were lower in male Wistar
rats lifelong maintained on a MUFA-rich diet compared with those found in rats receiving
a n-6 PUFA-rich diet, which correlated with better bone health [46].

Dietary fat-induced oxidative stress may exacerbate the uncoupling of bone resorption
and formation by promoting the formation and activation of the osteoclasts necessary
to remodel the skeleton and inhibiting the formation of mature osteoblasts from their
stromal progenitor cells, and enhancing adipogenesis [64]. Increased intracellular ROS
has been shown to stimulate osteoclast differentiation and bone resorption [101,102]. Baek
et al. [103] added H2O2 to human bone marrow monocytes and found that H2O2 could
promote the expression of the RANKL and increase the ratio of RANKL/OPG. This result
leads to an increase in the number of osteoclasts, which eventually leads to an increase
in bone resorption and a decrease in bone mass. Moreover, antioxidants added to fodder
have the effect of eluding this mechanism [63]. Consistent with this idea, Kim et al.
found that α-lipoic acid (α-LA), a type of strong antioxidant, suppressed pro-osteoblasts
proliferation driven by RANKL and TNF-α (RANKL/TNF-α) independently to restrain
activation of NF-κB [103]. Thus, ROS also plays an important role HFD-induced osteoclast
differentiation through NF-κB regulation. In contrast, osteoblastic differentiation in mouse
and rabbit BMCs [104,105] and calvarial cells [104] has shown to be suppressed under
H2O2-induced oxidative stress. Likewise, mineralization levels and gene expression of
the osteogenic markers are diminished in MC3T3-E1 cells incubated with H2O2 [106].
ROS also act as antagonists of Wnt signaling in osteoblasts through transcription factors
FoxO [107,108]. Excessive ROS promote the binding of PPARγ to β-catenin preventing
the transcription of β-catenin and downstream TCF/LEF in the Wnt/β-catenin signaling
pathway to activate the FoxO transcription factors by elevating the FoxO downstream
transcripts. Consequently, osteoblast differentiation and the bone formation would be
reduced causing a decrease in the osteoblast number and bone formation. Lastly oxidative
damage leads to excessive apoptosis of osteocytes [109–111].

Moreover FAs, their oxidation products and oxidized lipoproteins can interact
with PPAR-γ to inhibit differentiation of osteoblasts and promote differentiation of
adipocytes [112,113]. PPAR-γ is expressed in osteoblasts and activation of PPAR-γ by
fatty acids, as well as a variety of linoleic acid peroxidation products, can induce adipo-
genesis and inhibit osteoblastogenesis in vitro [70–72]. In addition, minimally oxidized
LDL promoted adipogenic differentiation of murine M2-10B4 marrow stromal cells in the
presence of PPAR-γ agonists and inhibited osteoblastic differentiation.

Therefore, oxidative stress could be reflected in RANK-RANKL-OPG system alter-
ations. As said, increased RANKL or decreased OPG local expression can cause bone
resorption at various sites of the human skeleton. It has been demonstrated that RANKL is
up-regulated, whereas OPG is down-regulated in periodontitis, compared to periodontally
health, resulting in an increased RANKL/OPG ratio [114]. In an experiment feeding male
rats on diets based on VOO, SO or FO lifelong, circulating levels and gum mRNA amount
of RANKL and OPG were measured in the context of alveolar bone resorption [46]. Authors
found that RANKL/OPG ratio was higher in old animals compared with the young ones
demonstrating that aging is a condition that favors bone loss. Moreover, it was found that
VOO and FO, but not SO act in the same way that other studies suggesting that OPG acts
as a defensive mechanism during aging in order to avoid an excess of bone destruction
induced by an excess of RANKL stimulation. So, although age no doubt affects bone loss,
it has been demonstrated that dietary lipids may condition how fast is the bone lost, with
the n-6 PUFA being the most deleterious among PUFA.

