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Abstract: Disaster management is a critical area that requires efficient methods and techniques to
address various challenges. This comprehensive assessment offers an in-depth overview of disaster
management systems, methods, obstacles, and potential future paths. Specifically, it focuses on flood
control, a significant and recurrent category of natural disasters. The analysis begins by exploring
various types of natural catastrophes, including earthquakes, wildfires, and floods. It then delves
into the different domains that collectively contribute to effective flood management. These domains
encompass cutting-edge technologies such as big data analysis and cloud computing, providing
scalable and reliable infrastructure for data storage, processing, and analysis. The study investigates
the potential of the Internet of Things and sensor networks to gather real-time data from flood-prone
areas, enhancing situational awareness and enabling prompt actions. Model-driven engineering
is examined for its utility in developing and modeling flood scenarios, aiding in preparation and
response planning. This study includes the Google Earth engine (GEE) and examines previous studies
involving GEE. Moreover, we discuss remote sensing; remote sensing is undoubtedly a valuable
tool for disaster management, and offers geographical data in various situations. We explore the
application of Geographical Information System (GIS) and Spatial Data Management for visualizing
and analyzing spatial data and facilitating informed decision-making and resource allocation during
floods. In the final section, the focus shifts to the utilization of machine learning and data analytics in
flood management. These methodologies offer predictive models and data-driven insights, enhancing
early warning systems, risk assessment, and mitigation strategies. Through this in-depth analysis,
the significance of incorporating these spheres into flood control procedures is highlighted, with the
aim of improving disaster management techniques and enhancing resilience in flood-prone regions.
The paper addresses existing challenges and provides future research directions, ultimately striving
for a clearer and more coherent representation of disaster management techniques.

Keywords: disaster management; natural disasters; floods; wildfire; earthquake; ecosystem

1. Introduction

Natural catastrophes such as earthquakes, tsunamis, floods, forest fires, plane crashes,
and viruses are becoming more common, posing major challenges not just for the public
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but for government organizations in charge of disaster management and preparedness.
Recent failures to respond to natural disasters, such as the H1N1 pandemic (i.e., the
management of the swine flu) which arrived on Australian shores through the cruise
ship industry in 2009 [1] and the earthquake in Haiti have sparked concern. In Victoria,
Australia, bushfires have been a recurring challenge, often exacerbated by a lack of timely
availability of skilled resources and a failure to harness the potential for skill reuse. Such
shortcomings in disaster management can lead to catastrophic outcomes [2]. Frequently,
the potential for skill reuse is neglected with disastrous consequences. Therefore, utilizing
the disaster management metamodel, in this work we suggest a method for integrating
disaster management information to develop a flood and disaster support system that
incorporates several disaster management (DM) operations tailored to a particular disaster.
This strategy is inspired by method engineering, a knowledge management practice in
software engineering.

DM manages disaster risks and effects. DM covers mitigation, readiness, response,
and recovery [3]. DM involves organizing, directing, and using counter-disaster re-
sources [4]. This domain’s practitioners attempt to decrease or prevent natural disasters,
assist disaster victims, and recover quickly. Operationalizing this domain involves many
difficult activities. Risk evaluations, readiness, emergency responses, rescue, relief distribu-
tion, and reconstruction are all included. Data modeling and communication are difficult.
Instead of attempting a comprehensive model, this work suggests a metamodel that can
link various imperfect models that try to systematically convey DM knowledge. This
approach allows us to set up a hypothesis of general notions that affect how we perceive
reality [5]. Reality ought to be influenced by models [6]. They must be true or faithful
representations to ensure that the model can be used to answer questions about the world
or predictably change the world. A metamodel that explains what can be articulated in
legitimate knowledge domain models is the result of metamodeling. The metamodel pro-
vides information about models. In this case, a model means the DM solution model, which
shows how DM activities and their parts (such as people, resources, and plans) should
be coordinated for a given disaster. Failures typically emerge from the accumulation of a
complicated chain of events, and are frequently accompanied by changes in environmental
factors [7].

A wildfire is an uncontrolled event that occurs in an area of combustible vegetation
and is characterized based on the fuel consumed, such as a forest or grass fire, often known
as a bush fire in different regions of the world. Such flora offer a carbon-rich fuel source
which, when paired with seasonally dry conditions, can have severe effects on ecosystems
and the human population in an area [8]. Lightning strikes, volcanic activity, arson, and the
unintended consequences of agricultural land removal can all contribute to the occurrence
of wildfires [9], which have existed for a long time and can be caused by both natural and
artificial factors. For instance, it was determined that lightning was mostly responsible for
the summertime fires which plagued the southeastern portions of the Australian continent
in 2019–2020 [10]. About 21,000 hectares of agricultural land went up in flames due to
additional fires in Australia during the same time period, and investigators have concluded
that arson was likely to blame [11]. This conclusion is based on how much these fires were
talked about in the news and on the idea that the arsonists were able to keep their secret
because there were other bigger fires in the area [12].

Droughts, heat waves, seasonal weather, and El Nino’s warming phase can increase
wildfire risk. Furthermore, it is predicted that the effects of climate change could result
in fire seasons that start sooner, terminate later, and cause more extreme fire weather
conditions [13]. Fast-moving and difficult to control flames that result in widespread fire
damage and health problems will undoubtedly be brought on by climate change [14].
Particulate matter (PM), polycyclic aromatic hydrocarbons (PAH), ozone, carbon monoxide,
nitrogen dioxide, and volatile organic compounds are among the air contaminants that
are typically present in wildfire smoke, and can all be harmful to human health [15].
Ophthalmic and psychological issues can arise, as can serious burns needing treatment in
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specialized burn centers, which frequently result in multiple organ failure as a complication
of complex trauma. Respiratory and cardiovascular ailments are the primary health effects
of air pollution, though they can cause ocular and psychiatric difficulties as well [16].
In addition to fire, throughout the world earthquakes continue to be the main cause of
death and damage due to disaster [17]. In underdeveloped countries the death toll from
earthquakes can reach shockingly large numbers; for instance, in Haiti 220,000 people lost
their lives, and in Wenchuan 88,289 people died because of an earthquake.

According to historical records, the Sumatran fault and Sumatran subduction are the
two fault zones that can impact Malaysia and Singapore [18]. Sabah, which is in Malaysia,
is currently under threat from a series of earthquakes. The 30 s long 6.0-magnitude quake
that hit Ranau, Sabah, Malaysia on 5 June 2015 was the biggest to strike Malaysia since the
1976 Sabah earthquake.

Because of this tragedy, there was substantial property damage and loss of life. A sim-
ple earthquake detector has proven to be beneficial in notifying individuals when an
occurrence is about to occur. Existing seismic instrumentation and communication tech-
nologies necessitate the development of an automated earthquake early warning system.
This method can alert users ranging from a few seconds to a few tens of seconds before
an earthquake generates severe tremors in the earth [19]. New earthquake detectors have
been used to find earthquakes and record their magnitude, with larger number indicating
more severe earthquakes.

An increasing number of studies have elaborated on the importance and applications
of remote sensing in disaster management [20–23]. A major reason for the adoption of
remote sensing is that it is one of the fastest means of acquiring data for pre-disaster and
post-disaster studies. It is used to provide data for damage assessment in a timely manner
and to assist in evaluation and rehabilitation plans. During the pre-disaster phase, remote
sensing can be applied to identify and develop adequate systems and resources before the
occurrence of a disaster [24]. Adequate systems and resources can ensure that the response
to a disaster is coordinated and efficient and that the recovery time is minimal [25].

Remotely sensed data such as MODIS, ASTER, Landsat, and Radarsat are used to
produce maps of hazard and disaster risks. Digital terrain data derived from GTOPO30,
SRTM DEM, and LiDAR are used for hydrological and flood modeling. For example,
Li et al. [26] used GTOPO30 data to analyze the global impacts of potential inundation
due to predicted sea level rise. Aleem and Aina [27] carried out a similar study on Yanbu
Industrial City, Saudi Arabia using SRTM DEM data. Figure 1 shows the block diagram of
the approach taken in the present research.

In this systematic review, we present a review of three types of disasters. First, we
discuss earthquakes and previous relevant works, including the distribution of existing
works concerning research areas, findings, and the impact of earthquakes on the environ-
ment. This is followed by wildfires, where key aspects, conclusions, validation approaches,
and techniques used for wildfire detection are elaborated. Lastly, existing research on flood
detection and management is discussed; this part covers the use of data analytics, machine
learning, Geographical Information System (GIS), model-driven engineering, Internet of
Things (IoT) networks, big data, and cloud computing for flood detection. In addition, we
analyze the current challenges associated with fire, earthquake, and flood prediction and
management as well as possible future research directions.

The rest of this survey is categorized into five sections. Our research methodology is
explained in Section 2; earthquakes are covered in Section 3; Section 4 discusses works on
wildfires; Section 5 elaborates flood-related works; applications based on remote sensing are
elaborated in Section 6; and current challenges and future research directions are discussed
in Section 7. Finally, Section 8 concludes the survey.
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 Figure 1. Block diagram showing the workflow followed in this review.

2. Research Methodology

To carry out the study process known as a systematic review for the topic of disaster
management systems, we used the methodology shown in Figure 2 for data collection
and analysis.

Figure 2. Methodology adopted for the literature review.
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The primary objective of this scholarly investigation was to conduct a comprehensive
and in-depth examination and analysis of the body of literature concerning disaster man-
agement systems. To attain a robust and impartial review of the subject matter, a methodical
approach was adopted. In this regard, an extensive and thorough literature search was
undertaken using a diverse array of online libraries and academic databases to curate the
findings. Priority was given to studies that significantly contributed to the advancement of
knowledge in the field of disaster management systems. To identify relevant studies, a set
of specific keywords encompassing “disaster management systems”, “Remote Sensing”,
“approaches”, “challenges”, and “future directions”, along with disaster types such as
“floods”, “wildfires”, and “earthquakes”, was employed in the search process.

Third, high-quality databases, including IEEE, Springer, MDPI, and Elsevier were
used for data collection. These databases were chosen for their dependability and wide
coverage of research articles on disaster management systems.

Fourth, we employed inclusion and exclusion criteria to select the most relevant
and important studies. The criteria considered a variety of issues involving disaster
management systems, such as various relevant techniques, obstacles, and potential future
orientations. Our initial search results were examined and refined to focus on the most
relevant research.

