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Abstract: An Internet of Things (IoT) network is prone to many ways of threatening individuals.
IoT sensors are lightweight, lack complicated security protocols, and face threats to privacy and
confidentiality. Hackers can attack the IoT network and access personal information and confidential
data for blackmailing, and negatively manipulate data. This study aims to propose an IoT threat
protection system (IoTTPS) to protect the IoT network from threats using an ensemble model RKSVM,
comprising a random forest (RF), K nearest neighbor (KNN), and support vector machine (SVM)
model. The software-defined networks (SDN)-based IoT network datasets such as KDD cup 99,
NSL-KDD, and CICIDS are used for threat detection based on machine learning. The experimental
phase is conducted by using a decision tree (DT), logistic regression (LR), Naive Bayes (NB), RF, SVM,
gradient boosting machine (GBM), KNN, and the proposed ensemble RKSVM model. Furthermore,
performance is optimized by adding a grid search hyperparameter optimization technique with
K-Fold cross-validation. As well as the NSL-KDD dataset, two other datasets, KDD and CIC-IDS 2017,
are used to validate the performance. Classification accuracies of 99.7%, 99.3%, 99.7%, and 97.8% are
obtained for DoS, Probe, U2R, and R2L attacks using the proposed ensemble RKSVM model using
grid search and cross-fold validation. Experimental results demonstrate the superior performance of
the proposed model for IoT threat detection.

Keywords: threat protection system; privacy; confidentiality; Internet of Things; machine learning

1. Introduction

The Internet of Things (IoT) refers to a system of devices or objects connected to
each other for data collection and sharing via the connected network [1]. The objects are
embedded with sensors, software, and other useful technologies for connecting one device
to another over the internet for the simple purpose of data sharing. The thing in the IoT
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can be any human with a heart organ monitor transplant [2], a biochip [3] transponder
for animal monitoring on any farm, a sensor that provides alerts in automobiles [4] when
the pressure of the tires is low, and other man-made or natural objects that are assigned
internet protocol (IP) addresses in a network. Several performance evaluation metrics for
IoT network performance have also been introduced to enhance the quality of service [5].
In the IoT, business and personal possibilities are boundless. In business, organizations and
different industries use IoT systems to make their business handling and working more
efficient, more reliable, with improved decision making [6]. The business values are also
increased using these techniques.

The IoT has a significant role to play in the modern era. Using IoT sensors ensures
different devices and objects around us are recognizable and locatable. The data consumed
and transferred on the IoT may have significant information about people that is used in
their daily lives [7]. The primary objective of the security of IoT devices is to prevent them
from facing any risk and to keep the trust of users that their data are secure. Out of all
the hurdles faced by the IoT, the significant one is the security challenge; particularly in
the areas of personal privacy, the confidentiality of data in the domain of heterogeneous
management, and network capacity limitations. The trustworthiness of security, its cost-
effectiveness, performance efficiency, and privacy of the Internet of Things are keys for
making sure that confidentiality, credibility, access control, and authentication are being
maintained [7]. The IoT connects gadgets with people to communicate and lets them enjoy
services. The majority of the devices that enjoy internet facilities nowadays lack basic
security requirements, and hence, are prone to different security risks. IoT devices normally
have memory limitations; hence, they use bandwidth communications that are very low in
capacity. Present security mechanisms lack designs that support these limitations [8].

IoT devices are prone to several security challenges because they normally possess
low computing power and complicated cryptography algorithms are not supported [9].
Currently, many experts confirm that the security of IoT devices is a major issue that we
have to cope with if we want to adopt IoT gadgets securely. Different types of active
and passive attacks are faced by the IoT network. In passive attacks, only information
stealing is the target, while in active attacks [10], the attacker can physically damage the
devices. In smart homes, there are many security threats such as continuous monitoring
and the leakage of personal information, denial of service (DoS), distributed DoS (DDoS)
attacks, falsification, etc. As IoT devices lack security mechanisms, they become easy
targets. The further irony is that the victim has zero knowledge of being infected.

When it comes to IoT devices, attacks are broadly categorized into four groups; phys-
ical, network, software, and encryption. In a physical attack, IoT hardware devices are
affected [11,12]. The network attack is launched in the IoT network. A software attack
harms the software of an IoT system. The encryption attack works when the attacker breaks
the security mechanism used in the IoT system. Thus, it is important to propose a security
mechanism for devices according to device capabilities and characteristics. IoT device
sensors collect physical quantities and convert them into a signal. Sensors also convert
measurements from real-world environments into data. In the field of medicine, IoT devices
are used to keep an eagle eye on patients. These devices can be attached internally or exter-
nally depending upon the situation or personal requirement. As IoT devices use wireless
interfaces for communication, they are prone to cyber-attacks [13]. This leads to breaches
in patients’ security. When an attack on medical devices is successful, it disrupts some
fundamental applications that are providing surveillance on a patient’s critical medical
condition. This may lead to patients losing their precious life. There are many kinds of
attacks that a patient medical device (PMD) can endure, but the most familiar ones are
eavesdropping, integrity error, battery-draining attacks, cyber security attacks, etc. An IoT
device’s security can also be breached through social engineering attacks. Two of these
methods include phishing and vishing. Social engineers hit the IoT the most because it
includes human interaction. One of the most effective ways of avoiding and reducing the
risk of social engineering attacks is enhancing the awareness of end users [14,15].
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In IoT devices, there are plenty of loopholes as the IoT’s heterogeneous structure
contains plenty of open weaknesses that are not fully managed [16]. The sensor and actuator
layer is weak from direct physical access and there is a possibility that attacks such as DoS
can break the security. The vast advancement in the services of the IoT requires an authentic
and factual security mechanism. In devices, the simple sensor becomes very complex due
to the vast need for devices and the enhancement in user requirements. The security can be
enhanced by using a common IoT standard network, protocol, and commercially available
IoT programming framework [17]. The security of IoT devices is easily penetrable because
of simple security protocols and the lack of protective hardware [18]. Customers try to
find their satisfaction in putting price before security when purchasing devices. Thus,
customers have hardly any information about IoT devices for private and secure use [19].
There are several security mechanisms [20] available for security but user’s trust can still
not be achieved. The existing authentication mechanism needs third-party approval. This
type of authentication is considered under the risk of a single point of failure. The crucial
data of authenticated devices can easily be altered by attacks along with maintaining
anonymity [21]. To overcome loopholes of this nature, blockchain technology is used that
is independent of third-party interference.

IoT devices are more susceptible to attacks due to most of the user’s interactions
occurring in daily life, and these attacks can even be deadly. When these devices are
attacked by an attacker, the user is also affected because the devices have many limitations
for applying security mechanisms [20]. This research aims at developing the user’s trust
by designing a proposed approach with effective machine learning techniques to prevent
the threats [22]. The proposed approach uses machine learning models to identify threats
in the IoT blockchain-based network. The network security laboratory knowledge data
discovery (NSL-KDD) from the Canadian Institute of Cybersecurity is used in this study.