With aging, resulting from the accumulation of dysfunctional mitochondria and the
progressive inefficiency of antioxidant defense mechanisms, ROS production intensifies
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above normal defense capabilities [115]. Under these conditions, ROS accumulation would
favor osteoclastogenesis inhibiting the function of osteoblasts, increasing bone resorption
and reducing bone formation during aging [107,108]. The importance of oxidative stress
in bone aging has also been suggested by studies in transgenic animal models. In murine
genetic models with a global deletion of the genes encoding antioxidant enzymes manifest
low bone mass [58,59]. Furthermore, it was observed that the administration of antioxidants
prevents bone loss in these animals [58]. Likewise, in older murine models of hyperfunction
of NRF2, an elevation of NRF2 was observed to affect the accumulation of bone mass
and contribute to bone loss [62,63]. Interestingly, in females, the expression of phase II
detoxifying enzymes strictly depends on NRF2 activity, which does not occur in males [64].
These data suggest that there are sex-specific mechanisms to control the defense against
ROS in bone.

5.2. Apoptosis Dysregulation of Bone Cells

Apoptosis plays a role in the normal maintenance of bone tissue, abnormal bone
turnover and aging. More apoptotic formation in osteocytes and osteoblasts were observed
in transmission electron microscopy (TEM) images of Vertebrae L4 from SFA-HFD-fed
animals in comparison with those obtained in standard diet-fed animals [116]. The ex-
cessive apoptosis of osteocytes has been also related to oxidative damage in other stud-
ies [110,111,117]. Despite osteocyte-controlled apoptosis may be needed to repair bone
microdamage [118], the dysregulation of apoptosis contributes to the imbalance between
resorption and bone formation, as well as changes in the mechanical properties of local
tissue [119]. The increase of osteocyte apoptosis with age can contribute to bone weakness
independent of BMD through, at least, two mechanisms: (1) the formation of areas of mi-
cropetrosis due to mineralization of empty lagoons; and (2) interruption of the canalicular
system, which reduces microcrack repair [108,120].

Moreover, SFA-HFD has been shown to strongly inhibit osteoclast apoptosis in murine
IL-6 deficient models [121] which have been suggested to present cell viability and bone
resorptive ability of osteoclasts in mice as consequence of IL-6 depletion [122]. Elevated IL-
6-induced inflammation is also shown to be responsible for obesity-associated bone loss in
mice [65] suggesting that SFA-HFD effects on bone could be independent on this condition
in normal phenotype models, at least in part. In addition, it has been found an increased
expression of the apoptosis-related genes bcl-2 and drak1 and more apoptotic cells with age
in adult human bone marrow cells (BMCs) [21,27]. The irregularities in apoptosis explain
different diseases that result from extensive or inadequate cell death. Consequently, the
interruption in bone remodeling, characterized by the survival of osteoclasts and apoptosis
of bone forming cells, leads to diseases such as osteoporosis.

5.3. Dietary Lipids and Genomic Instability at Bone

Some studies have correlated lower values of femoral BMD and a worst bone microar-
chitecture parameters with higher values of urinary 8-OHdG, which is a sensitive indicator
of oxidative DNA damage [98,123]. Different reports support the idea that DNA damage
interferes with normal skeletal maintenance and that the accumulation of damage with
aging contributes to bone loss decrease and bone formation since the increased DNA dam-
age would promote senescence and apoptosis processed in osteoblast lineage [124–126].
In fact, markers for both, DNA damage and DNA damage response, are increased in
osteoprogenitors and osteocytes in old mice and they have been associated with increased
cell senescence and apoptosis. The relationship between genomic damage and bone loss is
also supported by studies in mice showing that DNA damage due to focal irradiation in
bone causes senescence in cells of the osteoblast lineage as well as bone formation decrease
and bone loss. Furthermore, irradiation also causes changes in osteoprogenitor cells similar
to those observed with aging [126]. The possible implication of genomic instability in bone
health alteration has been supported by findings of studies in murine models with DNA
repair deficiency that displayed low bone mass associated with low bone formation and
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increased bone resorption among their multiple symptoms of premature aging [126–129].
Furthermore, humans with progeroid syndromes caused by deficiencies in DNA repair
mechanisms such as xeroderma pigmentosum and trichothiodystrophy [130,131] also
present skeletal abnormalities [132,133]. Consumption of SFA-HFDs has been associated
with increases in DNA strand breaks in several biological samples including peripheral
blood, kidney, liver, pancreas, spleen, brain and bone marrow (Figure 2) [99,134]. In the
same sense, a higher number of micronucleated polychromatic erythrocytes has been
found in the bone marrow from animals maintained on SFA-HFD [99,134]. Concerning
unsaturated fat, aging and DNA damage, Quiles et al. have tested the effects of feeding
male Wistar rats with diets containing different fat sources as virgin olive oil (VOO) and
sunflower oil (SO) [135]. Lower levels of DNA double-strand breaks in peripheral blood
lymphocytes were found in young and old animals fed on VOO. In the same animals it was
also analyzed the presence of a particular mitochondrial DNA deletion in the liver [136].
An increase of 6-fold in the deletion was found in the case of old animals fed the VOO-
containing diet, meanwhile this increase was 60% in old animals fed the diet containing
SO. The lower increase in mtDNA deletion frequency during aging was attributed to the
lower number of free radicals produced by VOO. This might also be responsible of the
lower alveolar bone resorption found in aged animals fed on VOO compared to those fed
on SO [47] and the higher BMD found in the same animals fed on VOO [46], associating
then dietary lipids, genetic instability and bone health during aging. Noteworthy, VOO
and FO, apart from genomic instability and aging have been reported to live longer than
animals fed on SO [137]. 

