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Abstract: The precise prediction of power estimates of wind–solar renewable energy sources becomes
challenging due to their intermittent nature and difference in intensity between day and night.
Machine-learning algorithms are non-linear mapping functions to approximate any given function
from known input–output pairs and can be used for this purpose. This paper presents an artificial
neural network (ANN)-based method to predict hybrid wind–solar resources and estimate power
generation by correlating wind speed and solar radiation for real-time data. The proposed ANN
allows optimization of the hybrid system’s operation by efficient wind and solar energy production
estimation for a given set of weather conditions. The proposed model uses temperature, humidity, air
pressure, solar radiation, optimum angle, and target values of known wind speeds, solar radiation,
and optimum angle. A normalization function to narrow the error distribution and an iterative
method with the Levenberg–Marquardt training function is used to reduce error. The experimental
results show the effectiveness of the proposed approach against the existing wind, solar, or wind–solar
estimation methods. It is envisaged that such an intelligent yet simplified method for predicting wind
speed, solar radiation, and optimum angle, and designing wind–solar hybrid systems can improve
the accuracy and efficiency of renewable energy generation.

Keywords: artificial neural network; energy prediction; wind–solar prediction; wind-speed prediction

1. Introduction

With the increase in the need for energy due to industrial development and high
living standards, the whole world is looking for cheap and reliable energy resources.
In previous years, renewable energy attracted extraordinary popularity because of the
decrease in material costs, technological advancements, environment-friendliness quality,
and favorable government policies [1]. Today, more efficient solar panels are still costly
and it is more effective to use a hybrid system consisting of wind turbines and solar panels.
Such hybrid systems consist of photovoltaic (PV) modules, a controller, a battery, and an
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inverter for AC output. Limited energy resources from coal and hydro are pushing the
world to search for new energy resources that can overcome this situation. The increasing
prices of fossil fuels have accelerated the trend of renewable energy. In addition, traditional
fossil fuels have a significant impact on climate change and cause global warming [2]. On
the other hand, wind and solar energies are available everywhere with various strengths
and the whole world is shifting towards renewable resources. The capacity factor of wind
turbines depends largely on two factors: the size of rotors and blades to cover a wider area
and their placement at a higher altitude for attaining steady wind blows [3]. These factors,
coupled with higher costs, reduce the usability of bigger sized turbines and encourage the
use of more than one smaller turbine to achieve a similar capacity factor. Small turbines
minimize costs and improve efficiency, as they may work at lower altitudes and with lesser
wind speeds to start production.

Substantial work has been carried out on the use of solar energy to heat water in solar
guizers and distill water. Conventional solar-operated systems still use only heat from
the sun to perform actions. Solar-still systems are one of the most popular systems that
use heat from the sun for water distillation. Conventional stills are of many types, such as
the single effect, multi-effect, double slope, and wick [4]. The process used for this type
of distillation consists of evaporating polluted water and then condensing its vapors in
separate basins [5]. The efficiency level of solar-still systems has reached about 50% but a
loss of 14% is very common due to bad insulation or degradation with time. In addition,
increasing wind speeds decrease the efficiency by 2%. These days, only 5–10% of power is
produced from wind and solar [6].

Energy from wind has been used since ancient times, where the harvested energy was
utilized for different purposes such as crushing grains and pumping water. Nowadays
this is again recharged, as it provides contamination-free energy. The framework used for
the conversion of wind energy into mechanical power to run a generator is called a wind
turbine. The model consists of multiple horizontal-axis turbines with solar panels instead
of a single turbine with greater capacity because the rated wind speed for smaller turbines
is less compared to larger turbines. In comparison with large wind turbines, multiple
smaller wind turbines show better performance. This was concluded when two different
types of wind–solar hybrid systems were set up with the same output power in Tianjin [7].
The power output of both systems was compared by measuring and simulating results in
TRNSYS software (Version 18). The results showed that a wide range of wind speeds in
multi-turbine wind–solar hybrid systems produce more power than the reference. Similarly,
the power generated from the reference system increased by 18.6%, 53.7%, and 31% when
used in other cities such as Shenyang, Guangzhou, and Shanghai, respectively [7]. Multiple
turbines mean more than one turbine connected on the same or multiple poles but connected
with the same system to provide power collectively. Furthermore, if one talks about a
hybrid system, then this means an enhancement in reliability as compared to a standalone
wind or solar system and this feature increases more in the case of multiple turbines. If one
turbine fails because of any damage then the system is not significantly affected [8,9].