The major goal of this research is to build a system based on machine learning to
increase threat detection accuracy. The performance of the individual machine learning
models is analyzed in this research, but single models show poor performance. Instead of
moving toward deep learning or more complex algorithms, the efficiency of the machine
learning algorithms is enhanced using an ensemble approach. The main contributions of
this research are as follows

• The proposed IoT threat protection system (IoTTPS) is based on an ensemble RKSVM
machine learning model. The proposed approach enhances the threat detection accu-
racy in the IoT network and the security authentication.

• The machine learning models such as decision tree (DT), Naive Bayes (NB), logistic
regression (LR), support vector machine (SVM), random forest (RF), gradient boosting
(GB), K nearest neighbor (KNN), and proposed ensemble RKSVM model are used
for experiments.

• The grid search hyperparameter optimization and cross-fold validation are used to
enhance the performance of the ensemble RKSVM model and prediction accuracy.

• The evaluation parameters used to evaluate the performance of employed models
include accuracy, precision, recall, and F1 score.

• In addition, performance comparison with state-of-the-art models is carried out. In
addition, two datasets are used to validate the performance of the models.

The rest of the paper is organized as follows. Section 2 illustrates the efforts and tech-
nologies of the previous authors regarding IoT security. Section 3 shows the methodology,
material, and methods that are used to carry out the experiments with the machine learning
algorithms. Section 4 analyzes the results of experiments and illustrates the effectiveness of
the proposed approach. Section 5 provides the conclusion of the proposed research.

2. Related Work

The IoT is one of the highest growing networks of those that are dependent on physical
devices. These devices are capable of sensing and collecting data from the surrounding
environment. Then different actions are performed according to the analysis results. These
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devices can also communicate with each other or with mainframe computers. The IoT
brought an evolution in the domain of collecting real-time data. The IoT collects data by
connecting things and devices that can share the data with the central machine, which
provides flexibility to the data collection process that was not possible before the IoT [23].
This flexibility of the IoT to collect and monitor real-scenario environments facilitates
numerous organizations or industries to communicate and connect to the information
infrastructure through different sensors, things, and objects. This also adds significant
value to different regions of the industry. The IoT also provides different significant
benefits to the industries such as improved revenues, cost savings, task automation as well
as possibilities to continuously bring innovation to the industry [24]. Similarly, the IoT
presents tremendous opportunities for people and social economies to explore.

One of the most significant benefits of the IoT network is that the device and sub-IoT
networks mesh together perfectly as a well-defined structure that presents the basis of any
IoT architecture to enhance its effectiveness. In different circumstances, most of the IoT
architecture solutions are related to the basic and fundamental issues that are connected
to the IoT sensors, devices, connectivity, IoT platform, and eventually, the applications
of the IoT [25]. The enhancements in the technology also allow the technology to add
some additional layers to the architecture of the IoT [26]. The progressive characteristics of
advanced technology are introducing new updates on a daily basis in the domain of the
IoT, which makes it hard for researchers to follow up on a single architecture as a blueprint
for concrete implementation. For that purpose, various reference architectures have been
synchronized in the IoT field.

Every IoT solution [27] consists of specific IoT devices or sensors according to the
situation. In any condition, when the IoT system is implemented for any specific situation,
then the centralized system is also necessary to send data or receive the command from.
IoT architecture is defined based on the integration with blockchain and software-defined
networking (SDN) [28]. It allows the IoT networks to communicate with each other without
interacting with centralized control devices. For broad and effective communication, all
the IoT networks’ controllers are interconnected to each other in a distributed blockchain.
When the attack begins, the packet migration components and analyzer of flow control
are created to handle the network’s infrastructure’s main functions. The authors claim
that the solution can detect any type of attack in the network quickly. To evaluate the
proposed solution’s performance, the authors applied different attacks such as DDoS, fake
topology, and ARP poisoning [29] individually and combined them to check the detection
accuracy. The detection time of attack was reduced and the system provided faster network
attack mitigation.

The availability of the data is the primary requirement in the IoT environment [30]. It
also involves a large number of decision and analytic operations on the collected data in
real-time scenarios. Such operations are prone to several threats to IoT networks. The intru-
sion detection systems in cyber security show great potential against IoT threats such as
distributed denial of service (DDoS) and man-in-the-middle (MITM) attacks [31] based on
the least square support vector machine (LS-SVM) by using sampling methods. For threat
mitigation, efficient intrusion detection systems are needed. For example, threat mitigation
for DDoS attacks is proposed by using SDN and specific IoT traffic features.

Edge computing was utilized in [32] by putting migrations and detection jobs to
switches (open flow). A distributed approach to threat detection provides a fast response
and detection of real-time attacks. Three machine learning algorithms are selected to
segregate legitimate flows from DDoS attacks. The results show a superior performance
from the RF model. SDN, fog computing, and machine learning techniques are used for
threat detection in [33]. Recurrent neural networks (RNN), alternate decision trees (ADT),
and multi-layer perceptron (MLP) are used to improve DDoS attack detection. The au-
thors state that a fog computing-based solution shows good attack detection capability.
The proposed security framework based on blockchain is used for IoT networks.
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A blockchain-based approach for DDoS threat detection is proposed in [34] that uses
the inter- and intra-domain migrations of DDoS. A multiple SDN-based domains scheme is
allowed for secure collaboration and information on attacks is transferred in a decentralized
manner. It allows operative attack extenuation near the base of the attack. The Naive Bayes
machine learning algorithm is utilized for the intrusion detection system to protect the
infrastructure of the IoT network from DDoS attacks. The multi-agent system based on
the set of autonomous agents that can operate synchronously to receive and distribute
experiences between IoT devices is used in [34]. The purpose of the actuator agent is to
take action according to the found attack and disconnect the potential attacker from the
network. Subsequently, the communication agent is employed to share information about
intrusion detection in the network with other agents. The advanced methods can detect the
intrusions and threats to the network very fast and efficiently, and also share the load to
each participating agent very well.

The behavior of IoT-specific networks was analyzed in [35] and threat detection was
enhanced using the feature selection process. Feature selection is carried out concerning the
variant behavior of the network to enhance the accuracy of threat detection. The objective is
to enhance the security of and prevent DDoS attacks on home networks. Machine learning
models are employed for data acquisition, feature extraction, and binary classification for
this threat detection system [36].

Study [37] employed statistical analysis to identify threats arising from endangered
IoT devices. Nine IoT commercial devices were deliberately infected with the two broadly
recognized IoT-based botnets, BASHLITE and Mirai. By using the mirroring port, the raw
network traffic can be captured in the switch where the flow of traffic is very typical.
The 115 features are obtained from the data of network-level packets. A neural network
autoencoder was applied for threat detection for IoT devices. Eventually, the threshold for
the threat was described as the sum of the sample mean and the standard deviation was
calculated from the samples. A 100% true positive rate is reported in the study.