2 

 
 
 
  

Figure 2. Potential aging-associated mechanisms operating under the observed effects of diets with different dietary fat
profile and content on bone biology and metabolism. Green and red colors in the arrows indicate a putative stimulatory or
inhibitory effect, respectively. Dashed arrows indicate that to date the effect has been studied only in other tissues different
from bone with the exception of systemic inflammation. Abbreviations: HFD: high-fat diet; MUFA: monounsaturated fatty
acids, PUFA: polyunsaturated fatty acids, SFA: saturated fatty acids.
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5.4. Dietary Lipids and Inflammation

Increased expression of circulating inflammatory mediators as well as infiltration of
aggravative inflammatory cells in mesenteric adipose tissue [138] and bone marrow adipose
tissue [139], have been reported in HFD-fed animals. Some experiments have shown that
the chronic low-grade inflammatory circumstances of subjects served a HFD [140] are
very similar to that of obese subjects, both of which had an elevated concentration of
serum pro-inflammatory factors, with IL-1, IL-6, TNF-α [141–143] most notably. Excessive
fat intake in the early stages of development can trigger activation of the inflammatory
system and cause a significant increase in bone marrow fat content and a decrease in the
trabecular BV and BMD [139]. However, the effect of pro-inflammatory factors on bone
loss is achieved by affecting different bone cells. Many inflammation cytokines such as
IL-6 [121,144] and TNF-α [145] have been identified to activate the RANKL/RANK/ OPG
pathway to regulate the bone resorption activity of osteoclasts. It has been observed that
TNF-α induces the expression of RANK and IL-1 in the precursors of human bone marrow
and mouse osteoclasts [146–148]. A HFD can also cause a decrease in OPG levels, which
deteriorate the differentiation of osteoblasts and promote the absorption of osteoclasts [149].

On other hand, osteocyte apoptosis can be directly affected by proinflammatory
cytokines under inflammatory conditions, which ultimately increases the bone absorption
by osteoclasts [150]. On the other hand, TNF-α and IL-1β inhibit osteoblast differentiation
and bone formation in mature TNF-α-deficient mice [151]. Furthermore, TNF-α and IL-1β
inhibit collagen expression, decreasing bone matrix formation [152]. The expression of
RANKL improves in an autocrine way, decreasing the expression and activity of RUNX2
and favoring bone resorption [148,153,154]. These results are confirmed in animal models
with genetic deletion of IL-1 where a better conserved bone mass was found but an increase
in RANKL [155,156]. Burgeoning experiments have shown that TNF-α can upregulate the
expression of sclerotin and Dickkopf-1 (DKK-1) in various animal models [150,157,158], and
both can inhibit the Wnt signaling pathway to affect the formation of osteoblasts. Therefore,
except for the direct effects of proinflammatory cytokines on osteoclasts and osteocytes,
the increase of the inflammatory induced bone formation inhibitor also contributes to a
state of low bone formation. These data suggest that inflammation may be responsible, at
least in a significant part, for the stimulation of bone resorption during old age.