Fifth, an extensive examination of the current studies and publications on disaster
management systems was part of our research methodology. Approaches, problems, risk
assessments, emergency response planning, and the resiliency of infrastructure are among
the topics discussed n the literature. Finding knowledge gaps, new trends, and research
possibilities in the field were goals of this literature review.

Sixth, collected data and analysis from relevant data sources, such as research papers,
reports, case studies, and successful implementations of disaster management systems,
were assembled to support the conclusions of the literature review. This included successful
implementations of disaster management systems. The gathered information can provide
insights into the efficacy of various techniques, tactics, and criteria for disaster management.
A comparative analysis was carried out to highlight the benefits and the drawbacks of the
various techniques.

Seventh, the study process took legal and ethical considerations into account to ensure
that all works were properly cited and all authors acknowledged. Another aspect of this
consideration was to ensure that objectivity was maintained throughout the process of
assessing and understanding the material.

To summarize, the methodology used for this study included a literature review, data
collection and analysis, use of evaluation metrics, comparative analysis, and an assessment
of any ethical concerns. A thorough grasp of the state of disaster management systems,
including different approaches, difficulties, and potential future directions, was made
possible by this comprehensive methodology.

3. Earthquake

The data presented in this analysis were obtained from an examination of various
journals, and are categorized into four sections: keyword, output, type of earthquake
detector, and seismic effect. The conclusions of this analysis are examined in depth in order
to ensure the study’s quality and to meet the review paper’s purpose [19].

3.1. Analysis of Earthquake Keywords

Figure 3 shows that there are five common ways to discuss earthquakes: vibration,
seismology, tremor, seismic, and soil mechanism. Unjoh et al. [28] used the term “soil
mechanism” in their study of earthquakes. Several authors, namely, Chakraborty et al. [29],
Akhoondzadeh et al. [30], and Huayong et al. [31], have focused on seismology in their works.
A group of two authors, including B.C. et al. [32] and Priyana et al. [33], have investigated the
concept of vibration in earthquake studies. The term “tremors” was employed by Ahangar-
asr et al. [34] in their investigations. Finally, the term “seismic” was the most used, appearing in
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works by eight authors: Zhu et al. [35], Sevilla et al. [36], Akhoondzadeh et al. [37], Foti et al. [38],
Aczel et al. [39], Zhang et al. [40], Liu et al. [41], and Cakir et al. [42]. Table 1 shows terms used
by the authors.

Figure 3. Earthquake keywords.

Table 1. Usage of earthquake-related terms listed by author.

Earthquake Terms Authors

Soil Mechanism Unjoh et al. [28]

Seismology Akhoondzadeh et al. [30]; Huayong et al. [31], Chakraborty et al. [29]

Vibration B. C. et al. [32]; Priyana et al. [33]

Tremor Ahangar-asr et al. [34]

Seismic
Zhu et al. [35], Sevilla et al. [36], Akhoondzadeh et al. [37],
Foti et al. [38], Aczel et al. [39], Zhang et al. [40], Liu et al. [41],
Cakir et al. [42]

3.2. Analysis of Detector Keywords

Figure 4 demonstrates earthquake detection-related terms used in existing works.
Table 2 shows earthquake terms used by the authors. Of the thirteen authors, several
used varying terms instead of directly using the term “detector” in their studies, while
the remaining authors used the term “detector”. The term “sensor” was used by four
authors: Mar et al. [43], Dutta et al. [44], Indiano et al. [45], and Huayong et al. [31].
Additionally, two authors investigated “alarms” in their research: T.S.D et al. [46] and
Baser et al. [47].

Figure 4. Ratio of the earthquake detector terms to number of authors.
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Table 2. Earthquake detection-related terms listed by author.

Detector Term Authors

Sensor Mar et al. [43]; Huayong et al. [31]; Indiano et al. [45], Dutta et al. [44]

Alarm T. S. D. et al. [46]; Baser et al. [47]

3.3. Findings on Different Earthquake Detectors

The findings on seismic detection are shown in Figure 5. Types of detection include
S-wave, P-wave, detector, vibration, early warning, Arduino, alert, and level portions
analysis. To reduce the damaging impacts of aftershocks, S-waves and P-waves are fre-
quently used in the layout of quake detectors. The efficiency of an earthquake detector
is significantly influenced by the selection of materials. The most effective way to gauge
an earthquake’s intensity and size while simultaneously avoiding false alarms is through
vibration. Installing earthquake detectors improves human safety by providing early
warning, allowing people to get ready beforehand and thereby minimizing fatalities.

Figure 5. Types of earthquake detector.

The primary wave, called the P-wave, causes particles to move in the same direction
as the wave’s propagation, carrying the energy of the wave. Conversely, the secondary
wave, or S-wave, moves particles perpendicular to the wave’s direction, either up and
down or side-to-side. P-waves are essential in separating real earthquake signals from false
earthquake signals produced by sound waves that push and pull the air.

Researchers have developed electronic devices to detect initial tremors resulting from
surface fractures and to identify the primary and surface waves in elastic rock mediums.
This invention pertains to earthquake detection and focuses on filtering and detecting
earthquakes with specific intensities over a wide area, allowing for early and accurate
detection while minimizing false alarms [32,36,42,43,45,46,48].

This entails placing an earthquake detector inside a primary structural part of a
building or other structure that shakes during a seismic event [45]. Patents et al. [49]
reported that when vibrations occur, the detector generates a signal to trigger an alarm.
An effective earthquake detector should be capable of detecting moderate earthquakes
without generating false alarms.

In a study by Sagarino et al. [47], a vibration sensor was connected to an Arduino to
measure, display, and analyze earthquake acceleration, proximity, displacement, and linear
velocity. When the magnitude reaches a level of 5 or above, the sensor sends electric
impulses to a prototype earthquake-proof container, which instantly closes when the
magnitude reaches this level. The vibration sensor senses earthquakes and displays the
results on a screen. The authors used ADXL335 accelerometer-based seismic sensors and
an Arduino minimum system. The P-wave data from the ADXL335 sensor was successfully
buffered, calibrated, sent, and shown on a website [32,36,42,43,45,46,48].
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A vibration sensor and power shut-off device [49] that integrates a pendulum switch
made for universal movement is another item described in the literature. A pendulum
switch closes and activates a solenoid in response to vibrations in any direction, turning off
electricity at a particular switch in an electrical power line. A low-voltage circuit that was
functioning before the power outage will continue to operating.

According to Dutta et al. [44], due to a lack of solid diagnostic antecedents for various
geo-tectonic settings that has hampered earthquake prediction studies, an earthquake early
warning system designed to mitigate seismic hazards in a region must have at least three
sensors from distinct locations transmitting P-wave data on the same scale in order to
prevent the transmission of false seismic waves. Through this technique, the validity of
seismic waves can be guaranteed and erroneous signals minimized.

3.4. Analysis of Earthquake Effects on the Environment

Earthquakes have significant impacts on the environment; the selected articles provide
a comprehensive overview of these effects. The articles discuss various impacts, and include
topics such as the development of Arduino detectors, advanced apps for early warning
systems, innovative designs of earthquake-resistant structures, and other relevant issues.
This indicates growing public concern regarding earthquakes and their consequences.
Professionals in the field are actively generating novel and innovative ideas to address the
challenges associated with earthquakes and improve public safety. This research paper
primarily focuses on earthquake detectors, aiming to gather knowledge from scientific
articles to develop new detectors or enhance existing ones. Figure 6 provides a summary of
the articles in terms of their findings on the environmental impacts of earthquakes.

Figure 6. Earthquake effects on the environment.

When energy is released from the earth’s crust during a seismic event, seismic waves
are sent into space. These waves can vary in intensity, ranging from mild vibrations to
significant earthquakes. Detecting and monitoring seismic events requires specialized
equipment to accurately identify and analyze the seismic waves. One study implemented
a compact earthquake alert system that utilizes light emitting diode (LED) displays to
provide alert messages, helping people become aware of impending earthquakes and
take necessary precautions to protect their lives [41]. The portability and versatility of
such a system makes it suitable for installation in various areas, enhancing earthquake
detection capabilities.

Buildings are particularly susceptible to structural harm and collapse during earth-
quakes. The rumbling that occurs during earthquakes is brought on by seismic waves
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moving through rock. Most seismic occurrences take place near geologic faults when
rock masses shift in relation to one another. As a result, buildings can suffer severe struc-
tural damage during earthquakes, highlighting the importance of earthquake-resistant
design and construction practices [40]. Researchers have investigated novel techniques
to strengthen and retrofit reinforced concrete structures, such as the use of carbon fiber-
reinforced plastic (CFRP). To improve structural integrity, CFRP offers benefits such as ease
of handling, corrosion resistance, and high strength-to-weight ratio [40].

In addition to their immediate effects on buildings and other infrastructure, earth-
quakes can have an adverse effect on the environment and public safety. Earthquakes can
impact on air quality, ground and surface water quality, and other environmental factors.
Effective preparedness strategies are essential to reducing the threats that earthquakes pose
to the environment. It is crucial to remember that seismicity can occur when waste water
from processes such as hydraulic fracturing is disposed of. Waste water injection as a way
to dispose of fluid waste has been linked to artificial seismic activity. This takes place when
the waste water injection, which is frequently disposed of in underground injection pits,
causes seismic activity due to elevated pressure and movement of underground fluids [38].

Therefore, a comprehensive understanding of seismic events, their effects on the envi-
ronment, and the development of effective detection and monitoring systems is essential.
By studying scientific articles and research, valuable insights can be gained to produce
earthquake detectors, innovative solutions, and improved preparedness measures. These
efforts contribute to a greater awareness of the impacts of earthquakes and help mitigate
risks to both the environment and the public.

4. Wildfires

Based on the bibliometric study, Table 3 shows the top five publications referenced
for modeling wild fires in order to provide insight into the most popular works. The two
authors with the highest number of citations for their computational fluid dynamics (CFD)-
based compositions were Linn in 2005 and Lopes in 2002. These two models have 118
and 100 citations, respectively. Both pieces serve as early models for detecting the growth
of wildfires.

Table 3. Most cited papers about wildfires.

Ref. Model Key Aspects Conclusion

[50] CFD Investigation of grassland fire behavior aspects The size, shape, and ambient wind all affect ROS.