According to the International Renewable Energy Agency (IRENA), global renewable
power capacity was 3064 GW by the end of 2021. With a 1230 GW capacity, hydropower
contributed the greatest share of the world’s total. With a combined 88% of all net re-
newable additions in 2021, solar and wind energy remained the leaders in renewable
capacity increases [10]. Thus, it is apparent from the report by IRENA and several other
researchers [11,12] that wind–solar hybrid power generation is a growing trend in the
energy sector. This technology combines two renewable energy sources, wind and solar
power, to generate electricity. However, with the help of machine learning, the performance
of this hybrid system can be optimized by predicting weather conditions and adjusting
their output, accordingly [13]. Today, methodologies for learning-based modeling are used
to create exact forecast models for renewable energy sources. Techniques using computa-
tional intelligence (CI) have been acknowledged as efficient ways to create and improve
renewable energy generation. The energy complexity is dependent on the quantity of
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the data and parameters, both of which need to be carefully examined. Many studies
have evaluated offshore wind energy but the research on wind-energy classification and
wind-power-plant location is still a challenge, as larger wind turbines require installation
sites with high wind speeds and these turbines are harmful to birds as well. The idea of
multiple turbines presented in this study is the solution to this problem.

More machine-learning and artificial-intelligence techniques have been applied in
forecasting as computer processing speeds have increased. Machine-learning algorithms
typically produce better outcomes than statistical and physical forecasting methods [14].
However, the training process for machine learning requires a lot of data, and it is simple to
overfit a model with a lot of variation in the training data [15]. It is possible to anticipate the
production of wind and solar energy independently, and then one can simply add up the
regional power. As solar and wind energy complement one another, when wind turbines
and solar power plants are erected in a power plant or region, the combined use of solar
and wind data can increase forecast accuracy [16,17].

This paper is divided into four sections. Related work is presented in Section 2 while
the proposed method is described in Section 3. Wind–solar hybrid modeling is given in
Section 4. Finally, the conclusion is presented in Section 5.

2. Literature Review

Wind turbines convert the kinetic energy in the wind into mechanical power; the
mechanical power can be used for specific tasks such as grinding grain or pumping water or
a generator can convert this mechanical power into electricity to power homes, businesses,
schools, and the like. Wind turbines come in many different sizes, from very large utility-
scale turbines which generate electricity for large numbers of people to small turbines
which are used to power a single home or business. However, it has been found that since
the start of solar-hybrid power generation, the need for energy optimization has been
apparent from the losses discussed in the research by [18]. It is impossible to predict the
output of a renewable energy plant with perfect accuracy; however, a reasonable accuracy
is achievable [19]. The wind and sun might be more intense in some places than others. The
grid receives frequency management and voltage assistance from diesel power generators.
It is possible for intermittent renewable energy generators to do this, but it will cost more
money. Only the sun or the wind may be used as variable sources of renewable energy.
Research conducted by [19] assesses several deep-learning (DL) and machine-learning
(ML) algorithms used in the production of solar and wind energy. A new taxonomy is also
used to investigate and assess the performance of the related approaches. Additionally, it
provides thorough, cutting-edge approaches for assessing the effectiveness of the provided
procedures. In a different article [20], a photovoltaic/wind turbine/batteries system is
designed and optimised for the Bejaia (Algeria) location, a Mediterranean region with a
wealth of renewable energy sources. The study employs Homer Pro software to identify the
ideal design for the hybrid system under investigation and uses solar irradiation and wind
speed as inputs. The recommended optimisation method is fuzzy logic control (FLC)-based.
The main points and objectives of the study may be summed up as follows: a significant
rise in renewable energy, resulting in reduced strain on the batteries in PV/wind systems.
A novel technique using an artificial neural network is suggested in another paper [21] for
a hybrid energy system. To improve power quality and reduce total harmonic distortion
(THD), a controller for an artificial neural network is deployed. Simulink is employed
for the proposed system, and its performance is examined under various operational
conditions. The authors of [22] describe a power management method based on an artificial
deep neural network (DNN) for a photovoltaic (PV) system with Li-ion batteries and a
supercapacitor (SC) hybrid energy storage system (HESS). In this study, which is based on
an artificial neural network, the energy management controllers for a photovoltaic hybrid
power system with such a power supply are described. Using a traditional PV system, the
effectiveness of the proposed power management approach is shown and confirmed for
extending the life of Li-ion batteries. In order to meet the energy requirements of residential
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users and improve the performance of electrical networks, ref. [23] develops an enhanced
control system using artificial neural network (ANN) ideas. The Levenberg–Marquardt
algorithm provides connectivity in this method’s multi-level feedback network (MLFN),
which allows data and calculations to flow from input to output in a predetermined
manner. In a house that was installed in Bouismail, Algeria, during a summer week with
suitable weather, the effectiveness of the suggested neural network based on a home-energy
management system (NNHEMS) is demonstrated. Results show that by reducing energy
usage by 24.6%, the proposed NNHEMS could manage energy in this solar home optimally.