PGE2, which is derived from arachidonic acid, is thought to contribute to pro-
inflammatory processes and high concentrations may inhibit bone formation. Middle-aged
(12 months old) male rats, consuming a fat blend containing n-3 PUFA showed lower bone
nitric oxide (NO) and bone PGE2 production than those found in animals receiving a diet
including both n-3 and n-6 PUFA [44]. The n-3 PUFA α-linolenic acid and the n-6 PUFA
linoleic acid are converted via a series of desaturation and elongation steps to different
FAs, which serve as precursors for the eicosanoids as arachidonic acid. Since n-3 and n-6
fatty acids serve as substrates for the same enzymes along the conversion pathways, it is
expected that PGE2 production was reduced by lowering the dietary n-6:n-3 ratio [159].
This is supported by the results of other study reporting higher ex vivo PGE2 biosynthesis
in liver homogenates and bone organ cultures of chicks fed soybean oil compared with the
values for those given a combination of menhaden oil and safflower oil. Therefore, ex vivo
PGE2 production in liver homogenates and bone organ cultures (right femur and tibia)
were significantly lower in growing rats fed diets with a lower dietary ratio of n-6: n-3
PUFA than in those fed diets with a higher dietary ratio [48]. Arachidonic acid and DHA
addition to the diet led to an increase of the levels of this fatty acid in liver whose levels
were positively related to urinary PGE2 but negatively related to free linoleic acid in bone
in piglets. In addition, an inverse relationship was observed when liver linoleic acid was
substituted for liver arachidonic acid as the independent variable [73]. Interestingly, despite
a HFD increased the expression of the adipose tissue TNFα in growing C57BL/6 mice,
when similar diets containing FO at 3% E such values were lower. However, if the content
of FO as increased at 9% no further beneficial effects were found [62].
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On the other hand, dietary oils rich in the n-6 fatty acid γ-linoleic acid (GLA),
when combined with FO, have been reported to have positive effects on bone health
in older subjects [66,67,160–166]. PGE2 production can also be reduced by provision of
the n-6 PUFA GLA [162,167] because providing GLA would increase the synthesis of
dihommo-γ-linolenic acid but not arachidonic acid, probably due to the limited activity
of ∆-5-desaturase [168]. Actually, combined supplementation of GLA and the n-3 PUFA
EPA produced similar effects and also prevented the accumulation of arachidonic acid in
serum [169]. In addition to reducing synthesis of PGE2, dietary GLA can enhance produc-
tion of PGE1, which has anti-inflammatory effects [162,165]. Thus, providing GLA in the
diet would bypass the initial step converting linoleic acid to GLA and allow synthesis of
PGE1 to proceed unimpeded. Therefore, although more work is needed to determine the
adequate proportion of FAs, modifying dietary FA profile of the diet to reduce n-6 PUFA
amount may prove to be a physiologically effective means to manipulate endogenous
prostaglandin synthesis and enhance bone health in advanced age.

5.5. Autophagy Alteration and Bone Cell Differentiation

In eukaryotes, autophagy represents a highly evolutionary conserved process, through
which macromolecules and cytoplasmic material are degraded into lysosomes and recycled
for biosynthetic or energetic purposes. Dysfunction of the autophagic process has been
associated with the onset and development of many human chronic pathologies, such as
cardiovascular, metabolic and neurodegenerative diseases as well as cancer [170]. It has
been observed that the change in osteoblasts towards a non-mineralizing osteocyte pheno-
type appears to be coordinated by Beclin1-mediated autophagy [171]. A study suggests
that the consumption of an SFA-HFD modulates autophagy in osteoblasts directing these
cells towards non-mineralizing osteocytes attenuating bone formation. This correlates with
histological evaluations of tibiae suggesting that an SFA-HFD promoted terminal differen-
tiation of the osteoblast towards osteocyte in animals. In addition, defective autophagy
in osteoblast progenitors (including their descendants) was associated with decreased
maturation of osteocytes, as well as retention of endoplasmic reticulum and mitochondria
in osteocytes [172]. On the other hand, it has been reported lower levels of LC3B in bone
marrow derived primary macrophages and peritoneal macrophages from animals fed
SFA-HFD, suggesting a general impairment of autophagy machinery in this cell type,
which would affect macrophage polarization contributing to the increased systemic inflam-
matory state observed in these animals [173]. Therefore, dysregulation of bone metabolism
induced by SFA-HFDs also would depend on proteostasis loss in different cell population,
directly by regulating autophagy in osteoblasts or indirectly through the specific alteration
of macrophage autophagy in cells derived from bone marrow and adipocytes, generating
a pro-inflammatory environment that promotes the resorptive processes [9,10,174,175].
The relevance of this process has been revealed in a transgenic DMP-cre mice that mimic
various aspects of skeletal aging including a more pronounced bone mass phenotype and
lower osteocytes turnover where Atg7, that activates LC3, a central protein that stimulates
the autophagy pathway in cells expressing DMP1, was eliminated [172,176]. However,
more research is needed regarding the influence of SFA-HFD on the loss of proteostasis
to clarify the importance of dietary fat effects on autophagy for bone health maintenance
during aging. Table 3. summarizes the potential mechanisms under dietary fats effects on
bone health and biology.
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Table 3. Effects of dietary interventions modifying dietary fats on aging-associated mechanisms operating under the
observed effects on bone health.