[51] GIS/CFD Putting in place a semi-empirical model to
calculate the ROS.

Planning the control of fires using realistic
simulations of wildfire progression.

[52] CFD A model’s coefficients are optimized to replicate
the impact of trees.

Successful comparison of various model tests to field
measurements.

[53] Mathematics A description of the software architecture,
numerical algorithms, and physical model.

Taking the level-set approach into consideration,
the model might support real runs.

[54] GIS LANDFIRE’s history and current applications
are described.

LANDFIRE offers the tools necessary to create
affordable fuel treatment options.

Table A1 in Appendix A provides a comprehensive overview of the evaluated research
articles, concentrating on key aspects such as the authors, their specific work, valida-
tion/results, and employed techniques. The authors represent a wide variety of research
works and professionals who have made contributions to the field of earthquake detec-
tion and related topics. Each article’s conclusion summarizes the study’s findings and
outcomes while spotlighting the authors’ specific contributions. The validation/results
column presents the main results, outcomes, or validation methods utilized in each study,
demonstrating the efficacy and dependability of the proposed methods. Finally, the tech-
niques column describes the methodologies, techniques, or instruments used by the authors
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to conduct their research, providing insight into the scientific methods used to address
fire-related challenges.

5. Floods

Floods are another common natural disaster that greatly influences the lives of humans
along with the habitat, animal life, and atmosphere. A large range of tools and techniques
have been deployed for flood detection in the existing literate; these are discussed under
separate headings in the following subsections.

5.1. Data Analytics and Machine Learning for Floods

Machine learning and data analytics techniques can be incorporated into flood disaster
management systems to improve flood forecasting, risk assessment, and response planning.
These techniques can analyze large amounts of historical and real-time data, such as
rainfall patterns, river levels, and meteorological conditions, to identify patterns, trends,
and potential flood events. Machine learning algorithms can acquire knowledge from
historical data to improve the accuracy of flood forecasting and facilitate proactive decision-
making. Additionally, data analytics can be used to detect vulnerable populations, improve
evacuation routes, and distribute resources effectively during flood events.

5.2. Geographical Information System and Spatial Data Management

By combining and analyzing spatial data related to flooding, the geographical infor-
mation system (GIS) plays a significant role in flood disaster management systems. GIS
facilitates the creation of accurate flood hazard maps by combining elevation models, hydro-
logical data, and land use information, helping to identify flood-prone areas, infrastructure
at risk, and high-risk zones. In addition, GIS facilitates spatial analysis and modeling in
order to simulate flood scenarios, evaluate various flood management strategies, and sup-
port decision-making processes. GIS can help with real-time tracking and visualization of
flood events, which makes it easier to respond quickly and use resources well.

5.3. Model-Driven Engineering

The model-driven approach or Model-Driven Engineering (MDE) is a systematic
method that employs models to design, analyze, and simulate complex systems, includ-
ing flood disaster management systems. Models that depict many components of the
flood management procedure, such as flood forecasting, risk assessment, and emergency
response planning, can be created using MDE. These models allow stakeholders to com-
prehend system behavior, evaluate various strategies, and maximize resource allocation.
MDE facilitates the integration of various system components, promotes interoperability,
and facilitates collaborative stakeholder decision-making.

5.4. Sensors Network and Internet of Things

Both sensor networks and IoT have the capability of real-time data collecting as well
as monitoring for flood disaster management systems. By deploying sensors in flood-
prone areas, such as riverbanks or municipal drainage systems, continuous data can be
acquired on flood levels, the extent of rainfall, and infrastructural states. IoT and sensor
networks facilitate the early detection of flood events, aid in the evaluation of flood impact,
and provide vital data for decision-making. The data from these networks can be combined
with data from other systems such as GIS to track and manage floods more completely.

5.5. Big Data Analysis and Cloud Computing

This analysis method provides adaptable and effective approaches for handling and
processing the substantial amounts of data linked to floods. Cloud-based platforms can
store and process data from a variety of sources, including sensor networks, satellite im-
agery, and historical records. Data mining, pattern identification, and predictive modeling
can yield important insights from these data. Real-time data processing, stakeholder co-
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operation, and the creation of data-driven decision support systems for flood catastrophe
management are made possible by cloud computing and large-scale data analysis. By
utilizing historical data, these technologies can assist in enhancing flood forecasts and
planning for resiliency.

Data analytics and machine learning, GIS, MDE, sensor networks and IoT, and big
data analysis and cloud computing are the major areas that the existing literature on flood
prediction and management has focused upon.

5.6. Google Earth Engine

Google Earth Engine is a cloud-based platform developed by Google that provides
a powerful and scalable environment for analyzing and processing geospatial data from
satellite imagery and other Earth observation sources. It was launched in 2010, and is
primarily used for conducting large-scale geospatial analysis, monitoring environmental
changes, and supporting scientific research related to Earth sciences.

Google Earth Engine hosts an extensive archive of satellite imagery and geospatial
datasets, including Landsat, Sentinel-2, MODIS, and others, dating back several decades.
The platform allows users to access and analyze this vast collection of data using Google’s
computing infrastructure, which includes thousands of servers, enabling quick and efficient
processing of large-scale datasets. Table 4 provides an overview of the advantages and
disadvantages of each of these approaches.

Table 4. Advantages and disadvantages of techniques/domains used for flood disaster management.

Domain Advantages Disadvantages

Machine Learning and Data
Analytics for floods

• Improved accuracy of flood predictions
• Proactive decision-making based on data

patterns and trends.
• Identification of vulnerable areas and

populations
• Optimization of evacuation routes
• Effective resource allocation

• Dependency on large volumes of
historical and real-time data

• Need for continuous updating and
maintenance of models.

• Interpretability challenges in
complex machine learning
algorithms

GIS and Spatial Data
Management

• Accurate flood hazard mapping and
identification of flood-prone areas

• Spatial analysis and modeling for flood
scenarios

• Real-time monitoring and visualization of
flood events

• Integration of various data sources for
comprehensive analysis

• Support for decision-making processes

• Initial setup and data collection may
be time-consuming.

• Reliance on accurate and up-to-date
spatial data

• Cost of acquiring and maintaining
GIS software and infrastructure

Model Driven Engineering

• Systematic approach for designing and
analyzing flood disaster management
systems.

• Improved understanding of system behavior
• Optimization of resource allocation and

decision-making
• Interoperability and collaboration among

stakeholders

• Initial investment of time and
resources in developing models and
frameworks

• Complexity in model development
and integration
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Table 4. Cont.

Domain Advantages Disadvantages

IoT and Sensor Networks

• Real-time data collection and monitoring of
flood-related parameters.

• Early detection and assessment of flood
events

• Data-driven decision-making based on
accurate and timely information.

• Integration with other systems for
comprehensive flood monitoring

• Deployment and maintenance of
sensor networks can be costly and
challenging.

• Data quality and reliability issues in
sensor measurements

• Security and privacy concerns
related to data transmission

Big Data Analysis with Cloud
Computing

• Scalable and efficient data storage and
processing

• Real-time data processing and analysis
• Collaboration and data sharing among

stakeholders
• Development of data-driven decision

support systems
• Leveraging historical data for improved

flood forecasting

• Dependence on reliable internet
connectivity for data transfer and
access

• Cost considerations for cloud
infrastructure and storage

Google Earth Engine

• Access to a vast repository of satellite
imagery and environmental datasets without
the need for extensive data storage or
downloading.

• Efficient processing of large-scale geospatial
data using Google’s cloud infrastructure.

• Suite of advanced tools and APIs for complex
analyses like time-series analysis and land
cover classification.

• Easy collaboration with others and sharing of
analyses, code, and results.

• Requires programming and remote
sensing knowledge, which may
pose a learning curve for new users.

• Not all types of geospatial data may
be available, limiting the scope of
analyses for certain research needs.

• Some latency in acquiring the most
recent satellite imagery due to data
processing and availability.

• Requires a stable internet
connection for effective usage,
which may limit accessibility in
regions with unreliable internet

• Commercial use may be subject to
licensing fees and restrictions,
making it less ideal for certain
business applications.

In this review, we found around 45 papers on flood prediction and management,
with each paper using different techniques. Table A2 in Appendix A provides a compre-
hensive overview of the evaluated research articles, concentrating on key aspects such as
the authors, their specific work, validation/results, and employed techniques. Table A2
presents a wide variety of researchers and professionals who made contributions to the
field of flood disaster and related topics. Each article’s conclusion summarizes the study’s
findings and outcomes while spotlighting the authors’ specific contributions. The valida-
tion/results column presents the main results, outcomes, or validation methods utilized in
each study, demonstrating the efficacy and dependability of the proposed methods. Finally,
the techniques column describes the methodologies, techniques, or instruments used by
the authors to conduct their research, providing insight into the scientific methods used to
address flood-related challenges.

6. Applications Based on Remote Sensing for Disasters

The complexity of disaster management arises from the unpredictable and diverse
nature of disasters, making it impossible to find a single comprehensive solution. Instead,
a wide range of remote sensing platforms and sensors can and should be utilized for image
acquisition [24]. In the following section, we explore specific instances in which remote
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sensing has been applied in disaster management contexts. Furthermore, readers interested
in delving deeper into this topic can find additional studies in the existing literature.

6.1. Wildfires

Wildfires, like other disasters, pose threats to life and property; moreover, they con-
tribute to carbon emissions. Remote sensing data can prove valuable in fire detection,
monitoring, modeling, and burnt area mapping. Satellite sensors with high temporal
resolution, such as GOES (Geostationary Operational Environmental Satellite) and SEVIRI
(approximately 30 min), have been utilized for fire monitoring [55]. Sensors with thermal
and infrared capabilities, such as MODIS and AVHRR, can be employed as well. Burnt
area mapping is accomplished through a multi-temporal comparison of NDVI using visible
and near-infrared sensors [55,56]. In Europe, the European Forest Fire Information System
(EFFIS) established by the Joint Research Centre and European Commission provides
current and historical forest fire information using remote sensing data. Furthermore,
remote sensing data have been employed to quantify forest fire contributions to carbon
emissions [57].