A tree ensemble model based on a greedy randomized adaptive search procedure
using annealing randomness and feature selection was used to produce efficient results
in [38]. The effectiveness was validated based on a secure water treatment testbed. An RF-
based botnet detection was used and merged with three machine learning models [36].
The accelerated genetic algorithm with the rough set theory for the selection of efficient fea-
tures was developed for the classification of threat detection. The authors present a hybrid
ensemble model Catboost in [39] to deal with the security and intrusion detection problems
of IoT networks. The model’s parameters are optimized using Bayesian optimization.
Experimental results using the proposed approach show superior performance compared
with existing models. A comparative summary of the discussed works is presented in
Table 1.

Table 1. Comparative literature analysis.

Ref. Summary Features Evaluation

[40]
Entropy-based early detection

mechanism of DDOS attack
and flash events.

Packet header, time window
size, and other generalized
parameters. Dataset from

CAIDA, MIT Lincoln,
and FIFA

F measure, precision, false
positive rate, and accuracy

[41]

Detection mechanism to
detect a flow-table attack,

bandwidth attack,
and controller attack in SDN
environment using machine

learning techniques and scapy
tool for attack simulation.

Byte_count, flow alive in
nanoseconds, port ID, type of
service, maximum length to

send the controller.

Accuracy, time to process.
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Table 1. Cont.

Ref. Summary Features Evaluation

[42]

Four behavioral features show
specific behavior to

differentiate normal and
malicious traffic.

The dataset is from Clarknet,
worldcup98, and NASA

False positive, false negative,
true positive, true negative.

[43]

Hadoop-based real-time
detection scheme to detect
DDOS traffic using Map

Reduce and HDFS

Experimental dataset based
on Source IP, destination IP,
packet protocol, timestamp,

and packet header.

CPU utilization and memory

[44]

URL entropy-based DOS
detection algorithm was used
to analyze attack traffic and a

mapping matrix of joint
entropy vector is contracted.

MIT Lincoln dataset based on
source IP address, time
window size, and other
generalized parameters.

Space complexity, relative
strength, time

[45]
Bio-inspired approach to

detect HTTP flood attack with
minimal process complexity.

Dataset of CAIDA based on
minimum time interval,

number of sessions, and page
access count.

Recall, precision, true positive,
false positive, true positive,

true negative.

[46]

An LSTM network model is
used to analyze malicious and
legitimate traffic using H-ping

tool for simulation

ISCX 2012, CTU 13,
and experimental dataset Accuracy, error rate

[47]

Asymmetric detection
mechanism is designed by

annotated probabilistic timed
automata and suspicion

scoring algorithm to recognize
the DDOS traffic.

Existing server logs, access
traces, think time.

Experimental dataset.

Precision, F1 measure,
detection, false positive, false

negative

3. Material and Methods

This section presents the proposed approach, dataset, and models used for experi-
ments. Figure 1 shows the workflow diagram of the proposed approach, IoTTPS for threat
detection. This study adopts an ensemble model and the decision is based on the results
reported in existing literature [39,48–50]. Often, ensemble models combining two or more
models tend to show better performance than individual models.

Figure 1. The workflow of threat protection IoTTPS system proposed based on RKSVM model.
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3.1. NSL-KDD Dataset Presentation

The IoTTPS system for IoT networks based on the ensemble learning algorithm is
proposed in this research by using the NSL-KDD dataset. The NSL-KDD data were obtained
from the well-known dataset repository Kaggle, which provides a wide range of benchmark
datasets. The NSL-KDD dataset is split into training and testing subsets. The training data
consist of 125,973 records and the testing data contain 22,544 records. The total dataset
has 148,517 records for IoT network communication that contain intrusions-based data
and normal data. A total of 23 categories of threats are presented in this dataset such as
normal, neptune, satan, ipsweep, portsweep, smurf, nmap, back, teardrop, warezclient, pod,
guess_ passwd, buffer_overflow, warezmaster, land, imap, rootkit, loadmodule, ftp_write,
multihop, phf, perl, spy as shown in Figure 2. The neptune class contains the highest
number of 41,214 records. The normal class presents the normal communication that
contains 67,343 records. Table 2 presents the mapping to numerical values against classes.

Table 2. Major categorization of attacks into classes.

Classes Numeric Representation

Normal 0

Dos 1

Probe 2

Remote-to-Local (R2L) 3

User-to-Root (USR) 4

These 23 categories are further converted into five major categories such as ’Normal’,
’Dos’, ’Probe’, ’U2R’, and ’R2L’, as shown in Figure 2. This reduces the number of classes
and increases the efficiency of the ML model. The training data associated with the DoS
class have 113,270 records with 123 attributes, the Probe class has 78,999, R2L class has
68,338, and USR class has 7395 records to train the ML models. Other details for training
and test data are presented in Table 3.

Figure 2. Dataset presentation according to the first top ten number of categories of threats and normal.
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Table 3. The class-wise dataset presentation according to classes in training and testing data.

Classes Training Data Dimensions Testing Data Dimensions

Dos 113,270 17,171

Probe 78,999 12,132

R2L 68,338 12,596

USR 67,395 9778

The null values are removed from the dataset. The dataset contains the categorical
values that cause issues for models’ training. The one hot encoder technique is used to
convert the categorical data into numeric form to resolve this problem. The protocol_type,
services, and flag are the categorical attributes. In the protocol_type, two types of protocols
are used: transmission control protocol (TCP) and user datagram protocol (UDP), which
are encoded into 1 and 2, respectively. Four types of services are used in the dataset such as
ftp_data, other, private, and hypertext transfer protocol (HTTP), which are encoded into
20, 44, 49, and 24, respectively. Two types of flags are used such as SF and S0, which are
encoded as 9 and 5, respectively. Figure 3 shows the number of samples for each class.

Figure 3. After the conversion of categorical data into numeric form.

The KDD Cup 1999 dataset was created for the Third International Knowledge Discov-
ery and Data Mining Tools Competition held in 1999. It contains 4 million labeled records
divided into four classes: DoS (Denial of Service), Probe, R2L (Remote-to-Local), and U2R
(User-to-Root) and includes 41 features, which are derived from IoT network connections
and other relevant information. The NSLKDD dataset is the improved version of the KDD
dataset by overcoming the limitations of the KDD dataset. The NSLKDD dataset consists
of 1.8 million labeled records categorized into four classes: DoS, Probe, R2L, and U2R,
providing a more balanced distribution of attack types than KDD. The CICIDS dataset
created by the Canadian Institute for Cybersecurity is a more current intrusion detection
dataset. The dataset contains 3.5 million instances including DoS, DDoS (Distributed Denial
of Service), and probing attacks based on 79 features.

3.2. Methodology

The dataset is used as the vectors for the training of the model. For training, 125,973 records
are used, which further contain different numbers of samples for each class. For example,
for the major classes DoS has 113,270, Probe has 78,999, R2L has 68,338 and U2R has
67,395 records. The ML models are applied according to DoS, Probe, R2L, and U2R with
the normal class. After the removal of null values and handling of categorical attributes,
the dataset is ready for the ML models. The ML models include DT, NB, LR, SVM, RF, GBM,
KNN, and ensemble RKSVM. Figure 4 presents the architecture of the adopted methodology
of the proposed IoTTPS system. The performance of the ML model is evaluated using
accuracy, precision, recall, and F1 measure.
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Figure 4. The mechanism of presented IoTTPS system based on machine learning.