Diet Possible Effect Ref.

Oxidative stress

SFA-rich HFD

↓ Endogenous antioxidant defense systems
↓ NRF1 and NRF2 gene expression
↑ ROS production
↑ Oxidative damage

[59,63,97–99]

MUFA-rich diet ↓ Oxidative damage [46,47,136]

n-6 PUFA-rich diet ↑ Oxidative damage [46,47,136]

Apoptotis SFA-rich HFD ↑ osteocyte and osteoblast apoptosis
↓ osteoclast apoptosis

[116,121]

Genomic inestability

SFA-rich HFD ↑ DNA damage and alterations [99,134]

n-3 PUFA-rich HFD ↑ DNA damage [100]

MUFA-rich diet ↓ DNA damage [46,136]

n-6 PUFA-rich diet ↑ DNA damage [46,136]

Inflammation
SFA-rich HFD ↑ Pro-inflammatory cytokines levels [62,141–143]

n-3 PUFA-rich HFD ↓ Pro-inflammatory cytokines levels [62]

Autophagy dysregulation
SFA-rich HFD ↓ Autophagy initiation machinery [173]

MUFA-rich diet ↑ Autophagy initiation machinery [47]

Abbreviations: HFD: high-fat diet, NRF: Nuclear respiratory factor, PUFA: polyunsaturated fatty acid, ROS: reactive oxygen species, SFA:
saturated fatty acids.

5.6. Altered Levels of Hormones Involved in Bone Biology

Many hormones are critical to bone turnover and the endocrine system also is affected
during aging as most of biological systems, showing changes in its physiological function
even during healthy aging. In this sense, age-related changes also can generate a greater
sensitivity or a lower capacity of response to different stimuli.

5.6.1. Growth Hormone Axis

Growth hormone (GH) is known to has lipolytic effects and its secretion is inhibited
by increases in serum FFAs [177]. However, feeding on an SFA-HFD led to increased serum
values of leptin and the insulin-like growth factor (IGF)-1 and lowers plasma values of
ghrelin in animals [154,178,179], which could be attributed to the reduced hypothalamic
gene expression of growth hormone secretagogue receptor (GHSR) and stomach gene
expression of ghrelin found SFA-HFD fed animals [180,181]. In any case, SFA-HFD effect on
GH/IGF-1 axis could interfere with bone metabolism directly through leptin metabolism or
indirectly through an impairment of glucose metabolism derived from the leptin resistance
and the low ghrelin levels, since insulin resistance has been associated with an increased
production of proinflammatory cytokines and an alteration of the redox status [182,183].
During aging, IGF-1 content in human bones decreases by 60% [180]. This decrease in the
content of serum IGF-1 in the bone matrix is associated with an age-related decrease in
BMD and higher risk of hip fractures [184]. Since GH is reduced in the elderly, consumption
of HFD may further reduce GH levels thereby increasing osteoporosis risk. This effect could
not be fully explained by body fatness, suggesting that the diet may have contributed to
the results. In humans, consumption of a single high-fat meal reduced exercise-stimulated
GH secretion compared to the GH response obtained after no energy intake or after a
high-carbohydrate meal was consumed [185,186]. When humans consumed a HFD for
an extended period of time (28 weeks), the FA composition of the diet had differential
effects on GH secretion. Specifically, supplementation of a HFD with FO decreased GH
levels in young males compared with those consuming a mixed fat (lard, tallow and corn
oil) supplement [187]. Likewise, when the effects on animals of diets rich in different
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PUFAs were compared, it was found that a diet rich in soybean oil modulated pituitary
and hypothalamus gene expression of GH, Growth hormone–releasing hormone, growth
hormone releasing hormone receptor, gonadotropin-releasing hormone and leptin receptor
as well as IGF-1 serum levels but no a diet enriched with FO [188,189]. Moreover, IGFBP-3
levels were higher in the group receiving the FO-rich diet [189]. Interestingly, IGFBP-3 has
shown an antiosteoblastogenic activity on bone cells [181,190,191].