6.2. Earthquakes

Earthquakes are natural disasters associated with earth movements, while landslides
result from mass movements. Predicting earthquakes and volcanic eruptions remains
challenging, limiting earthquake disaster management to preparedness and relief. Remote
sensing has proven highly valuable across all phases of volcanic eruption disaster man-
agement, while its usefulness for earthquakes and landslides is somewhat limited [58].
Tralli et al. [59] suggested that high-resolution digital elevation models (DEMs) such as
InSAR and LIDAR combined with in situ data and imaging spectroscopy, e.g., ASTER,
MODIS, and Hyperion, can aid in assessing and monitoring volcanic and landslide hazards.
Sensors such as ASTER can be utilized to monitor earthquake-induced landslide dams
for hazard mitigation in case of dam breach [60]. Satellite remote sensing imagery was
successfully employed for deployment, data collection, and dissemination during disaster
management operations following the Haiti earthquake [61].

6.3. Floods

Flooding comprises various types, such as river floods, flash floods, coastal floods,
and dam breaks, each exhibiting distinct characteristics with respect to occurrence time,
magnitude frequency, duration, flow velocity, and areal extent. Satellite data have been
effectively utilized throughout the multiple stages of flood disaster management [62]. The
GOES satellite’s multi-channel and multi-sensor data sources are employed for meteorolog-
ical evaluation, interpretation, validation, and the development of numerical weather pre-
diction models. Additionally, they can aid in assessing hydrological and hydro-geological
risks [63]. Nonetheless, the use of optical sensors for flood mapping is constrained by
the substantial cloud cover prevalent during flood events. To overcome this limitation,
Synthetic Aperture Radar (SAR) and RADARSAT have demonstrated significant utility in
flood mapping [64]. It is essential, however, to integrate remote sensing data and GIS data
during flood management, particularly in disaster relief operations. In summary, remote
sensing data find application in flood management for hazard assessment map preparation,
hydrological model generation, quantitative soil assessment, flood risk mapping, and early
warning [65].

6.4. Interconnections Between Techniques

Our review of 29 research papers on how fires behave, how to predict them, and how
to find them shows important insights and links in the field, as shown in Table A3 in
Appendix A. These papers show how important historical data and fire maps are for
determining how fires spread in different weather situations and on different types of
land. These data can help to improve fire prediction models by considering variables
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such as weather, fuel moisture, and fuel load, and can be used with machine learning
methods. The goal is to ensure that there are good tools for finding fires, predicting their
spread, and determining the flammability of materials. High-resolution fuel information
is important for capturing fire behavior accurately. The papers explain how fire behavior
is related to different factors, testing methods, and statistical models for predicting fires
on a small scale. This review provides important information that can help us to learn
more about fires and how to control them, in turn leading to better safety measures for
communities and ecosystems. The other publications on floods shown in Table A4 in
Appendix A concentrate on employing cutting-edge technology and approaches such as
machine learning, decision support systems, and IoT to enhance flood risk management.
The goal is to develop new ways to prevent flood tragedies and make it easier to prepare for
and respond to them. Integration of these technologies, along with data-driven models and
teamwork between stakeholders, is a key part of reducing flood risk and making predictions
accurate. More study and real-world usage are needed to fully use the potential of these
approaches in real-world disaster situations in order to advance disaster management and
risk reduction across different fields.

6.5. Impacts of Disaster Management System on Human Beings

People’s social, cultural, and economic lives can be greatly affected by technical
problems in emergency management systems; these effects can include:

i. Loss of Life and Injury: Technical problems in crisis management systems can slow
down response and rescue efforts. This may cause delays in reaching affected areas,
resulting in a larger number of casualties and injuries.

ii. Psychological Distress: When emergency management systems do not work well,
people may feel alone and overwhelmed. This can make them feel more stressed,
anxious, and traumatized.

iii. Disruption of Social Networks: When a disaster strikes, people often band together
to help each other. Technical problems with crisis management systems can make it
hard for people and communities to talk to each other and coordinate their relief efforts.

iv. Loss of Culture: Sometimes, disasters can damage or destroy culturally important
locations and artifacts. Technical problems could make it harder to maintain and
protect these important parts of cultural identity.

v. Economic Loss: Technical flaws can stymie disaster response and recovery efforts,
resulting in protracted downtime for businesses and key infrastructure. People,
companies, and governments may lose money because of such disruptions.

vi. Inequality and Vulnerability: Vulnerable individuals, such as the elderly, disabled,
or disadvantaged communities, may experience additional difficulties obtaining re-
sources during catastrophes. Technical problems can make these differences worse,
placing groups even more at risk.

vii. Migration and Displacement: If emergency management systems do not provide
people with the right information or help, they may have to move or be moved in
order to obtain help and resources.

viii. Lack of Information: During disasters, timely and accurate information is critical.
Technical problems with communication systems can cause people to receive the
wrong information, resulting in confusion and fear.

ix. Interconnected Disasters: In complex disasters with multiple events, technical prob-
lems can make it hard to obtain a full picture of events, in turn making it difficult to
coordinate reactions.

x. Loss of Trust in Institutions: Persistent technological failures in disaster manage-
ment systems can erode public trust in government agencies and other institutions
responsible for disaster response and management.

xi. Long-Term Recovery Challenges: It might be difficult to plan for effective recovery
and mitigation plans when technical issues that hamper data collection and analysis
make it impossible to estimate the long-term effects of catastrophes.
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To lessen these effects, it is important to invest in strong and effective disaster man-
agement systems, test and update them regularly, and make sure that communities are
well-informed and involved in efforts to prepare for disasters. In addition, supporting a
disaster management strategy that considers the different needs of all people and com-
munities can help make people less vulnerable and strengthen their ability to deal with
technical problems.

7. Challenges and Future Directions

Different disasters such as earthquakes, fire, and flooding have their own challenges
and problems, in addition to the general challenges that are associated with natural disasters.

7.1. General Challenges

In this section, we first discuss general challenges in disaster management systems,
then highlight challenges related to each category through short descriptions.

i. Effectively allocating limited resources such as personnel, equipment, and funding
poses a challenge in disaster management, especially during simultaneous or resource-
scarce events.

ii. Ensuring effective communication and coordination among stakeholders is needed
to overcome issues such as complex networks, language barriers, and coordination
problems between agencies and organizations.

iii. Gathering, analyzing, and disseminating timely and accurate information can be
challenging during rapidly evolving disasters due to obstacles such as limited data,
misinformation, and communication breakdowns.

iv. Engaging local communities and promoting their resilience presents challenges due
to cultural differences, distrust, limited awareness, and resource constraints.

v. It is necessary to adapt disaster management systems to cope with the changing
characteristics and impacts of disasters, including climate change and urbanization.

vi. Overcoming challenges in collaboration across disciplines such as emergency man-
agement, engineering, social sciences, and public health, which have differing termi-
nologies, approaches, and priorities, can be difficult.

vii. Ensuring sustainable and equitable recovery, addressing vulnerabilities, and integrat-
ing disaster risk reduction into development planning pose challenges beyond the
immediate response phase.

7.2. Challenges Related to Floods

The following challenges are faced by flood management systems:

i. The need for constant improvement in domains related to floods (model-driven,
machine learning, GIS, etc.) to enhance the speed and interpretability of flood-related
models.

ii. Lack of information on the computational time associated with flood modeling, hin-
dering the evaluation of model applicability in disaster management.

iii. Limited development of feature selection techniques needed to increase the efficiency
of decision support in flood management.

iv. Scarcity of studies comparing the computational efficiency of different simulation
platforms for flood management.

7.3. Challenges Related to Earthquakes

In addition to general challenges, earthquake management systems have the following
specific challenges:

i. Insufficient exploration of global models that can be applied to different regions and
datasets in earthquake prediction along with limited assessment of their potential for
generalization.
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ii. Limited integration of earthquake protection concerns in multi-functional landscape
management planning considering multiple ecosystem services.

iii. Inadequate analysis of the minimum amount of data required for useful earthquake
modeling, particularly during the active disaster stage.

iv. Challenges in dealing with uncertainties in earthquake forecasting models and their
impact on management decisions.

7.4. Wildfire Challenges

Challenges in the context of wildfire management include:

i. Lack of extensive wildfire datasets for training models; most models are developed using
smaller wildfire events, and may not adequately represent extreme wildfire contexts.

ii. Need for advances in acquiring landscape dynamics data to quantify spatial patterns
and changes in wildfire management.

iii. Addressing issues of model overfitting in wildfire prediction and management.
iv. Bridging the gaps between monitoring, learning, and decision-making in wildfire

management.
v. Developing broader models that can integrate different stages of wildfire management

effectively.

7.5. Limitations and Challenges in Using Remote Sensing for Disaster Management

Limitations and challenges when using remote sensing data in disaster management
contexts include:

i. Finding the most applicable remote sensing system for a given type of disasters.
ii. The need to evaluate the nature of the disaster and select appropriate sensors while

considering spectral and temporal resolution as well as cloud coverage limitations;
notably, the synergistic approach suggested by Joyce et al. [23] and Leblon et al. [55], in-
volves combining visible sensors with microwave sensors to overcome cloud coverage
effects.

iii. Available frameworks for using remote sensing in disaster management are lim-
ited [23]; moreover, there is a need to develop new frameworks or templates for appli-
cations in remote sensing for disaster management without “reinventing the wheel”.

iv. Challenges around timely provision of data mean that developing countries in partic-
ularly face limited access to certain data (e.g., high-resolution images) and may lack
the technical expertise to handle it.

v. Lack of research funding for application of remote sensing data in hazard management
contexts limits the effective use of satellite data [21].

Based on the above, it is important that new research studies investigate the application
of new algorithms and frameworks for remote sensing in disaster management.

7.6. Future Directions

Future research should prioritize the development of new and improved approaches to
detection, warning, prevention, mitigation, and response across all disaster types by consid-
ering the above issues with the overarching goal of advancing more effective and integrated
disaster management systems that prioritize the protection of lives and property. By uniting
these future directions, we anticipate a safer and more resilient world better equipped to
face the challenges posed by natural disasters. In the realm of disaster management, remote
sensing holds in particular holds immense potential to revolutionize response efforts in
the event of earthquakes, wildfires, and floods. Advances in integrated remote sensing
systems offer versatile solutions to address a range of disaster types, addressing challenges
such as cloud coverage and temporal resolution limitations. Standardized frameworks and
templates can streamline numerous processes, promoting efficient and effective responses
in different disaster scenarios. Timely data provision remains a priority, particularly in de-
veloping countries where access to high-resolution images and technical expertise may be
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limited. By investing in capacity building, research funding, and international collaboration,
the future of remote sensing in disaster management promises enhanced preparedness and
resilience, paving the way for more effective earthquake detection and warning methods,
improved coordination between agencies, better fire suppression techniques in wildfire
management, and a comprehensive approach encompassing forecasting, early warning
systems, and infrastructure floodproofing in flood management.