3.2.1. Decision Tree

DT is a non-parametric supervised learning method that recursively partitions the
given dataset of rows by applying the depth-first greedy method [51] or the breadth-first
approach [52] until all the data are related to an appropriate class. A DT structure is created
from the root, internal, and leaf nodes. The tree construction is used in classifying the
unknown data. At each inner node of the tree, a decision of best separation is made using
impurity measures [53]. The DT classification procedure is implemented in two stages:
tree building and tree pruning. The first stage is the tree building, which is performed in
a top-down manner. During this phase, the tree is recursively partitioned till all the data
objects relate to the same class label [51]. DT is computationally fast as the training dataset
is traversed frequently.

In f ormation gain(T, X) = Entropy(T)− Entropy(T, X) (1)

Gainratio =
in f ormation Gain

SplitIn f o
(2)

Gainratio =
Entropy(be f ore)−∑K

j−1 Entropy(j, a f ter)

∑K
j−1 wjlog2wj

(3)

where T presents the column and X presents the class variable. Entropy shows the calcu-
lated weight of the single attribute value and Information Gain shows the total calculated
weight for which column is best to be a node in the tree.

DT classifies the occurrence by sorting them on the base of feature values. Each node
in a DT represents a feature in an instance (classes such as 0 or 1) to be classified, and each
branch represents a value (0 or 1) that the node can assume. The occurrences are classified
starting from the root node and sorted based on their feature values, which are given in the
form of classes [54].
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3.2.2. Support Vector Machine

SVM is a classification algorithm that utilizes the concept of a hyperplane that separates
the classes. In other words, the algorithm outputs are based on an optimal hyperplane
that categorizes new test data on the basis of training data. SVM can be used for both
classification and regression. However, it is mostly used in classification problems, where it
gives the best accuracy between the two classes. In this algorithm, each data item is plotted
as a point in n-dimensional space, where n is the number of features in the dataset with
the value of each feature being the value of a particular coordinate. Then, classification is
performed by finding the hyperplane that differentiates the two classes very well.

SVM contains different tuning parameters but some are used that give the best ac-
curacy at the countvectorizer and TF/IDF feature extractor. The tuning parameters of
the SVM are used when the feature extractor is a countvectorizer C, which is adjusted
from 1.0 to 1.1 to achieve better accuracy. Other parameters include gamma = auto,
probability = False, and tol = 2, which is used for the stopping criterion. The class-
weight = None, verbose = False, which enables verbose output, and the maximum number
of iterations is 55. These parameters provide the best accuracy.

3.2.3. Gradient Boosting Machine

GBM is a well-known tree-based algorithm that assembles multiple machine learning
algorithms together and improves the accuracy based on boosting and bagging concepts.
The GBM is commonly based on the ensemble of multiple decision tree models and applied
for both classification and regression. These problems are solved by the GBM because the
multiple decision tree architecture makes the complex gradient patterns easier for GBM.
The GBM model gives different accuracies on different feature engineering techniques.

Several parameters are fine-tuned to achieve better accuracy. The n_estimators
is set to 150, which presents the total number of stages of boosting performed by the
GBM model, which enhances the performance and prediction accuracy of the model.
The max_depth = 10 is the maximum number of levels of a tree that also controls the gener-
ation of nodes in the tree. The learning rate is set to 0.01 to reduce the contribution of each
tree by the learning_rate parameter, and there is an adjustment between learning_rate and
n_estimators. The tuning parameters that give the highest accuracy are n_estimators = 100,
max_depth = 12, and learning_rate = 0.01.

3.2.4. Random Forest

The RF classifier is used for threat detection [55]. RF algorithm gives different accu-
racies on different feature engineering techniques. The RF classifier uses multiple DTs as
base classifiers [56]. The randomization in the RF model is built on two concepts: in the
first approach the samples are extracted from the dataset randomly as these samples are
collected in boosting concept of GBM [57]. The second one is to select the input features
randomly for creating DTs as a base of the model. RF is optimized concerning different
parameters such as n estimators = 13, here n indicates the number of trees in the forest and
the range of the number of trees is from 10 to 100 and maxdepth = 150. The maxdepth
indicates the maximum depth of the tree. The criterion parameters can have Gini or entropy
to measure the quality of a split. When the criterion is Gini, then it is used for Gini impurity,
and when it uses entropy, then it measures the information gain.

3.2.5. Naive Bayes

NB classifier is one of the simplest and most effective machine learning classification
algorithms, which helps in building a fast machine learning classifier that can make quick
predictions from the given dataset. It is a probabilistic classifier, which means it predicts
based on the probability of an object. Bayes algorithm is a probabilistic classifier that is
built upon the Bayes theorem such as
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P(A|B) = (P(B|A) ∗ P(A))

(P(B))
(4)

where A is the class, B is the feature vector, P(B|A), P(A), and P(B) are the probabilities
measured from earlier known instances, such as training data.

The classification errors are minimized by selecting the class that maximizes the
probability P(A|B) for every occurrence [58]. The NB classifier is considered to perform
optimally when the features are independent of each other, and close to optimal when the
features are slightly dependent [59]. NB performs well even if the dependency is clear
between the features, making it fit a wide range of tasks.

3.2.6. K-Nearest Neighbors Classifier

The KNN classifier is used for both regression and discrete data-based classification in
machine learning. The data points are extracted from the training data and are classified
based on the distance function also known as similarity index. KNN performs the classi-
fication operation based on the majority of the voting of its neighboring data points [60].
KNN model is also known as a slow learner, as it needs all instances for model training. It
is necessary for the KNN model that all classes are populated with a balanced number of
the dataset samples because the majority of data in one class gets priority. It is a simple
approach; however, it can often perform better than complicated models.

3.2.7. Proposed Ensemble RKSVM Model

The voting classifier is the simplest form of joining different classification algorithms
in which selecting the combination rule is important for designing an ensemble classifier.
Voting is the way of combining predictions from multiple machine learning algorithms [61].
In the proposed ensemble model, the voting scheme combines the predictions of three algo-
rithms RF, SVM, and KNN. The voting-based ensemble was implemented using soft voting
criteria. The experiments were performed with a soft voting technique and the averaging
mechanism was considered for the prediction of every model used in the ensemble method.
The experiments were conducted based on several combinations of machine learning mod-
els to analyze the performance of individual models. RF, KNN, and SVM were selected
on the basis of their architectural design and after evaluation of the best results illustrated
in the experiments. The RF depends on multiple decision trees that generate separate
decisions and then selects the majority decision of trees. The KNN depends on K-nearest
points as a neighbor and performs classification based on a similarity score. The SVM
is based on a hyperplane that draws the hyperplane between different classes based on
marginal space from the nearest data point to the hyperplane. The experiments showed
these three models gained the highest results. These algorithms gave the best accuracy
compared with others so these three algorithms were used for ensemble using voting,
as shown in Figure 5. The cross-fold validation was used here to select the best dataset split
ratio for training and testing data. The grid search hyperparameter tuning method was
used for the tuning of the three selected models’, RF, KNN, and SVM, parameters to obtain
optimized performance.