Data-mining techniques are becoming increasingly popular in the wind energy sector,
like many others. Utilizing predictive data-mining strategies can lead to cost savings
in contemporary wind turbines [24]. In [25], a data-mining approach is applied in the
operation and maintenance of wind turbines through the use of various machine-learning
algorithms for condition monitoring. The research discovers correlations between signals
recorded at different parts of the wind turbine, even with a limited sample size. The concept
is demonstrated through a case study using SCADA data from an offshore wind farm.
Another recent paper [24] finds that incorporating environmental factors such as relative
humidity, ambient temperature, and wind speed into data-mining analysis helps predict
the potential failures in key components of wind turbines, such as the gearbox, generator,
and pitch and yaw system. The authors use both supervised and unsupervised data mining
techniques to process wind turbine data and recommended timely component replacements
to increase wind-turbine availability. The authors of [26] conduct an analysis of icing
measurements from a cold-weather site. An interesting approach presented in [27] utilizes
the autoregressive integrated moving average (ARIMA) model to forecast solar irradiance,
taking into account the logarithmic value of the observed solar irradiance. Another method
is [28], which compares the accuracy of the ARIMA model and a neural network model
for short-term wind-speed forecasting and finds that the ARIMA model performs better.
The researchers in [29] employ the auto-regressive moving average (ARMA) and wavelet
transform to predict wind speed as part of planning a wind power system. On the other
hand, the authors of [30] propose a time-series regression with the Box–Jenkins ARMA
model to predict solar radiation.

Deep-learning methods have become increasingly popular recently and have been
used widely to solve classification and regression problems. In [31], it is shown that
deep-learning methods have an advantage compared to shallow methods in extracting
the underlying natural structures and abstract features of data, making them a promising
choice for wind-speed forecasting. In recent times, deep-learning methods such as the deep
belief network (DBN) and long short-term memory (LSTM) have been used to establish
wind-speed prediction models. The approach adopted in [32] proposes a DBN-based
wind-speed prediction model, which is found to be accurate and stable through case
studies. The authors of [33] develop an efficient wind-speed model using the DBN and
transfer learning. An interesting method presented in [34] introduces an LSTM-based wind-
speed forecasting model which demonstrates satisfactory prediction performance. The
authors of [35] investigate the impact of certain features on the accuracy of wind-speed and
wind-power prediction. The data collected from wind turbines is mapped to a grid space
referred to as a ’scene’. The scene time series is a multi-channel image which represents
the spatial and temporal characteristics of wind in a particular area and time. Based on
these images, the researchers develop a prediction model using a convolutional neural
network (CNN) to extract features. The results show that the proposed model outperforms
existing methods and that wind speed is easier to predict than wind power, as the latter
is dependent on the specific characteristics of the wind turbine. The approach presented
in [36] also uses two-dimensional data, which represent multiple temporal wind speeds
at multiple locations, as inputs for their day-ahead wind-speed forecasting model. The
structure and hyperparameters of the CNN model are optimized using the Taguchi method,
resulting in a highly accurate model.
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From the literature, and feasibility reports [37–40], it is apparent that there are still
substantial obstacles in the way of mainstream adoption of renewable energy. Some of these
have to do with solar and wind energy, while others are tied to the transportation, laws, and
market restrictions of the day. The cost of creating and installing facilities such as solar or
wind farms is now the biggest and best-known obstacle to the adoption of renewable energy.
To properly utilize renewable sources, a sizable amount of extra transmission infrastructure
is required. Despite a booming industry, an overstocking problem was caused by the
significant rise in panel output. As the number of wind–solar hybrid energy-generating
systems rises, it will be essential to find more appropriate, industry-specific methodologies
to improve accuracy and give the world various financial and environmental benefits. These
systems have the potential to reduce losses in energy production and increase efficiency.
Since there are still some losses associated with these systems that need to be addressed.
In this paper, we discuss various losses in wind–solar hybrid energy-generation systems
and how machine learning can be used to reduce these losses, and how systems can be
optimized for better efficiency.