8. Conclusions

This systematic review concludes with a comprehensive evaluation of current disaster
management systems, with an emphasis on earthquakes, wildfires, and flooding. We
have reported promising strategies and identified challenges that must be addressed in
order to improve preparedness, response, and mitigation. For earthquake management,
seismic monitoring and early warning systems show promise, although data collection
and communication strategies must be improved. Prescribed burning and fireproofing are
two strategies that are becoming more popular in wildfire control, although coordination
and fire suppression methods remain an issue. Likewise, flood management necessitates a
comprehensive approach involving flood forecasting, early warning systems, and flood-
proofing of infrastructure, necessitating new developments in data collection, analysis,
and evacuation strategies. This review highlights the importance of remote sensing technol-
ogy, particularly in those phases of disaster management that involve preparation, warning,
response, and monitoring. Combining remote sensing and GIS techniques can greatly
improve efficiency; however, there are obstacles and limitations to using satellite data for
disaster management that necessitate additional research. Future research should concen-
trate on developing innovative and enhanced detection, warning, prevention, mitigation,
and response strategies. Using remote sensing data in conjunction with other surveying and
monitoring techniques can improve disaster management with the objective of developing
more efficient systems that safeguard lives and property during disasters. The findings of
this review can serve as a basis for future research and innovation in disaster management,
as natural disasters continue to pose significant global challenges. Adopting these insights
will result in a safer and more resilient future for everyone, enabling communities to be bet-
ter prepared for natural disasters. Constantly striving for development can help to mitigate
the effects of these catastrophic events and place the well-being of affected populations at
the forefront.
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Appendix A

Table A1. GIS, mathematical, CFG and ML-based techniques for wildfire management.

Ref. Key Aspects Conclusions with Specific Work Validation/Results Technique

[66] Based on past data, create a monthly fire
spread probability model.

Historical data and the likelihood of fire
spread are significantly correlated. Historical data GIS

[67]
Analysis of wildfire exposure and risk
transfer in Sardinia using wildfire
simulation modeling

The major conclusions can be applied to
further assess the likelihood of
transmission or anticipated wildfire
behavior.

Historical data GIS
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Table A1. Cont.

Ref. Key Aspects Conclusions with Specific Work Validation/Results Technique

[68]

Introduction of Fire Map, a web
platform for geospatial data services
and fire prediction, including its
architecture and main components.

Fire map has proven valuable in the
firefighting community, providing
automatic fire perimeter detection and
reliable future forecasts.

- GIS

[69]

Presentation of a methodology that
combines automated wildfire
monitoring with accurate fire spread
forecasting.

The backward time method is a simple
and effective approach for solving fire
prediction.

Experiments GIS

[70]
Proposal of various algorithms for fire
behavior analysis using the final
perimeter as input.

The developed tool is efficient and fully
functional. - GIS

[71] Discussion on integrating two models
into a GIS-based interface

The tool developed is efficient and fully
operational. Historical data GIS

[72]
Introduction of a model that evaluates
the impact of five landscape factors on
fire spread performance.

Categorizing fires based on synoptic
weather conditions can enhance fire
modeling in landscape fire models.

Historical data GIS

[73] Exploration of multi-fidelity approaches
to fire spread prediction.

Fuel moisture, fuel load, and wind
speed are the main uncertainties
affecting fire spread rates.

Experiments CFD

[74]
Investigation of how fuel density and
heterogeneity affect fire behavior in
relation to wind characteristics.

Increasing canopy fuel structure detail
and implementing turbulent boundary
conditions have minimal impact

Experiments CFD

[75]
How fuel density and heterogeneity
affect fire behavior in relation to wind
characteristics.

Incorporating high-resolution fuel
fidelity and heterogeneity information is
crucial to capture effective wind
conditions.

- CFD

[76]
Considers the effect of vegetation
characteristics on the flame tilt angle
and the radiative heat transfer.

High-resolution fuel fidelity and
heterogeneity information are vital for
accurately capturing wind conditions.

Simulations CFD

[77] Investigate fire regime transition and its
associated heat transfer mechanisms.

The model predicts both free and
non-free fires, introducing new models
for tilt angle and radiative heat power
reaching vegetation.

Simulations CFD

[78] a fresh simulation tool for quick
resolution, atmosphere fire reaction.

The ability to record fundamental
patterns in fire behavior, the relationship
between fire spread and fire size,
and the use of canopy fuels.

Compared With
other models CFD

[79] The multiphase model is created and
added to PHOENICS.

The anticipated ROS and experimental
values measured at varied wind speeds
were in good agreement.

Experiments CFD

[80] Outlines a method for creating a burned
area probabilistic forecast

The calibrated ensembles improve
accuracy overall. Simulations Mathematical

[81] Creation of a computer model to
forecast soil organic matter loss

The amount of water in the soil
regulated the amount of heat used
during vaporization and stopped soil
deterioration.

Simulations Mathematical

[82] Creating a fire spread model using a
heterogeneous cellular automata model.

The model can anticipate the spread of a
fire with a respectable level of accuracy
and efficiency.

Simulations Mathematical

[83] Prediction of the spread of a surface fire
with an emphasis on uncertainty.

Based on probabilistic fire simulations,
maps of the potential for fire can be
created.

Simulations Mathematical
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Table A1. Cont.

Ref. Key Aspects Conclusions with Specific Work Validation/Results Technique

[84]
In an upslope fire spread model,
parametric uncertainty analysis is
developed.

The projected values of ROS under
lower slopes are significantly impacted
by the values of ignition and flame
temperatures.

Simulations Mathematical

[85] Creation of two empirical ROS functions
in a windless environment.

Both models demonstrate that
independent variables serve as suitable
ROS descriptors.

Simulations Mathematical

[86] Creation of an empirical model for ROS
assisted by wind.

A laboratory examination of the
Rothaermel model revealed improved
predictions.

Simulations Mathematical

[87]
Support Vector Machines, K-Nearest
Neighbors, Random Forest,
and Extreme Gradient Boosting.

Improvement techniques for the Fuel
Management Zone

F1 scores between
90.0% and 94.0%,
and a Kappa
between 0.80 and
0.89.

Machine
Learning

[88]
Gradient boosted regression, multiple
linear regression, random forests,
and neural networks

Determining fuel moisture content Errors between
25.0–33.0%

Machine
Learning

[89] Support Vector Machine, Random
Forest, and Multiple Linear Regression

Calculating the fine dead fuel load and
comprehending the factors that affect it

(Random Forest,
RMSE 0.09, MSE
0.01, r 0.71, R-2
0.50)

Machine
Learning

[90] Support vector machines and random
forests

Estimating fuel moisture content for
10 h

R2 is between 0.77
and 0.82, while the
RMSE ranges
between 2.0 and
2.8%.

Machine
Learning

[91] Mask-Based Convolutional Neural
Network

Network-based Dead Tree Detection
from Aerial Images

54.0% is the mean
average precision
score.

Machine
Learning

[92] Neural Network Identification of flammable liquids on
actual fire debris

0.07 percent false
positives and 0.59
percent real
positives

Machine
Learning

[93]

Support Vector Machines with Radial
and Linear Kernels, K-Nearest
Neighbors, and Linear and Quadratic
Discriminant Analysis

Finding flammable liquid residue on fire
debris

Equal error rates
(17.0–22.0%), area
under the receiver
operating
characteristic curve
(0.86–0.92)

Machine
Learning

[94]

Classification Trees, Random Forests,
Neural Networks, Logistic Regression
Models, and Logistic Generalized
Additive Models are a few examples of
the types of models.

Methods for fine-scale, spatially explicit
daily fire occurrence prediction using
statistical and machine learning models
that have been correctly calibrated

- Machine
Learning
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Table A2. Flood management techniques related to machine learning, GIS, MDE, IoT and GEE.

Ref. Key Aspects Conclusions Validation/Res Technique

[95]

• Novel approach using machine
learning to map flood risk.

• Primarily requires DTM and
known flooded locations.

• Identifies flood risk hotspots
for further hydrodynamic
modeling.

• Reduces computational cost

• Cannot replace traditional
hydraulic-hydrodynamic
modeling.

• Can be used for local-scale
flood risk identification.

• Reduces computational cost

N/A Machine learning, DTM,
known flooded locations

[96]

• Review of amphibious
construction strategies for
flood resilience

• Introduction to self-floating
house design

• Use of fiber molding
technology

• Load calculations and stability
checks

• Assurance of sustainability
in flood damage reduction

• Design of self-floating house
for flood resilience

N/A
Fiber molding technology,
load calculations, stability
checks

[97]

• Creation of a long-term
disaster risk planning
decision-making model

• Application of game theory
and stratification theory

• Creation of interactive web
application

• Application to flooding risk
strategy evaluation

• The most effective mitigation
techniques are flood
forecasting and raising
awareness.

• Restrictions and difficulties
with applying the model.

Monte Carlo simulation

Decision-making model,
game theory, stratification,
interactive web
application, Monte Carlo
simulation

[98]

• Change the focus from flood
protection to flood risk
reduction.

• Model-driven decision support
system (MDSS) development

• Combining data from many
sources, multidisciplinary
models, and GIS technologies.

• Implementation in the
Jingjiang flood diversion area
of flood risk management

• Model-driven approach
offers efficiency, adaptability,
and flexibility.

• Promising solution for
comprehensive flood risk
management

N/A

GIS tools, multi-source
data, transdisciplinary
models, and model-driven
decision support systems

[99]

• Review of flood disaster
management in Malaysia

• Emphasis on
prevention/mitigation and
preparedness

• Identification of responsible
agencies

• Role of technology and
community awareness

• Education and community
awareness crucial for
effective flood mitigation

• Importance of
prevention/mitigation and
preparedness strategies

N/A Review Paper

[100]

• Creation of Disaster
Management (DM) metamodel

• A system for DM decision
assistance that combines
several DM activities.

• Proof of concept in bushfire
domain

• Unification, facilitation,
and expedited access to DM
expertise

• Refinement of metamodel
concepts in bushfire domain

N/A
Disaster Management
metamodel, DM decision
support system



Land 2023, 12, 1514 21 of 37

Table A2. Cont.