The grid search is the hyperparameter optimization technique used to tune the pa-
rameters of the machine learning model. The grid search takes input as manually defined
parameter values for the model in an array. Then the model defines a pipeline for grid
search to train one by one using those parameter values, which are defined by the user.
The grid search selects one value for one parameter and then changes other parameter
values with the same parameter. then one by one it creates a huge set of parametric values
to train the model by using all sets of parametric values to obtain the best single set.
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Figure 5. The architecture of the proposed ensemble RKSVM model.

Cross-fold validation is applied to the dataset to obtain the best partitioning ratio for
the train data and test data. The cross-fold validation was used here with the grid search
optimization technique. Here cross-fold validation obtained the best training and testing
data partitions from the original dataset. Grid search optimization was used to obtain the
best model hyperparameters to train the model. Both these techniques with the ensemble
of models created an effective and efficient model to detect cyber attacks.

The voting classifier with the stacking method was used and three classifiers were used
for this voting purpose, SVM, RF, and KNN, which performed well and gave the highest
accuracy. In these methods, the driving policy is to build several estimators separately and
then take the average of their predictions. On average, the mixed estimator is normally
better than any of the single base estimators as its variation is reduced [61].

The models used in the proposed ensemble were fine-tuned to find the best-fit param-
eters for obtaining optimal performance. The used parameters for three models are given
in Table 4.

3.3. Performance Evaluation Metrics

The classification of threats detection by using the NSL-KDD dataset is based on
the communication record of the IoT networks. Several machine learning algorithms are
proposed in this research that help to detect the threats in IoT networks. The performance
of these machine learning algorithms was evaluated using evaluation parameters such as
accuracy, precision, recall, and F1-score.
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Table 4. Best parameters extracted from grid search for models used for ensemble.

Models Parameter Values

RF

n_estimators 10

n_jobs 2

criterion Gini

KNN

n_neighbors 5

leaf_size 30

P 2

metric Minkowski

SVM

kernal linear

C 1.0

random_state 0

The accuracy is dependent on the total number of predictions that are correctly made
by the models from all predictions and is calculated using Equation (5).

Accuracy =
TN + TP

TP + FN + TN + FP
(5)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative instances predicted by a model, respectively.

The recall is the number of TP divided by the number of TP plus FN. The highest
value of the score is 1, and the lowest value is 0.

Recall =
TP

TP + FN
(6)

Precision indicates the capability of a model to predict positive cases and is calculated
using TP divided by TP plus FP. The highest value of the score is 1, and the lowest value is 0.

Precision =
TP

FP + TP
(7)

F1 score is regarded as a more suitable performance evaluation metric as it considers
both precision and recall. It is more important than precision and recall, especially in sit-
uations where the dataset is imbalanced and the model may experience overfitting. It is
calculated using

F1score = 2 ∗ Recall ∗ Precision
Recall + Precision

(8)

Detection time presents the prediction rate of the model indicating how much time
(seconds) a model takes to detect threats and normal communication from the testing data
and is given in Table 3.

The throughput presents how many threats are detected by a machine learning model
in a unit time (second).

Throughput =
Numbero f threatsdetected

timeperiod
(9)

The latency shows the time (seconds) taken by the machine learning models to predict
a single attack.

4. Results and Discussion

The classification of threats related to SDN networks is proposed in this research.
The NSL-KDD dataset was used for experiments that consist of 148,517 records related
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to different threats of 23 categories. As well as the proposed RKSVM approach for threat
detection, several well-known machine learning models were employed in this research.
For experiments, the models were implemented using the SciKit-learn library of Python.
Experiments were performed using an Intel Core i7 machine running on Windows 20
operating system and 16GM RAM.

4.1. Experimental Results

The experiments were carried out using the ML models to analyze their performance
concerning network threat detection. The results of the proposed approach and other
machine learning models are given in Table 5. The highest accuracy for predicting different
types of attack varies between 97% and 99%, and different machine learning models show
different levels of performance regarding each threat category. The performances of the
models are better in the DoS and U2R classes. DoS attack is detected with the highest
accuracy of 99.7% from both the proposed approach and KNN and RF. Similarly, U2R is
detected with an accuracy of 99.7% from RKSVM and KNN.

Table 5. Experimental results of models in terms of accuracy.

Classes DT NB LG GB RF SVM KNN IoTTPS

DoS 89.2 86.7 99.4 99.5 99.7 99.3 99.7 99.7

Probe 96.5 97.8 98.3 98.7 99.2 98.4 99.0 99.2

U2R 99.5 97.2 99.6 99.5 99.6 99.6 99.7 99.7

R2L 87.3 93.5 96.5 97.2 97.1 96.7 96.7 97.2

The performances of models concerning precision are shown in Table 6. The results
demonstrate that, similar to the accuracy results, precision also varies with respect to each
class and each model. On average, the results for the DoS and Probe classes are better where
precision is concerned. Although the performance of RF and KNN is better, compared to
other models used in this study, the highest precision is obtained by the proposed approach,
except for RF, which achieved the best precision of 96.3% for the R2L class.

Table 6. Comparative performance analysis of proposed approach and machine learning models in
terms of precision.

Classes DT NB LG GB RF SVM KNN IoTTPS

DoS 88.0 98.8 99.1 99.2 99.7 99.1 99.6 99.8

Probe 92.7 97.3 97.04 97.4 98.3 96.9 98.6 98.7

U2R 90.6 60.1 93.0 87.7 94.2 91.0 93.1 94.3

R2L 87.55 89.0 94.4 95.3 96.3 94.8 95.3 95.8

The recall results for all models are provided in Table 7, which indicates the superior
performance of the proposed approach. All models seem to perform better, except for NB
and DT, which show poor recall results for the DoS and Probe classes in particular. Overall,
the proposed approach obtains better recall results for DoS, Probe, and R2L with a recall
higher than 96%. However, recall for U2R is 86.5%, indicating a higher number of FN for
this class.

The F1 score has been regarded as an important performance evaluation metric as it
takes into account both precision and recall and can show the performance of the model
regarding FN and FP. Table 8 shows class-wise results of all employed models. While the
performance of the models is good for the DoS, Probe, and R2L classes, the F1 score for the
U2R class is only 89.1%. This is the highest F1 score for this class achieved by the proposed
approach, and the other models have a low F1 score with 87.8% as the best from KNN.
Although the U2R class has a number of records similar to R2L, detection performance for
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this class is low. For the other classes, the proposed model performs better, with the highest
F1 score, except for R2L, where RF obtains the best F1 score of 96.9%.

Table 7. Performance analysis of proposed approach and several machine learning models in terms
of recall.