Most academics agree that incorporating datasets increases prediction performance [41];
nonetheless, the relationship between such elements and prediction output varies by area.
To conclude, further comparison experiments must be conducted to illustrate the influence
of integrating certain meteorological information on the model’s performance. It is not
possible to create a forecasting model for every area. In this paper, the region of Thatta, a
city in Pakistan’s Sindh province which is well-known for its capacity to produce renewable
energy, primarily from wind and solar sources, is studied for real-time hybrid wind–solar
resource assessment and power estimation. Thatta has a mean wind speed of around 6.5 m
per second at a height of 100 m above sea level, according to the Global Wind Atlas. This
indicates Thatta’s potential for producing wind energy is tremendous [42]. Thatta has
tremendous potential for solar-energy generation in addition to wind energy [43]. With
a daily average solar radiation of about 5.5 kWh/m2, the city has a high solar irradiance.
This implies that Thatta has great potential for solar-energy production, especially when
solar panels are installed. More thorough investigations and analysis are needed in order to
pinpoint Thatta’s precise wind and solar energy-generating potential. The precise locations
and features of possible wind and solar energy projects, as well as other environmental
and regulatory considerations that may have an influence on energy output, would all be
taken into account in these analyses [44]. This is where this research using artificial neural
networks plays a role in predicting the wind and solar power-generation capacity of Thatta.

The desire to cut greenhouse-gas emissions and move towards a more sustainable
energy future has made it more crucial than ever to integrate renewable energy sources,
including wind and solar, into the electrical grid. Renewable energy sources can be unpre-
dictable and variable, which makes it difficult to integrate them into the system. To run
the system effectively and use renewable energy sources to their full potential, accurate
real-time assessments of the available wind and solar resources and power estimation
are essential. Real-time hybrid wind–solar resource assessment and power estimation
have been developed using an artificial neural network (ANN)-based method to solve this
problem. This method trains an ANN to predict the availability of wind and solar resources
in real time and estimate their power output using past data on weather and energy pro-
duction. This method uses ANNs to identify intricate correlations between weather and
energy production that might not be immediately obvious when using conventional statis-
tical methods. This method’s real-time hybrid wind–solar resource evaluation and power
estimation can help with efficient grid management and increased use of renewable energy
sources, paving the way for a more efficient and sustainable energy future. The primary
benefit of ANN is its capacity to analyze and handle non-linearity in data pertaining to
wind power generation.
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3. Proposed Method

The methodology for an ANN-based wind–solar hybrid system can be divided into
the following steps.

• Data collection: The first step is to gather relevant data on wind and solar energy
production. This data can be obtained from various sources, including meteorological
data, weather forecasts, and actual wind and solar power-production data from
existing wind and solar farms. The data used for our model was collected for first
200 days of 2022.

• Data preprocessing: The collected data must be preprocessed to remove any outliers,
inconsistencies, and missing values. This step is crucial for ensuring the accuracy of
any machine-learning model. The training dataset was normalized to fall between
[0] and [1].

• Feature selection: The next step is to select the relevant features that are most indica-
tive of wind and solar energy production. This can be performed by using various
feature-selection techniques, such as correlation analysis and mutual information.
Weibull distribution was utilized in our model to assess product dependability, model
failure rates, and life data.

• Model selection: Based on the selected features, a suitable machine-learning model
must be chosen. This can be a regression model, decision tree, random forest, or neural
network, among others. The choice of the model depends on the complexity of the
data, the number of features, and the desired prediction accuracy. The model chosen
in this study was artificial neural network (ANN) due to its capacity to analyze and
handle non-linearity in data pertaining to wind–solar power generation.