Ref. Key Aspects Conclusions Validation/Res Technique

[101]

• Utilization of deep learning
models for flooded building
detection using UAV images

• Accurate detection of flooded
buildings and vegetation

• Estimation of inundation area
based on UAV images.

• Timely visualization of the
spatial distribution of
inundation

• Accurate and timely
detection of flooded
buildings and vegetation

• Benefits flood emergency
response sector

Achieved 88% accuracy for
flooded buildings and 85%
accuracy for vegetation

Deep learning models,
UAV imag

[102]

• Disaster Management and IoT
• Evaluation of IoT-based

catastrophe management
programs

• Challenges in disaster
management with IoT

• Future areas of improvement

• Stakeholders can use IoT
technology for smart cities’
infrastructure security and
disaster management.

• Improvement needed in
cost-effectiveness, fault
tolerance, standardization,
context awareness,
knowledge discovery,
real-time analysis, security,
and social media utilization.

• Future areas of improvement
include low-cost devices,
user-friendly interfaces,
clean energy sources,
interoperability,
and maintenance efficiency

Not mentioned

Literature review, analysis
of challenges,
identification of areas for
improvement

[103]

• Development of a visualization
and animation system for
storm surge flooding

• Real-time and offline
animation

• Parallel computing
• Selective visualization
• Use of geo-referenced data
• Extensibility of the system

• Realistic 3D visualizations
and animations for
educating coastal residents,
assisting emergency
managers, and aiding in
urban planning and flood
damage mitigation.

• Differentiation between
real-time and offline
animation for a quick
assessment and detailed
analysis

• Utilization of georeferenced
data and user input for
personalized impact
visualization

• Extensibility to visualize
other phenomena and
repurpose for different
applications

Not mentioned

Real-time visualization
and animation, parallel
computing, selective
visualization,
georeferenced data usage

[104]

• Use of Agent-based Modeling
(ABM) in flood risk assessment

• Creation of FDMACS, a flood
disaster multi-agent complex
system Challenges in internal
design, collaboration,
and communication within
FDMACS

• Need for interdisciplinary
collaboration.

• Micro-level understanding and
macro-level insights into flood
disaster systems

• ABM offers valuable insights
into flood risk assessment.

• Improvement needed in
internal design,
collaboration,
and communication within
FDMACS.

• Interdisciplinary
collaboration required for
leveraging ABM’s potential.

• Micro-level understanding
and macro-level insights can
be achieved with ABM

Not mentioned Agent-based Modeling,
development of FDMACS
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Table A2. Cont.

Ref. Key Aspects Conclusions Validation/Res Technique

[105]

• Use of remotely sensed data
for monitoring natural hazards
and flood index insurance

• Challenges in validation and
utilization of satellite data

• A framework for remote
sensing application validation
in contexts with limited data.
Evaluation of validation
metrics

• Development of a
high-resolution and
high-temporal flood
inundation time series using
Sentinel-1 data

• Importance of combining and
cross-referencing data sources
for a comprehensive
understanding

• Potential of remotely sensed
data for flood index
insurance

• Criteria for validating
remote sensing algorithms.

• Development of a
high-resolution flood
inundation time series using
Sentinel-1 data

• Importance of combining
data sources for a
comprehensive
understanding

• Applicability of validation
criteria beyond Bangladesh

Results demonstrate the
improved performance of
the adapted Sentinel-1
algorithm

Validation criteria,
development of flood
inundation time series,
combination and
cross-referencing of data
sources

[106]

• A framework for describing
and capturing disaster
management systems (DMS)
using model-based systems
engineering (MBSE) using
SysML Holistic approach and
traceability between
subsystems

• Importance of systems
engineering principles in
disaster management

• Areas for future research in
DMS requirements, behavior,
and adoption of MBSE in
non-traditional domains

- - -

[107]

Importance of flood prediction and
prevention systems, technologies for
flood prediction and prevention,
drawbacks of existing systems,
proposed flood alert system

Existing flood alert systems have
limitations, proposed model is
protective and reliable, economical
in terms of cost, assures
self-defense from flash floods

Not specified in the given
text

Grid-based monitoring,
Warning based on User
mobility, Early flood
warning, Flood alarming,
ShonaBondhu, Zigbee
technology

[108]

Application of semantic computing
models in IoT early warning systems,
benefits, and challenges, proposed
IoT EWS system framework

Semantic EWSs offer easier
integration, improved analysis,
and service interoperability,
challenges include data exchange,
heterogeneous data sources,
and resource constraints

Validation through
system-related metrics and a
case study

Lightweight and
heavyweight semantics,
metadata-driven data
analysis, semantic
decision support,
workflow orchestration

[109]
Using case-based reasoning in a
multi-agent intelligent system, flood
disaster forecasting

Proposed framework accurately
predicts water levels and forecasts
flood disasters with a lower error
rate compared to neuro-fuzzy
network-based method

Validation using “Active
Archive of Large Floods,
1985-Present” dataset

Case-based reasoning,
multiple agents, flood
disaster forecasting
algorithm

[110]
Risk-based flood management, flood
management measures and
approaches, risk assessment

Risk-based approaches gaining
prominence globally, need for
understanding risk dynamics and
key parameters, consideration of
socio-economic and environmental
constraints

Not specified in the given
text

Risk-based flood
management, risk
parameters, floodplain
characteristics analysis

[111]
Implementation of a Smart IoT Flood
Monitoring System using IoT
technology

Proposed system enables real-time
monitoring of water levels, remote
access, and prediction capabilities,
enhances public awareness,
preparedness, and resilience

Not specified in the given
text

Smart IoT Flood
Monitoring System, IoT
technology, web servers,
wireless control
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[112]

Emergency fleet management for
preventing urban flooding,
dependable fleet management
approach

Data-driven resilient fleet
management platform, dynamic
management mechanism,
and dispatching algorithm
improve emergency fleet
management resilience

Not specified in the given
text

Optimization techniques,
data-driven robust fleet
management, cloud
asset-enabled systems,
and greedy-based
dispatching algorithms

[113]

• Efficient and accurate early
flood warning systems

• Convolutional neural networks
and long short-term memory
networks are combined

• Development of ConvLSTM
model

• Superior performance in flood
forecasting

• Validation using rainfall
datasets from Fiji

• Evaluation metrics: RMSE,
LME

• ConvLSTM model
demonstrates superior
performance in flood
forecasting.

• Usefulness in reducing risk
and managing disasters
Potential for forecasting
floods at shorter timescales

• Validation of nine
rainfall datasets from
Fiji’s flood-prone areas

• Evaluation metrics:
RMSE, LME

• ConvLSTM model
outperformed
benchmark methods

Long-Short-Term Memory
(LSTM), Convolutional
Neural Network (CNN),
and ConvLSTM model

[6]

• Efforts towards achieving a
comprehensive flood
management system in Jakarta.

• Challenges in implementation
• Sensor-based monitoring

systems
• Data analysis for enhanced

understanding
• Decision support dashboard
• Importance of data

management and stakeholder
collaboration

• Importance of disaster
management as a
Sustainable Development
Goal

• Challenges related to data
management and
governance.

• Future applications for
minimizing flood risks in
Jakarta

• Sensor-based
monitoring systems
deployed.

• Data analysis
conducted.

• Decision support
dashboard utilized

Sensor-based monitoring
systems, data analysis,
decision support
dashboard

[114]

• China’s vulnerability to
natural disasters

• Quick Service and Integrated
Disaster Reduction Platform

• Planning a satellite mission,
gathering data, producing it,
and using it for remote sensing

• Effectiveness of the platform
• Case study of the Yunnan

Cangyuan earthquake

• China’s Integrated Disaster
Reduction and Quick Service
Platform for disaster
prevention and mitigation

• Rapid and integrated
services for disaster response

• Swift dissemination of
satellite data products and
information

• Case study of the
Yunnan Cangyuan
earthquake

• The Integrated
Disaster Reduction
and Quick Service
Platform’s
effectiveness

Satellite data, Integrated
Disaster Reduction and
Quick Service Platform,
and remote sensing

[115]

• The multiplicative seasonal
ARIMA (SARIMA) model’s
usefulness in predicting flood
catastrophes in the Tarim River
Basin

• SARIMA model development
and adjustment

• Satisfactory prediction
performance

• Criteria for testing the model.
• Future trends prediction

• Predicting flood disasters
using the SARIMA model in
the Tarim River Basin

• Satisfactory prediction
performance

• Criteria for testing the
model.

• Importance of continuous
data updates and local
environmental factors

• Analysis of flood data
from 1980 to 2019
SARIMA model
development and
adjustment

• Flood catastrophe
forecasting for the
Tarim River Basin

Multiplicative seasonal
ARIMA (SARIMA)

[116]
Importance of response phase in
Disaster Management System life
cycle.

• Need for integrated routing
application specifically
designed for emergency
response (ER) units.

• Limitations of commercial
navigation systems for ER
units.

• Underutilization of location
information in disaster
management and potential
of GIS technology.

N/A
Spatial DBMS, spatial
schema, indexing
techniques, operations
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[117]

• Proposal of a flood forecasting
model using federated
learning.

• Integration of locally trained
models from eighteen clients.

• Identification of flood-prone
stations with five-day lead
time alert.

• Successful prediction of
previous floods with 84

• Making use of information
about rivers, barricades,
snowmelt, rainfall-runoff,
flow paths,
and hydrodynamics.

• Training of global model for
flood analysis. - Estimation
of water level increase using
a feed-forward neural
network model.

• Issuing flood alerts to the
flood mitigation department.

• Potential expansion of the
model to other regions.

Successful prediction of
previous floods with 84%
accuracy.

Federated learning, local
models, flood forecasting,
feed-forward neural
network

[118]

• Evaluations of a developed
flood forecasting system that
are both subjective and
objective.

• High accuracy in predicting
flood incidents.

• Benchmarking experiments
with MLP ANN configuration.

• High level of accuracy in
predicting flood incidents. -
Effective use of MLP ANN
configuration.

• Integration of
meteorological, hydrological,
geospatial, and crowdsource
data.

• User experience
enhancements through
responsive graphical
interfaces.

• Distributed architecture for
widespread implementation.