Classes DT NB LG GB RF SVM KNN IoTTPS

DOS 87.8 70.3 99.5 99.6 99.6 99.4 99.6 99.6

Probe 97.5 96.0 97.9 98.8 98.7 98.3 98.5 98.9

U2R 72.7 97.9 83.7 80.6 84.5 82.9 85.0 86.5

R2L 74.9 95.5 96.0 95.6 96.3 96.2 95.4 96.2

Table 8. Comparative analysis of proposed approach and several machine learning models in terms
of F1 score.

Classes DT NB LG GB RF SVM KNN IoTTPS

DoS 87.5 82.1 99.3 99.4 99.7 99.2 99.6 99.7

Probe 94.8 96.6 97.4 98.1 98.9 97.6 98.5 98.7

U2R 78.0 66.0 86.4 82.1 85.1 84.8 87.8 89.1

R2L 78.8 91.6 95.2 96.0 96.9 95.5 95.3 96.0

Class-wise results are also presented to analyze the performance of the machine
learning models for each type of attack. Figure 6 illustrates the results of the machine
learning models regarding the accuracy, precision, recall, and F1 score for DoS attacks.
On average, all models perform well for DoS attack, except for DT and NB, which show
lower scores for accuracy, recall, and F1 score. The best performance is obtained by the
proposed approach for DoS attacks with better accuracy, precision, and other metrics.

Figure 6. Experimental results of machine learning models to detect DoS attacks .

Experimental results for the Probe class for accuracy, precision, recall, and F1 scores
are given in Figure 7. For this attack, the performance of the models varies significantly
regarding all parameters. RF and the proposed approach show the best results for Probe
attack detection. DT and NB again show poor performance, especially concerning precision
and recall, respectively. The lowest precision and F1 scores are obtained from DT. Only RF,
KNN, and the proposed approach provide higher than 90% results for accuracy, precision,
recall, and F1 score.
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Figure 7. Experimental results of machine learning models to detect Probe attacks.

The results regarding the U2R and R2L attacks are presented in Figures 8 and 9,
respectively. The results indicate that the performances of the models are substantially
degraded for U2R attack detection. The overall scores for the evaluation parameters are
higher than 80% for all models except for DT and NB. NB shows the poorest precision and
F1 score, while the recall and F1 scores of DT are also lower than other models. For R2L
attacks, the performance of the models is better; even DT and NB perform well except for
recall and F1 score from DT, which is comparatively lower. The proposed model performs
well compared to the other employed models.

Figure 8. Experimental results of machine learning models to detect U2R attacks.

4.2. Discussions

DT is a tree-based model that consists of a number of nodes that contain data, a leaf
that contains final classification results, and a weighted link that connects the nodes. DT
does not perform well with the NSL-KDD dataset because it is sensitive to perturbations
and changes in the data can significantly affect tree formation. Similarly, DT can easily
overfit. The highest accuracy of 89.2% by DT is for the DoS class, which is lower than the
other models. For the Probe class, it obtains 96.5% accuracy, 92.71% precision, 97.5% recall,
and an F1 score of 94.84%. Its result for U2R is also better. However, for the R2L class, it
obtains an accuracy of 87.3%, precision of 87.55%, recall of 74.94%, and F1 score of 78.80%,
which are lower.
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Figure 9. Experimental results of machine learning models to detect R2L attacks.

The GBM is based on the concepts of bagging and boosting where several iterations
are performed by the GBM to extract the patterns from the dataset. The GBM randomly
selects the samples from the record and the remaining samples are reserved for further
iterations that probably increase the prediction accuracy. It shows better results than DT
and obtains better performance evaluation metrics for all classes.

The RF model is based on the structure of multiple decision trees. RF divides the
dataset and creates the decision tree for each sample set. Each decision tree extracts the
patterns according to the samples selected and performs predictions and extracts the
results. In the latter, the RF performs voting operations between all decision trees and
gives a prediction according to the averaging of all decision trees. The multiple tree-based
architectures enhance the classification predictions that allow the detection of threats more
effectively. Despite poor performance by the DT model, RF shows superior results for the
experiments carried out in this study.

SVM leverages the concept of hyperplane and divides the data into hyperplanes and
tries to increase the distance between class margins. According to the straight hyperplane,
the classification of the outlier values or threats is difficult to detect. Then a kernel is used
by the SVM to convert the non-linear hyperplane by converting the two-dimensional space
into three-dimensional space, which helps to enhance its performance. In this study, RF
shows better performance than the other models employed for the experiments.

RF divides the dataset and creates the decision tree for each sample set. In the latter,
RF performs voting operations for the final prediction. The multiple tree-based architecture
enhances the classification predictions that allow the more effective detection of threats.
In previous studies, RF was also proven to show superior performance for network attack
detection. Similarly, although KNN is a lazy learner, it has been proven to be better than
many complex models for network attack detection. It shows better performance when
the training data are noisy. Moreover, the number of training samples is large, which is
suitable for KNN.

SVM divides the data into hyperplanes and tries to increase the distance between
class margins. It is suitable when the data are high-dimensional, which is the case with the
dataset used in this study. RF can also handle high dimensional space very well, in addition
to a large number of training samples. Consequently, when these algorithms are joined as
an ensemble, they show better performance.

The proposed ensemble RKSVM model combines three individual models to enhance
threat prediction efficacy. The ensemble models, in which three machine learning models
are merged together to perform classification, tend to show better performance than indi-
vidual models. In the case of network threat detection, the performance of the proposed
RKSVM is also better than the other models. The accuracy results are shown in Table 8, and
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the highest results are achieved with the class DoS, with an accuracy of 99.8%, precision
99.8%, recall 99.6%, and F-measure 99.7%.

Security is a big issue in the IoT around the world among the many IoT devices. Secu-
rity challenges have developed through the rapidly increasing technologies and the low
knowledge about the advanced challenges that cause these problems of security. Some reg-
ulatory changes and profound security challenges are also involved in the security concerns.
Concerns for technical security are similar to smartphones, workstations, and conventional
servers, and these include forgetting about the default credentials changing, weak authen-
tication, the sending of unencrypted messages in the different devices, poor handling of
security updates, and SQL injections. The application of the proposed research will be
implemented in eldercare, healthcare and medicine, home and building automation, in-
dustrial applications, manufacturing and agriculture, and military applications. Moreover,
the proposed approach can be implemented in the industrial IoT sector. The implementa-
tion needs Raspberry Pie as a mini microprocessor that can store the trained model and can
control the IoT sensor-based network communication.

4.3. Validation of Proposed Approach

To further verify and validate the performance of the proposed approach, experiments
were performed using two additional datasets, the KDD dataset and the CIC-IDS 2017
dataset, that contain the same classes for network attacks. These benchmark datasets were
utilized for the validation of the proposed IoTTPS system. Experimental results for these
experiments are provided in Table 9. It shows the accuracy of network attack detection of
the proposed model. The results indicate that the model performs well for other datasets as
well, which shows its generalizability. The NSL-KDD dataset presents higher results than
the KDD and CIC-IDS 2017 datasets. The results for the KDD dataset are slightly poorer
than for other datasets; however, similar results are reported for the KDD dataset in the
existing literature.