• Model training: The selected model must be trained on the preprocessed data using
an appropriate training algorithm, such as gradient descent or backpropagation. The
model must be trained until the prediction accuracy is satisfactory. The proposed
model utilizes a feedforward back propagation neural network (FFBPN-net) [45].
The primary reason for the selection of a feed-forward back propagation network
(FFBPN) is to discover and map the connections between inputs and outputs. In order
to attain the least amount of error, a system’s weight values and threshold values
are also adjusted using the FFBPN learning rule. The model was trained on FFBPN
Equation (1) until the required criteria were met.

xk =
n

∑
i

wkixi (1)

where wki is the weight link value between the neuron and the variable, xi is the
variable’s initial value, and xk is its updated value. The logsig activation function in
Equation (2) was used between the input layer and the hidden layer.

f (x) =
1

1 + e−x (2)

The linear function was used as an activation function between the hidden and output
layer, as it just returns the value without making any changes to the weighted sum of
the input.

• Model validation: The trained model must be validated using a validation dataset to
ensure that the model is not overfitting the training data. This step is crucial to ensure
that the model can generalize well to the unseen data. In our model, the training set
and testing set were split at a ratio of 0.7 to 0.3.

• Model deployment: Once the model has been trained and validated, it can be de-
ployed in the wind–solar hybrid system. The model can be used to predict wind and
solar energy production for a given set of weather conditions and to optimize the
operation of the hybrid system.
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• Model monitoring and maintenance: The performance of the deployed model must
be monitored regularly, and any necessary updates or improvements must be made to
ensure that the model continues to perform well over time. Mean absolute percentage
error (MAPE) is the most widely used performance measure for energy-generation
prediction models, which is also used in this study.

A suitable topology and architecture of AN-net are employed for the prediction of
wind speed shown in Figure 1, which can be used for the estimation of power from multiple
turbines, as required in the design of the wind–solar hybrid system. The purpose was to
improve the accuracy level in design and reduce the maintenance cost as well as losses. AN-
nets are used in many different fields such as signal processing [46], feature extraction [47]
and optimization [48].

Figure 1. Architecture of the AN-Net used.

As shown in Figure 1, the structure proposed in this study is a fully connected feed-
forward back propagation neural network (FFBPN-net). AN-nets consist of three types of
layers named input layer, hidden layers, and output layer. The input layer is responsible
for collecting input data from the user while the output layer provides processed results.
The number of input and output neurons depends on the number of input parameters
and target values in each provided example, respectively. The computational process
takes place in hidden layers because of the weights which are updated; this process is
called training. Furthermore, training can be supervised (training with inputs and outputs
provided) and unsupervised type (training with inputs only). The data is split for training
and test purposes in different ratios; however, a 0.7 to 0.3 ratio is most common.

3.1. Levenberg–Marquardt vs. Gauss Newton

The Levenberg–Marquardt algorithm (D. Marquardt, 1963) was developed by Kenneth
Levenberg and Donald Marquart and converges solutions for non-linear problems. This
algorithm is popular for fast convergence of small- and medium-sized problems and is
more robust than Gauss–Newton. Handling multiple free parameters which are not even
known properly is also a plus point of the Levenberg–Marquardt training algorithm. Even
if initial weights are called by a random function, it can find the optimal solution easily.
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3.2. Data Used for Training and Validation

Data for training and validation was collected from Thatta in Pakistan, which is known
for being a suitable location for wind power plants due to high wind speeds all through the
year [49]. However, it also has a high potential for solar power plants; a few have already
been installed in Gharo, Thatta. Thus, the dataset was chosen carefully for locations that
provide an ideal situation for wind–solar hybrid power plants.

3.2.1. Temperature

The degree of hotness and coldness of air is known as air temperature. It is directly
proportional to the energy held in the air. In all regions, air temperature increases during
the day and decreases at night. This temperature has a great effect on the climate of the
region and that is the reason it is used by scientists to track climate change. Air temperature
has a significant effect on creating high- or low-pressure regions at any location, which
affects the airspeed. Wind speed and direction are somehow affected by Coriolis force and
surface friction but are neglected in this study as this effect is not dominant in the case of
wind speed and has a greater effect on wind direction. In the northern hemisphere, Coriolis
force causes wind deflection clockwise around high-pressure regions and anti-clockwise
in the case of low-pressure regions. Similarly, the opposite case occurs in the case of the
southern hemisphere.