Correct percentage: 97.93,
Kappa coefficient: 0.89,
MAE: 0.01, RMSE: 0.10.

Decision trees, Naive
Bayes, MLP ANN,
Random Forest (RF),
Support Vector Machines
(SVM), fuzzy logic,
meteorological data,
hydrological data,
geospatial data,
crowdsource data

[119]

• Climate-proofing framework
for flood risk management
planning in Finland.

• Incorporation of regional data
and consideration of climate
scenarios.

• Useful information for flood
risk managers and water
resource planners.

• Identification of robust
measures and adaptation
options.

• Improved decision-making
processes.

• Challenges in dealing with
uncertainties and resource
limitations.

• Framework’s flexibility and
applicability.

Ongoing evaluation
required.

Regional data, climate
scenarios, flood risk
management planning

[120]

• DPSIR framework to analyze
flood risk factors.

• RF algorithm to identify
important risk indicators.

• RBF neural network to build a
model of flood risk.

• Using GIS to display a risk
map.

• Flood risk is increasing due
to urbanization.

• Economic development is
positively correlated with
flood risk.

• Variations in flood risk and
current status among
provinces

• Model results
validated against
actual situation.

• RF algorithm and RBF
neural network show
applicability in flood
risk assessment

• DPSIR framework
• RF algorithm
• RBF neural network
• GIS
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[121]

• Standards for judging the use
of geographical data in DRM.

• Comparison of the National
Disaster Management
Frameworks of Bulgaria and
India

• Criteria can be effectively
used for general
comparisons of geospatial
data utilization in national
DRM frameworks.

• Geospatial technologies are
important in disaster
prevention - Various aspects
of geospatial data activities
are crucial elements in DRM
frameworks

Criteria validated through
comparative analysis

Criteria for evaluating the
incorporation of
geospatial data in DRM

[122]

• Inconsistencies and problems
with Egypt’s integration of
spatial planning and flood risk
assessment.

• Recommendations for
improving integration

• A lack of understanding of
how spatial design might
reduce the risk of flooding

• Poor communication
between officials

• Limited availability and
accessibility of necessary
data

• Subjective nature of
conducted flood analyses

• Analysis based on
input from a small
group of experts.

• Language barrier
between English and
Arabic

Literature review -
Recommendations for
improving integration

[123]

• Correlation between disastrous
events and unstoppable force
of nature

• Inadequacy of human
resistance mechanisms in
controlling calamities

• Promise of IoT technology in
mitigating disaster challenges

• IoT-enabled disaster
management systems offer
promising solutions.

• Simultaneous interventions
with IoT can mitigate
disaster challenges.

• Modern examples of using
IoT to manage catastrophic
situations.

• Supported protocols and
goods that are ready for sale.

IoT-enabled disaster
management systems’
current research directions
and open problems

Literature review -
State-of-the-art scenarios -
Open challenges and
research trends

[124]

• The Namibia Sensor Web Pilot
Project, which will serve as a
testing ground for important
flood monitoring and
management technology.

• Combining data from
ground-based and space-based
sensors to create flood maps
and estimate risk.

• Benefits of integrating grid and
cloud computing technologies
with sensor webs.

• Emphasis on interoperability
and utilization of
OGC-compliant standards.

• Potential for improving flood
forecasting, risk assessment,
and disaster management
strategies.

• Quickly obtaining and
disseminating data products
for decision support systems.

• Effective decision-support
tools for flood control

• Further research and
advancements in the field
can enhance flood
management globally.

• Products that may be
accessed in real-time
through the system,
including forecasts for
probable flooding,
rainfall estimates,
and alarms.

• Generation of flood
maps within 24–48 h
using computational
and storage services.
Demonstrates the
advantages of
combining sensor
webs with emerging
technologies. Potential
for improving flood
management and
decision support
systems.

• Sensor Webs, Grids,
Computation
Clouds.

• OGC-compliant
standards.

• Workflow
orchestration,
parallel data
processing.

• Integration of
space-based and
ground sensor data.
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[125]

• The idea of a comprehensive
decision-support system (DSS)
for managing flood disasters.

• Integration of observation,
forecasting of rain with
flooding, modeling of past
floods, response plans,
and ICT/IoT technologies.

• Using the Metaverse,
augmented reality, or virtual
reality (VR) technologies for
training.

• Determining research gaps and
making suggestions for future
lines of inquiry.

• Better emergency services,
community-based disaster
risk management,
and response methods.

• Through the integration of
many components, increased
public crisis awareness and
informed decision-making.

• Need for data accuracy and
reliability, interoperability,
and advanced visualization
techniques.

• Practical application,
training, and evaluation of
the DSS in real-world
scenarios.

• Incorporation of
real-time observation
data, rainfall
forecasting, and fast
flood simulation.

• Integration of
historical events,
response strategies,
and measures

• Utilization of ICT and
IoT technologies for
data communication
and sharing.

• Training using VR, AR,
and Metaverse
technology.

• Comprehensive
evaluation and
validation of the DSS.

• Real-time
observational data
and models for
predicting rainfall.
models for quick
flood simulation.

• IoT & ICT
innovations.

• Metaverse
technology,
augmented reality
(AR), and virtual
reality (VR).

[126]

• Recognition of flash floods as a
leading cause of high
casualties and infrastructure
loss.

• Challenges in accurate flash
flood prediction due to sensor
efficiency and data
transmission issues.

• Categorization of flash flood
identification approaches into
engineering-based and
non-engineering-based
methods.

• Swarm intelligence weights
optimization as the most
effective forecasting approach.

• Efforts to improve accuracy
and reliability of flash flood
prediction.

• Engineering and
non-engineering approaches
for flash flood identification.

• Evaluation of several flash
flood analysis techniques.

• Recommendations for
further research in the field.

• Promising outcomes from
the optimization of swarm
intelligence weights for
neural networks.

• Flash flood
identification using
engineering-based and
non-engineering-
based
methods.

• Swarm intelligence
optimizes neural
network weights.

• Using nowcasting,
modeling,
and observation
techniques based on
radar and satellite
data.

radar, sensor fusion,
or artificial intelligence

[127]

• Using imagery from UAVs to
collect data on vegetation,
channel geometry, and river
shorelines.

• Using data from UAVs,
calibrate and validate
distributed flood routing
models.

• Online update and verification
of flood risk maps.

• Resolving issues in obtaining
current data on the depth of
the flood.

• Importance of accuracy in
UAV-based observations and
data processing techniques.

• UAV-based observations
improve flood risk
assessment and model
updating.

• Challenges related to the
accuracy of UAV-based
observations need to be
addressed.

• Spatial observations and
data processing methods
require refinement.

• Application of UAV-based
observations for improving
low flow maps and assessing
drought impacts on riverine
ecology.

• Limited measurement
networks in small
catchments.

• Highlighted
significance of
UAV-based
observations for
model calibration and
validation.

• Utilization of
UAV-based imagery.

• Development of new
techniques for data
acquisition and
processing.
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[128]

• The use of ontology-based
semantic modeling to control
river flow and reduce flooding.

• The creation of the ORFFM,
or Ontology for River Flow
and Flood Mitigation.

• Using semantic modeling to
deal with the different types of
data, their ability to work
together, and their complexity.

• Big data analytics and natural
language processing are
crucial.

• Semantic modeling facilitates
effective coordination and
disaster management.

• ORFFM as a methodology
for developing a knowledge
base.

• Addressing challenges in
data extraction, processing,
and comprehension across
multiple domains.

N/A

• Ontology-based
semantic modeling.

• Big data analytics.
• Natural language

processing.

[129]

• The combination of satellite
imagery and social media for
post-disaster management.

• Making use of cutting-edge
tools and current data to speed
up rescue efforts.

• Locating passable routes in
flooded areas.

• Classifying locations according
to the severity of the damage.

• Analyzing social media data
for identifying stranded
individuals and essential items.

• Integrated approach
enhances post-disaster
management.

• Limitations of relying solely
on satellite imagery.

• Importance of road detection
techniques within satellite
imagery.

• Addressing the challenge of
cloud cover during analysis.

N/A

• Integration of social
media and satellite
imagery. Maximum
number of
connected pixels for
road detection.

• Comparison of
pre-and
post-disaster
satellite images for
damage analysis.

[130]

• Advancements in AI-based
techniques for flash flood
prediction.

• Investigation of flash floods
using multimodal sensing.

• Satellite-based X-band pictures
and radar images for
forecasting flash floods.

• Artificial intelligence
techniques for improving
prediction accuracy and
minimizing false alarm rates.

• Particle swarm optimization
(PSO) for optimizing neural
networks

• AI-based techniques enhance
flash flood prediction
accuracy.

• Multi-modal sensing
provides comprehensive
environmental data.

• Radar and satellite-based
images contribute to early
warning systems.

• PSO optimization improves
classification and forecasting
capabilities.

• Practical applications extend
beyond flash flood
prediction.

• Evaluation of AI
algorithms using
simulated results.

• Comparative analyses
against other existing
strategies.

• Multi-modal
sensing.

• Radar images and
satellite-based
X-band images.

• Artificial intelligence
techniques (neural
networks).

• Particle swarm
optimization.

[131]

• Resilience framework for
power systems

• Categorization of strategies to
enhance power system
resilience.

• Microgrids as one of the most
effective enhancement
strategies

• Resilience is a dynamic and
ongoing process of adapting
frameworks and operations
to better prepare for
unexpected external shocks.

• A resilient power system
must be robust and flexible,
capable of functioning under
normal conditions and
adapting to schedule,
encourage planning,
and execute strategies to
prepare for recurring or
novel events in the future.

• System resilience
framework is
introduced.

• Categorization of
strategies to enhance
power system
resilience is presented.

• Microgrids as one of
the most effective
enhancement
strategies is
introduced.

• Literature review
• System resilience

framework
• Categorization of

strategies
• Microgrids
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[132]

• Big Data Analysis and IoT
used to detect disasters.

• Z-score normalization used to
evaluate threshold capacity.

• Fog computing and cloud
computing compared.

• Fully automated evacuation
concept discussed

• Collaboration of IoT and Big
Data Analysis in disaster
management is found to be
effective and efficient.

• Fog computing is found to
be advantageous in sudden
disaster situations.

• Fully automated evacuation
considering humanitarian
aspects is a feasible concept.

• Real-time data is
collected through IoT
devices. - Big Data
Analysis is used to
process and aggregate
the data.