4.4. Computational Complexity of Models

To analyze the computational complexity of the proposed approach and other models
used in this study, the detection time, throughput time, and latency of all models are
reported. These parameters are used with the definitions given in Table 10.

The computational complexity of the models is given in Table 11. The results indicate
that the proposed model has high computational complexity, which is due to its ensemble
nature where multiple models are combined to obtain a better threat detection accuracy.
We intend to reduce its computational time in the future.

Table 9. Comparative analysis of proposed IoTTPS on multiple datasets.

Parameter Classes NSL-KDD
Dataset KDD Dataset CIC-IDS 2017

Dataset

Accuracy

DOS 99.7 93.4 99.3

Probe 99.2 96.6 97.4

U2R 99.7 92.0 94.6

R2L 97.2 91.6 95.2

Precision

DOS 99.8 82.1 99.3

Probe 98.7 97.2 95.8

U2R 94.3 86.7 89.1

R2L 95.8 93.9 91.3
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Table 9. Cont.

Parameter Classes NSL-KDD
Dataset KDD Dataset CIC-IDS 2017

Dataset

Recall

DOS 99.6 94.3 96.7

Probe 98.9 97.3 95.3

U2R 86.5 92.4 89.9

R2L 96.2 93.4 95.2

F1 score

DOS 99.7 82.1 99.3

Probe 98.7 96.6 96.4

U2R 89.1 64.0 86.4

R2L 96.0 97.6 96.2

Table 10. Units used for computational complexity.

Metrics Units

Detection Time Time (seconds) taken by model to predict
testing data based on threats

Throughput Number of threats detected per second

Latency Time (seconds) taken by detection of the
single attack

Table 11. Computation cost of the proposed approach and machine learning models with NSL-
KDD dataset.

Models Classes Detection Time Throughput Latency

GBM

DOS 0.126007 136,270.1206 0.0156266

Probe 0.0370032 327,862.83852 0.016377

R2L 0.0330026 381,666.7257 0.0260016

U2R 0.0240008 407,401.6759 0.0156264

DT

DOS 0.0170013 1,009,976.2159 0.015991

Probe 0.011001 1,102,797.8008 0.0156259

R2L 0.01200175 1,049,513.36307 0.01562595

U2R 0.01000189 977,614.4671 0.0157036

NB

DOS 0.2400138 71,541.70841 0.0161867

Probe 0.0830039 146,161.6346 0.0159137

R2L 0.092005 186,631.1321 0.01562643

U2R 0.0710043 137,709.7937 0.0158147

LR

DOS 0.0130021 1,320,627.0098 0.01770687

Probe 0.00800156 1,516,203.2158 0.0159666

R2L 0.0140025 899,549.6957 0.01583218

U2R 0.0070016 1,396,530.2724 0.038001775

RF

DOS 0.038001 451,852.9759 0.32101

Probe 0.041002 295,887.7518 0.24401

R2L 0.030002 419,837.0379 0.06249

U2R 0.021001 465,578.7906 0.060003
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Table 11. Cont.

Models Classes Detection Time Throughput Latency

KNN

DOS 881.4291 19.48086 0.046877

Probe 645.59371 18.792004 0.046875

R2L 489.99926 25.70616 0.04687

U2R 379.42463 25.77059 0.038002

SVM

DOS 2.379104 7217.4211 0.015735

Probe 3.45194 3514.54465 0.015835

R2L 2.25552 5584.5189 0.060129

U2L 0.203546 48,038.2138 0.015887

Ensemble

DOS 859.04686 19.98843 0.062499

RKSVM

Probe 599.36881 20.24129 0.0468778

R2L 515.34198 24.44202 0.046875

U2R 379.880803 25.73965 0.046874

4.5. Comparison with Existing Approaches

Table 12 illustrates the comparative analysis of the proposed approach with existing
models. For this purpose, several existing models were selected. Only those studies that
utilized the same dataset were selected so that a fair comparison could be made. Perfor-
mance comparison indicates that the proposed approach outperforms existing models.
The proposed IoTTPS system with the utilization of the NSL-KDD dataset illustrates the
highest threat detection results.

Table 12. Comparative analysis of proposed approach with previous approaches.

Ref. Year Dataset Model Accuracy Precision Recall F1-Score

IoTTPS 2023 NSL-KDD
Ensembled

RKSVM
model

99.7% 99.8% 99.6% 99.7%

[62] 2022 NSL-KDD Multilayer
Perceptron 97.6% 97.9% 67.3% -

[63] 2022 NSL-KDD RF - 99.4% 99.3% 99.6%

[64] 2021 NSL-KDD
Test+

Hybrid
classifier 85.2% 86.5% 85.2% 84.9%

[65] 2021 NSL-KDD DSSTE-
AlexNet 82.8% 83.9% 82.7% 81.6%

[66] 2020 NSL-KDD AESMOTE 82.0% - - 82.4%

[68] 2020 NSL-KDD TIDCS 98.0% - - -

[69] 2019 NSL-KDD Adaboost
classifier 93.4% 96.1% 91.4% 93.7%

[70] 2019 NSL-KDD Multi tree
classifier 84.23% 86.4% 84.23% 83.6%

[71] 2019 NSL-KDD AE-RL 80.1% - - 79.4%

The IOTTPS system has been created to detect threats in IoT networks. The major goal
of this research is to build a system based on machine learning and increase threat detection
accuracy. The performance of the machine learning models is analyzed in this research
but still does not achieve much higher results with a single model. Instead of moving
toward deep learning or more complex algorithms, the efficiency of the machine learning
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algorithms is increased in this research. When the machine learning models are joined to
make an ensemble, time complexity may become higher than individual models because
all three model needs time to produce predictions. However, the accuracy is enhanced
compared to individual models. Thus, traditionally, it is a trade-off between accuracy and
computational complexity. For applications where enhanced accuracy is important such
as military systems and government systems, the proposed approach is best suited as it
provides much better results than other complex and low-accuracy-based systems [72–74].

5. Conclusions

IoT technology is growing very rapidly and becoming a part of the user’s daily
life. Due to its heterogeneous nature, an IoT network is susceptible to a large number
of network threats. The threat analysis in the IoT network is performed in this study
using the proposed IoTTPS system. Experiments are performed using the NSL-KDD
dataset that contains 23 different types of threats, which are categorized into four major
categories, DoS, Probe, R2L, and U2R. Experiments involve the implementation of the
proposed ensemble RKSVM model and several well-known machine learning models,
DT, NB, LR, RF, SVM, GBM, and KNN. The results demonstrate that the highest threat
detection accuracies achieved with the ensemble RKSVM model based on grid search and
cross-fold validation are 99.7%, 99.3%, 99.7%, and 97.8% for DoS, Probe, U2R, and R2L
attacks, respectively. This research aims to detect the threats in the IoT network, which is
successfully achieved. The enhancement in security based on the proposed research and
the prevention of cyber-attacks will enable users to trust the use of their IoT devices in
daily life.