3.2.2. Air Pressure

Air pressure is the weight of the air column at any point. At high elevations, there is
less air above the surface than at sea level, which means there is less air pressure at high
altitudes. Changes in pressure indicate the weather conditions; a low-pressure system is
associated with being cloudy and wetter while a high-pressure system is associated with
clear and dry conditions.

3.2.3. Relative Humidity

All types of air contain some water vapors and the amount of water vapors changes
from place to place and time to time during the year due to evaporation from water
resources and the respiration of plants. Relative humidity decreases when water vapors
condense to form small drops of liquid water, clouds, and water droplets. Evaporation and
condensation becoming the same is known as saturation at that temperature. An increase
in humidity means the number of suspended particles in the air is increased, which has
the positive effect of driving the wind turbine; however, at the same time, heavier air
initially requires a higher pressure gradient to be moved. Furthermore, dry air density
can be calculated by the ideal gas law; however, in reality, air contains some moisture at
every temperature meaning the humid-air partial pressure of water vapors is required to
be added to the ideal gas law.

ρdryair =
P

R · T
(3)

where P is air pressure, ρdryair shows air density, T is absolute temperature and R is the
general gas constant.

The value of the general gas constant for dry air is 287.05 J/(kg·K). The dry-air density
and relative humidity of the first six months of 2022 are shown in Figures 2 and 3, respectively.
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Figure 2. Dry-air density trends.

Figure 3. Relative-humidity trends.

3.3. Weibull Distribution

Different types of distributions are used for different purposes. More commonly
used distributions include the normal distribution, Rayleigh’s distribution, Bernoulli’s
distribution, Poisson distribution, and Weibull distribution. The Weibull curve is very
popular in prediction but there are certain limitations. The first problem of the Weibull
curve is its limitation concerning the data type. For the Weibull curve to be used, it is
recommended to check whether the data fit the Weibull distribution or not. A dataset of
50 random data points with 1.2 and 1.5 as values of shape and scale parameters, respectively,
is generated. The straight-line graph confirms that the data fit the Weibull distribution as
shown in Figure 4.
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Figure 4. Weibull probability plot.

Once the data type is confirmed, the probability distribution function can be written as

f (v) =
K
C
(

V
C
)K−1exp[−(

V
C
)K] (4)

where K is the size parameter, C is shape parameter, and V is wind speed.
Weibull probability distribution and cumulative distribution functions can be used

only if the values of shape and size parameters are known. Several different methods
can be used to find these parameters such as the maximum likelihood method, empirical
method, modified maximum likelihood method, and energy pattern factor method, etc.
Maximum frequent wind speed can be found by

Vmp = c(
k − 1

k
)1/k (5)

While maximum energetic wind speed is

VmaxE = c(
k + 2

k
)1/k (6)

3.4. Wind-Speed Prediction Using ANN

A fully connected feed-forward back-propagation neural network with a single hidden
layer and a suitable number of neurons at the input, hidden, and output layers was used.
The number of neurons in the hidden layer was changed from 25 to 50 and 500 to see
the effect on the results. The learn gradient descent learning function with momentum
weight (GDM) was used as an adaptation function. The mean square error (MSE) was
used as a performance function while the transfer function used for the hidden layer was
Logarithmic-Sigmoid (Logsig). Figure 5 shows the predicted wind speed (m/s) from above
mentioned ANN architecture.
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(a)

(b)
Figure 5. (a) Comparison of predicted wind speeds (at 12-h intervals) using different hidden neurons,
and (b) predicted wind speeds (daily basis) using optimized hidden neurons and layers.

As is clear from Figure 5a, increasing the number of neurons does not show any
improvement in efficiency and it is advised to optimize the number of neurons, hidden
layers, and the number of epochs according to data type. In the above case, results are
improved while increasing neurons from 25 to 50. A further increase to 100 neurons does
not improve results. Similarly, the results with 500 neurons are much higher than the actual.
Figure 5b shows daily prediction using optimized hidden neurons, layers, and activation
functions. Here, MAPE is used, which is a metric for assessing accuracy by calculating
the sum of the absolute forecast errors divided by the actual values for each period. It
measures errors based on the relative percentage of the forecasted values. A lower MAPE
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value indicates better predictive accuracy, with zero being the ideal target. Table 1 shows
the comparison between different available research articles.

Table 1. Performance comparison.