• Z-score normalization
is used to evaluate
threshold capacity.

• Fog computing and
cloud computing are
compared.

• Fully automated
evacuation concept is
discussed.

• Literature review
• Big Data Analysis
• IoT
• Z-score

normalization
• Fog computing
• Cloud computing
• Fully automated

evacuation

[133]

• The first in-depth study on the
use of USVs in DM

• Existing research on USVs for
DM is scattered and lacks
focus.

• Most research emphasizes
technical aspects of USV
hardware and software rather
than practical significance in
DM

• USVs have promising
potential in DM, but current
deployments in disaster
scenarios are limited.

• USVs can be used for search
and rescue, extreme weather
forecasting, structural
inspection,
and environmental impact
assessments.

• A development in DM is the
use of different deployments
of autonomous systems.

• Integration of these systems
is still evolving,
and regulatory and legal
concerns need to be
addressed.

• Various applications of
USVs in DM are listed.

• The challenges in
conducting research
on USVs are
highlighted.

• The multidisciplinary
nature of DM research
and the high cost of
field trials are
identified as
challenges.

• The deployment of
diverse fleets of
unmanned devices is
recognized as a trend
in DM.

• Literature review
• USVs
• DM
• Search and rescue
• Extreme weather

forecasting
• Structural inspection
• Environmental

impact assessments
• Heterogeneous

fleets of unmanned
systems

[134]

• Assessment of droughts and
floods impact on croplands
and crop production in
Southeast Asia

• Use of Palmer Drought
Severity Index (PDSI) to
determine drought and flood
levels.

• Assessment over 40 years from
1980 to 2019

• Rainfed crops in Thailand,
Cambodia, and Myanmar
were severely affected by
droughts.

• Rainfed crops in Indonesia,
the Philippines,
and Malaysia are more
affected by floods.

• Four levels of policy
interventions are prioritized
based on geolocated crop
damage levels.

• 20.64 million tons of
crop production loss
estimated between
2015 and 2019.

• 9.42 million ha and
3.72 million ha of
cropland damaged by
droughts and floods,
respectively

• Google Earth Engine
(Sentinel-1 SAR
satellites, Geospatial
analysis tools)

[135]

• Development of an algorithm
to map surface inundation
during flood events.

• Exploitation of Sentinel-1 SAR
images in combination with
historical Landsat data.

• Rapid flood mapping using
cloud computing platforms
like GEE

• Area-normalized accuracy of
89.8% achieved over
Houston, Texas following
Hurricane Harvey.

• Significant improvement in
flood mapping accuracy
compared to simple
backscatter threshold

• Overall agreement
rates of 98.5% in
Thessaly, Greece,
and Eastern
Madagascar following
floods in January and
March 2018.

• Rapid processing of
hundreds of SAR and
optical images within
minutes

• Google Earth Engine
(Multi-temporal
SAR statistics,
Surface water class
probabilities, very
high spatial
resolution imagery)
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[136]

• Examination of spatiotemporal
flood patterns in Bangladesh.

• Identification of flood-affected
paddy rice fields.

• Frequent flooding in
northeastern Bangladesh and
along major rivers (Ganges,
Brahmaputra, and Meghna).

• Important for adaptation
and mitigation strategies to
address annual flooding
impact on agriculture and
food security in Bangladesh.

• Flood-affected paddy
rice areas accounted
for 1.61–18.17% of
total paddy rice area
between 2014 and
2018.

• Sentinel-1 Synthetic
Aperture Radar
(SAR) images,
Google Earth
Engine.

[137]

• Algorithm to generate reliable
inundation maps using
different polarization
combinations.

• Flood depth estimation to
address overestimation of
urban flooded areas.

• Rapid assessment of flooding
disasters and making accurate
decisions

• Good results were achieved
using squared addition of
polarizations for flood extent
mapping.

• All four methods
implemented on GEE are
effective for identifying
flooded areas.

• Flood depth
estimation approach
improved overall
accuracy on average
by 7% for all methods.

• Change detection
method requires little
user involvement and
can be applied to new
study areas without
flood depth estimation.

• Sentinel-1 SAR
imagery, Google
Earth Engine.

[138]

• Development and application
of the Flood Prevention and
Emergency Response System
(FPERS)

• Application of FPERS at
different stages of floods

• Switching among different
topographic models and
managing data through a
geospatial database.

• FPERS integrated various
remote sensing imageries to
detect and monitor barrier
lakes, derive inundation
maps, and evaluate the
damage.

• Example of Typhoon
Soudelor in August 2015
demonstrates FPERS
application in flood
prevention and emergency
response.

• Capable of supporting
flood prevention and
emergency response
work using different
topographic models.

• Utilization of
geospatial database for
managing and
searching data

• Formosat-2 optical
imagery, Synthetic
aperture radar
imagery.

Table A3. Interconnections and synergies among techniques for wildfires.

Ref. Interconnection and Synergies

[66] Historical Data and Fire Maps for Fire Spread Prediction; Enhancing Fire Prediction Models; Factors Influencing Fire
Behavior

[67] Enhancing Fire Prediction Models; Calibration and Ensemble Methods for Improved Predictions

[68] Historical Data and Fire Maps for Fire Spread Prediction; Enhancing Fire Prediction Models; Efficient Tools for Fire
Detection and Spread Prediction

[69] Factors Influencing Fire Behavior; Calibration and Ensemble Methods for Improved Predictions

[70] Efficient Tools for Fire Detection and Spread Prediction; Efficient Tools for Non-Free Fires and Radiative Heat Power

[71] Enhancing Fire Prediction Models; Efficient Tools for Fire Detection and Spread Prediction

[72] Historical Data and Fire Maps for Fire Spread Prediction; Factors Influencing Fire Behavior

[73] Enhancing Fire Prediction Models; Factors Influencing Fire Behavior; Importance of High-Resolution Fuel Information

[74] Efficient Tools for Fire Detection and Spread Prediction; Importance of High-Resolution Fuel Information

[75] Importance of High-Resolution Fuel Information

[76] Enhancing Fire Prediction Models; Factors Influencing Fire Behavior; Importance of High-Resolution Fuel Information

[77] Enhancing Fire Prediction Models; Efficient Tools for Fire Detection and Spread Prediction; Efficient Tools for Non-Free
Fires and Radiative Heat Power
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[78] Factors Influencing Fire Behavior; Statistical and Machine Learning Models for Fire Occurrence Prediction

[79] Enhancing Fire Prediction Models; Calibration and Ensemble Methods for Improved Predictions; Factors Influencing Fire
Behavior; Statistical and Machine Learning Models for Fire Occurrence Prediction

[80] Enhancing Fire Prediction Models; Efficient Tools for Fire Detection and Spread Prediction; Factors Influencing Fire
Behavior; Calibration and Ensemble Methods for Improved Predictions

[81] Efficient Tools for Fire Detection and Spread Prediction; Techniques for Detecting Flammable Substances

[82] Enhancing Fire Prediction Models; Efficient Tools for Fire Detection and Spread Prediction; Calibration and Ensemble
Methods for Improved Predictions; Factors Influencing Fire Behavior

[83] Historical Data and Fire Maps for Fire Spread Prediction; Enhancing Fire Prediction Models; Calibration and Ensemble
Methods for Improved Predictions

[84] Importance of High-Resolution Fuel Information; Statistical and Machine Learning Models for Fire Occurrence Prediction

[85] Enhancing Fire Prediction Models; Efficient Tools for Fire Detection and Spread Prediction; Factors Influencing Fire
Behavior; Efficient Tools for Non-Free Fires and Radiative Heat Power

[86] Enhancing Fire Prediction Models; Techniques for Estimating Fuel Moisture Content and Load

[87] Statistical and Machine Learning Models for Fire Occurrence Prediction; Techniques for Estimating Fuel Moisture Content
and Load

[88] Enhancing Fire Prediction Models; Importance of High-Resolution Fuel Information

[89] Enhancing Fire Prediction Models; Importance of High-Resolution Fuel Information; Techniques for Estimating Fuel
Moisture Content and Load

[90] Techniques for Estimating Fuel Moisture Content and Load

[91] Techniques for Detecting Flammable Substances

[92] Efficient Tools for Fire Detection and Spread Prediction; Techniques for Detecting Flammable Substances

[93] Factors Influencing Fire Behavior

[94] Enhancing Fire Prediction Models; Statistical and Machine Learning Models for Fire Occurrence Prediction

Table A4. Interconnections and synergies among techniques for flooding.

Ref. Interconnection and Synergies

[95] Machine Learning and Flood Risk Mapping

[96] Machine Learning and Flood Risk Mapping

[97] Amphibious Construction Strategies for Flood-Resilient Housing

[98] Decision-Making Models for Flood Risk Management

[99] Model-Driven Decision Support Systems (MDSS)

[100] Flood Disaster Management in Malaysia

[101] Disaster Management Metamodel; UAV-based Flood Detection; Agent-based Modeling for Flood Risk Assessment; Storm
Surge Visualization and Animation

[102] Disaster Management Metamodel; Semantic Computing in IoT Early Warning Systems; Agent-Based Flood Disaster
Forecasting

[103] IoT-based Disaster Management Challenges

[104] Storm Surge Visualization and Animation; Data-Driven Resilient Fleet Management; Flood Risk Assessment and Prediction

[105] Agent-based Modeling for Flood Risk Assessment

[106] Remote Sensing for Flood Index Insurance; Flood Prediction and Prevention Systems
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[107] Model-Based Systems Engineering (MBSE) for Disaster Management Systems

[108] Remote Sensing for Flood Index Insurance; Flood Prediction and Prevention Systems

[109] Semantic Computing in IoT Early Warning Systems; Smart IoT Flood Monitoring System

[110] Model-Based Systems Engineering (MBSE) for Disaster Management Systems; Agent-Based Flood Disaster Forecasting

[111] Risk-Based Flood Management; ConvLSTM-based Flood Forecasting Model; Comprehensive Flood Management System in
Jakarta

[112] Smart IoT Flood Monitoring System; Data-Driven Resilient Fleet Management; Risk-Based Flood Management;
ConvLSTM-based Flood Forecasting Model

[113] Data-Driven Resilient Fleet Management

[6] Risk-Based Flood Management; Smart IoT Flood Monitoring System; ConvLSTM-based Flood Forecasting Model; Flood
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