5.6.2. Insulin

It is well-documented that aging is characterized by a progressive loss of β-cell
function which is associated with a decline of insulin secretion [192,193]. Paradoxically,
in most studies, patients with type II diabetes show increased BMD [194]. However, they
present alterations in bone microarchitecture including higher cortical porosity and less
bone strength, as well as alterations in bone collagen production, which correlates with a
reduced biomechanical integrity of the skeleton [194–197]. Therefore, lifelong feeding on
diets that prevent pancreatic alterations and disorders affecting to insulin regulation would
result useful for maintaining healthy bones. SFA-HFD fed-animals showed higher plasma
levels of insulin and higher area under curve (AUC) in glucose tolerance test [40,42,55,198]
and fasting blood glucose [40,55,198]. Glucagon-like peptide (GLP-1), fasting blood glucose
has been found to result affected in a similar sense by HFDs in humans [199,200]. These
results suggest that SFA-HFD can affect negatively to glucose metabolism through the
alteration of metabolic flexibility. In turn, as mentioned above, SFA-HFD-induced insulin
resistance and prolongated increases of blood glucose could produce oxidative stress and
an increased production of proinflammatory cytokines that could directly or indirectly
interfere with bone metabolism.

5.6.3. Thyroid Hormones

It has been observed that SFA-HFD-fed animals had higher serum values of thy-
roid stimulating hormone (TSH) and lower values of T4 and T3 [201–203]. Moreover,
immunohistochemical staining showed that animals fed SFA-HFD presented lower levels
of thyroid hormone synthesis-related proteins such as TTF-1 and sodium / iodide sym-
porter (NIS) [202]. Similar results were obtained in animals fed SFA-HFD where it was
observed a reduced gene expression of thyroid hormone synthesis-related proteins such
NIS, thyroglobulin (Tg) and TSH receptor (TSHR) [201]. Nevertheless, there is no direct
experimental evidence linking the effect of HFD on bone function through the modification
of thyroid function. Despite alterations are highly variable between individuals, in iodine-
sufficient areas, in general terms, there is an increase of TSH levels with age [204–206].
However, exist controversial results in T4 levels in older people [204–206] and only one
study shown a decrease of T3 levels [205]. In this sense, exist a high prevalence of sub-
clinical hypothyroidism in the elder population [207]. Notwithstanding, there are studies
showing that subclinical hypothyroidism in aged people can be spontaneously corrected
over time without any intervention [208,209]. Subclinical hypothyroidism has a contro-
versial influence on bone metabolism in elder people [210,211]. On the other hand, lower
serum TSH may be associated with an increased risk of hip fractures [212,213] but not with
bone loss [214] in aged population.

On the other hand, a n-6 PUFA rich diet (Safflower oil) did not affect to thyroid
hormones in comparison with those fed with SFA rich diet (coconut oil) [178]. In the
same way, n-3 PUFA rich diet (FO) did not affect to serum T3 and THS and pituitary gene
expression of TSH [189,215]. However, a slightly higher serum T4 was seen in n-3 PUFA
rich diet (FO) in comparison with n-6 PUFA-rich (rich in soybean oil) diet-fed animals [179].