Ref. MAPE Inputs Model Wind/Solar

[50] 1.57%
Solar energy, grid availability,
equipment availability, solar
irradiation

Decision tree Solar only

[51] 6.68% Wind speed

Twice decomposition, phase
space reconstruction (PSR), and
improved multiverse
optimizer-extreme learning
machine (IMVO-ELM)

Wind only

[52] 3.1439 Wind speed Artificial neural network
(ANN)–Markov chain (MC) Wind only

[53] 1.56%
Wind speed, relative humidity,
generation hours, temperature,
maintenance hours

2-hidden layers ANN Wind only

[54] 9.8%
Solar irradiation, clearness index,
latitude, longitude, day number,
sunshine ratio

1-hidden layer ANN Solar only

[55] 2.19% Solar radiation and wind speed Random forest, Catboost Wind–solar

[56] 4.0%
Solar radiation, wind speed,
ambient temperature and relative
humidity

Higher order multivariate
Markov chain Wind–solar

Proposed model 2.08%
Wind speed, absolute temperature,
relative humidity, air pressure,
solar irradiance, optimal angle

Learn GDM, Weibull
distribution, 1-hidden Layer
ANN

Wind–solar

Clearly, from Table 1, studies achieve relatively high levels of MAPE for wind-speed
prediction and solar prediction; however, our model achieved a lower MAPE compared
to other wind–solar hybrid models. The inputs used in the studies are similar, with wind
speed, direction, temperature, and pressure being common variables. Some studies also
include relative humidity or solar radiation as additional inputs. More input variables does
not guarantee an optimal solution; thus, to calculate the optimum function in ANNs, it is
essential to make a careful choice of input variables. In addition, the use of feature selection
is necessary in the case of wind–solar energy generation prediction. The results obtained
through the proposed model achieve a low MAPE of 2.08%, because of the use of Weibull
distribution on data, learn GDM as adaptation function, MSE as performance function,
and Tansig transfer function. The most important parameter for achieving high accuracy is
the use of accurate data and training with the optimized model for such data, and that is
exactly what increases the accuracy.

4. Wind–Solar Hybrid System Modeling

Wind–solar hybrid systems combine solar photovoltaic cells and wind turbines to
produce power from both solar and wind energy. The following are some features of
such systems:

• An uninterrupted power supply is ensured by the combination of two or more energy-
generating technologies and the integration of energy storage technology.

• Enhanced dependability: installing two or more energy systems improves the sys-
tem’s dependability.

• Reduced carbon footprint by using fewer fossil fuels; hybrid systems have a smaller
carbon impact.
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Wind turbines, solar photovoltaic cells, controllers, batteries, inverters, AC and DC
loads, etc., make up the bulk of a wind and solar hybrid system, as shown in Figure 6. The
novelty of the proposed model lies in the prediction of wind speeds for increased power
production after installation or location selection before installation. The optimum angle
of inclination helps in maximizing the power generated through photovoltaic panels by
moving the panels towards the sun throughout the power generation. The model provides
lower MAPE, as shown in Table 1, thus allowing for accurate predictions resulting in a
greater amount of power generation.

Figure 6. Wind–solar hybrid system overview.

4.1. Solar-Panel-Array Modeling

Solar panels interconnected to produce power is called a solar array. A software
named hybrid optimization of multiple energy resources (HOMER) is an optimization tool
which is used to design micropower systems. It basically optimizes the capacity of items
using techno-economic analysis. In this software, a wide range of optimization can be
performed in fields of solar energy systems, wind energy systems, hydro energy systems,
and conventional generator systems, which can be modeled and optimized. The output of
the photovoltaic cell in HOMER can be calculated using Equation (7).

Pout = Pr f (
GT

GT , ST
)[1 + αp(TC − TC,ST)] (7)

where Pout is the output of array, Pr is the rated capability, f is the degradation factor as
a percentage, GT is solar radiation incident to the array in W/m2, GT, ST shows solar
radiation under standard conditions, αp is the temperature coefficient in %◦C, TC is the
panel temperature, and TC,ST indicates the panel temperature under standard conditions.

GT,ST is normally taken as 1 W/m2. The radiations in the first five months of the year
2022 are given in Figure 7.
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Figure 7. Solar radiations in January–May 2022.

The efficiency of solar panels decreases with temperature and if no solar tracking
system is used then the solar panels are held to a suitable inclination which is fixed. In this
study, the suitable inclination angles for every month are discussed in Table 2. In addition,
if there are alternating load types then converters can be used which convert AC into DC
by a process called rectification.