5.6.4. Parathyroid Hormone

Parathyroid hormone (PTH) stimulates both anabolic and catabolic process in bone
depending on the dose and frequency of the PTH signal [216]. Higher serum PTH levels has
been associated with lower BMD [182,183,188,189] and lower serum 1,25(OH)2D3 [190,191]
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as well as an increase of bone turnover markers [191], which is associated with bone
loss [181]. During aging, serum PTH levels increase [217–219]. In addition, different factors
can cause an increase of serum PTH such as kidney failure [220], estrogen deficiency [215,221],
serum 1,25(OH)2D3 status [222] and age-related drugs intake such loop diuretics [223].
In women, there is some suppression of PTH secretion during the rapid phase of bone
loss in the early postmenopausal period. However, in the later stage, PTH secretion
gradually increases, which increases bone turnover [224]. This fact is probably due to a
better 1,25(OH)2D3 status and/or a better-preserved renal function [225]. Similarly, PTH
secretion also increases in older men [226]. SFA-HFD-fed animals have displayed higher
values of serum PTH [227–230]. The elevated higher serum PTH concentrations in SFA-
HFD might contribute to an abnormal regulation of serum 1,25(OH)2D concentrations by
stimulating 1α-hydroxylase expression and attenuating 24-hydroxylase expression in the
kidney [227–229]. Higher PTH serum levels were found in elderly men and women after
consuming a western diet containing a high content of animal fat [231]. However, some
interventions in humans, both young and old, found that a western diet did not affect to
1,25-dihydroxyvitamin D serum levels [231,232]. A SFA-HFD also has been related with
a reduced expression of PTH receptor [233]. which could contribute to reduce calcitriol
levels despite PTH increases reported in other studies.

On the other hand, higher values of serum PTH, 25-(OH) vitamin D2 and 1,25-(OH)2
vitamin D have been reported in animal receiving a diet enriched with menhaden oil
comparison with those fed with a diet enriched with safflower oil [53] suggesting that
n-3 PUFA positive effects could be mediated also by this mechanism. Notwithstanding,
no differences in serum PTH levels were found between aged male rats (24-months-old)
maintained lifelong on diets based on VOO or SO [46]. In adult (40-week-old) roosters,
the potential for adverse effects of a HFD on intestinal calcium absorption in the mature
animal may be more apparent in cancellous bone, with its faster rate of turnover, than in
cortical bone [45]. This is different from the effects of fats on other hormones involved in
bone formation. Previous reports showed that parathyroid hormone, for instance, did not
change and calcitonin increased when high-fat diets were consumed [34,234].

5.6.5. Sexual Hormones

In women, during menopause, serum levels of 17beta-estradiol decrease by 85–90%
and serum estrogen levels decrease by 65–75% of the mean premenopausal levels which
contribute to exacerbated bone loss [235,236]. Results of studies on ovariectomized
animals suggest that SFA-HFD could aggravated bone loss associated with estrogen
deficiency [237–240], but SFA-HFD diets did not affect to [237] or even increase circu-
lating estradiol concentrations in comparison with animals fed on standard diets [240].
Thus, benefits for different dietary fats do not seem to be mediated by modulating estro-
gen levels, although this could counteract part of the consequences of their deficiency at
advanced age.

6. Future Perspectives

Most experimental studies on bone biology and dietary fat have evaluated the con-
sequences of increasing fat amount mainly by using saturated fats as fat source, which
usually affect negatively to bone turn-over and structure. On the other hand, the possible
role of modifying FA profile has been less studied. PUFA could be beneficial for bone
health, but it depends on the control diet and dietary fat amount. The role of n-3 PUFA in
bone biology is not clear, probably because this depends on dietary context and relative
amount of these FAs. Lastly, MUFA-rich diets also seem beneficial compared with n-6
PUFA-rich diets. Still, there is paucity for studies evaluating the role of dietary fat in bone
health at advanced ages, as well as studies comparing bone health-related parameters
at different ages to confirm what diets prevent age-associated changes. Moreover, many
studies used growing animals, so beneficial effects of some diets could depend on bone
formation during this stage instead of bone loss prevention as animals age. Therefore,
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more studies must be performed to improve diets for preventing the effect of aging on
bone health and the usefulness of modify diet composition in the elderly.
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