4.2. Solar Radiance

To find the optimal angle of inclination, the solar energy received on 1 m2 panel at
different instances of the year at different angles (between 0◦–90◦) is derived with the help
of simple integral calculations. The value of the optimum is given in Table 2. Using these
angles, one can achieve maximum output from solar panels.

Table 2. Optimum angle and solar irradiance for each month.

Month θ Monthly kW/m2

January 57 209.6
February 48 198
March 43 229.9
April 18 232
May 6 250.8
June 0 248
July 5 251
August 13 238
September 28 218.6
October 43 216
November 54 200
December 59 202

Yearly radiation kW/m2 2694
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4.3. Power Produced by Wind Turbines

To calculate wind speed, there are three steps. The first step is to find the wind speed
approaching the turbine using a logarithmic law which is used to find the air speed at a hub
height. Then, the generated output of the turbine is calculated through a comparison of the
characteristic curve provided by the manufacturer, measured wind speed, and standard
air density at a height equal to the hub height. Finally, the final output is adjusted for the
actual air density. Wind speed at the corresponding hub height is calculated as:

Vh = V(
Hh
H

)α (8)

where Vh is the wind speed at the hub height in m, V is the wind speed in m/s, f is the
degradation factor as a percentage, Hh is the hub height, H is the height of the wind-speed
measurement point and α is the logarithmic law exponent.

The actual output of the wind turbine is calculated by adjusting actual air density
conditions using

Pact = (
ρ

ρST
)PST (9)

In the above Equation, ρ is the air density in kg/m3, ρST is the standard air density
under standard atmospheric conditions, PST is the power produced by a wind turbine in
kW under the standard conditions used by the turbine power curve, which is provided by
manufacturers in Figure 8, below.

Figure 8. Power vs wind speed curve for different rated wind turbines.

As mentioned previously, the ρST is the density of air in kg/m3, its value is 1.225 kg/m3

at standard conditions; A is the swept area of the wind-turbine blades in m2, which can be
calculated by rotor diameter; and v is the upstream air speed in m/s. It is clear from the
equation that wind power is cubic proportional to wind speed. The wind density measured
at various locations is less diverse in nature as compared to wind speed. The wind-power
capacity is proportional to the wind speed throughout the year [57]. Figure 8 provides
a useful visualization of the relationship between the wind speed and power output of
different turbines with a rated capacity of 10 kW, 50 kW, and 200 kW. The data required
for this comparison was provided by [58]. The 11 m/s wind speed is required for rated
outputs 10, 50, and 200 kW wind turbines and produces almost little to no power during
0–4 m/s wind speeds. Turbines are bound and are not allowed to produce power higher
than that for which they are designed to avoid failures and this is achieved by adjusting
blade angles. From this, it is apparent that the installation of wind turbines should only be
carried out at locations with a minimum wind speed of 4 m/s, and a maximum of nearly
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21 m/s, while the average should be around 11 m/s. However, these values can change
depending on the design of the wind turbines. Furthermore, safety mechanisms in the case
of high wind speed are necessary as well. Our model can help in the prediction of such
high wind speeds.

5. Conclusions

Wind–solar hybrid systems are the most suitable type of energy extraction system from
renewable energy resources and can address the energy shortage, which occurred due to
development in the modern world. Hybrid systems are not only environmentally friendly
but are more reliable than any other standalone system, as evident from the literature
review. In this study, a fully connected feed-forward back-propagation neural network
with a single hidden layer and a suitable number of neurons at the input, hidden, and
output layers were used to predict the wind speed and optimum angle for PV panels with
an MAPE of 2.08%. The number of neurons in the hidden layer was set to 50 after seeing
no improvement after further increases. The learn gradient descent learning function with
momentum weight (GDM) was used as an adaptation function and logsig as an activation
function. However, it is to be noted that the accuracy is dependent on the reliability of
the training data that is used to train the Levenberg–Marquardt (LM) training function.
A trained LM function converges better and shows better results than Gauss–Newton;
however, still, flaws in data and network design can compromise the accuracy of results. By
predicting the wind speeds, optimal power generation through wind turbines is achieved
along with protection from high wind speeds. In addition, optimum angle prediction
allows for optimal power generation through PV panels.
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