Deep learning and transfer learning algorithms with genetic algorithms will be imple-
mented in the future to provide security in bigger networks. The major limitation of this
research is the time complexity. The ensemble RKSVM model is based on three machine
learning models. Every model in this ensemble method needs to produce a prediction to
apply an averaging method to calculate the final output prediction on test data, which
increases the time complexity of the proposed model. The transfer learning and deep
learning models will be used to create a model that will produce a prediction much faster
and more efficiently. We also intend to use Bayesian optimization to find the optimal
hyperparameter for the ensemble model in our future work.
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26. Pavlović, N.; Šarac, M.; Adamović, S.; Saračević, M.; Ahmad, K.; Maček, N.; Sharma, D.K. An approach to adding simple interface
as security gateway architecture for IoT device. Multimed. Tools Appl. 2021, 81, 36931–36946. [CrossRef]

27. Babun, L.; Denney, K.; Celik, Z.B.; McDaniel, P.; Uluagac, A.S. A survey on IoT platforms: Communication, security, and privacy
perspectives. Comput. Netw. 2021, 192, 108040. [CrossRef]

28. Yurekten, O.; Demirci, M. SDN-based cyber defense: A survey. Future Gener. Comput. Syst. 2021, 115, 126–149. [CrossRef]
29. Aldabbas, H.; Amin, R. A novel mechanism to handle address spoofing attacks in SDN based IoT. Clust. Comput. 2021, 24,

3011–3026. [CrossRef]
30. Rubí, J.N.S.; de Lira Gondim, P.R. IoT-based platform for environment data sharing in smart cities. Int. J. Commun. Syst. 2021,

34, e4515. [CrossRef]
31. Salem, O.; Alsubhi, K.; Shaafi, A.; Gheryani, M.; Mehaoua, A.; Boutaba, R. Man in the Middle Attack Mitigation in Internet of

Medical Things. IEEE Trans. Ind. Inform. 2021, 18, 2053–2062. [CrossRef]

http://dx.doi.org/10.1016/j.compeleceng.2022.108350
http://dx.doi.org/10.1016/j.resconrec.2020.105047
http://dx.doi.org/10.1007/s11276-020-02535-5
http://dx.doi.org/10.1016/j.gltp.2021.08.045
http://dx.doi.org/10.1109/JIOT.2021.3079916
http://dx.doi.org/10.1007/s12065-019-00291-w
http://dx.doi.org/10.9734/ajrcos/2021/v9i230218
http://dx.doi.org/10.1109/MCE.2019.2953740
http://dx.doi.org/10.1016/j.jisa.2017.11.002
http://dx.doi.org/10.1016/j.cosrev.2020.100357
http://dx.doi.org/10.1016/j.cosrev.2020.100318
http://dx.doi.org/10.1007/s11042-021-11389-8
http://dx.doi.org/10.1016/j.comnet.2021.108040
http://dx.doi.org/10.1016/j.future.2020.09.006
http://dx.doi.org/10.1007/s10586-021-03309-0
http://dx.doi.org/10.1002/dac.4515
http://dx.doi.org/10.1109/TII.2021.3089462


Sensors 2023, 23, 6379 23 of 24

32. Javanmardi, S.; Shojafar, M.; Mohammadi, R.; Nazari, A.; Persico, V.; Pescapè, A. FUPE: A security driven task scheduling
approach for SDN-based IoT–Fog networks. J. Inf. Secur. Appl. 2021, 60, 102853. [CrossRef]

33. Shafi, Q.; Qaisar, S.; Basit, A. Software Defined Machine Learning Based Anomaly Detection in Fog Based IoT Network. In
Proceedings of the International Conference on Computational Science and Its Applications, St. Petersburg, Russia, 1–4 July 2019;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 611–621.

34. Ahmed, S.M.; Rajput, A. Threats to patients’ privacy in smart healthcare environment. In Innovation in Health Informatics; Elsevier:
Amsterdam, The Netherlands, 2020; pp. 375–393.

35. Anthi, E.; Williams, L.; Javed, A.; Burnap, P. Hardening machine learning denial of service (DoS) defences against adversarial
attacks in IoT smart home networks. Comput. Secur. 2021, 108, 102352. [CrossRef]

36. Oladimeji, T.O.; Ayo, C.; Adewumi, S. Insider Threat Detection using Binary Classification Algorithms. IOP Conf. Ser. 2021,
1107, 12031. [CrossRef]

37. Doshi, R.; Apthorpe, N.; Feamster, N. Machine learning ddos detection for consumer internet of things devices. In Proceedings
of the 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 24 May 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 29–35.

38. Junejo, K.N.; Goh, J. Behaviour-based attack detection and classification in cyber physical systems using machine learning. In
Proceedings of the 2nd ACM International Workshop on Cyber-Physical System Security, Xi’an, China, 30 May 2016; pp. 34–43.

39. Nayak, J.; Naik, B.; Dash, P.B.; Vimal, S.; Kadry, S. Hybrid Bayesian optimization hypertuned catboost approach for malicious
access and anomaly detection in IoT nomalyframework. Sustain. Comput. 2022, 36, 100805. [CrossRef]

40. Jaafar, G.A.; Abdullah, S.M.; Ismail, S. Review of Recent Detection Methods for HTTP DDoS Attack. J. Comput. Netw. Commun.
2019, 2019, 1283472. [CrossRef]

41. Santos, R.; Souza, D.; Santo, W.; Ribeiro, A.; Moreno, E. Machine learning algorithms to detect DDoS attacks in SDN. Concurr.
Comput. 2020, 32, 1–14. [CrossRef]

42. Singh, K.; Singh, P.; Kumar, K. User behavior analytics-based classification of application layer HTTP-GET flood attacks. J. Netw.
Comput. Appl. 2018, 112, 97–114. [CrossRef]

43. Hameed, S.; Ali, U. HADEC: Hadoop-based live DDoS detection framework. EURASIP J. Inf. Secur. 2018, 2018, 11. [CrossRef]
44. Zhao, Y.; Zhang, W.; Feng, Y.; Yu, B. A Classification Detection Algorithm Based on Joint Entropy Vector against Application-Layer

DDoS Attack. Secur. Commun. Netw. 2018, 2018, 9463653. [CrossRef]
45. Sreeram, I.; Vuppala, V.P.K. HTTP flood attack detection in application layer using machine learning metrics and bio inspired bat

algorithm. Appl. Comput. Inform. 2019, 15, 59–66. [CrossRef]
46. Priyadarshini, R.; Barik, R.K. A deep learning based intelligent framework to mitigate DDoS attack in fog environment. J. King

Saud Univ. 2019, 34, 825–831. [CrossRef]
47. Praseed, A.; Thilagam, P.S. Modelling Behavioural Dynamics for Asymmetric Application Layer DDoS Detection. IEEE Trans. Inf.

Forensics Secur. 2020, 16, 617–626. [CrossRef]
48. Ashraf, I.; Park, Y.; Hur, S.; Kim, S.W.; Alroobaea, R.; Zikria, Y.B.; Nosheen, S. A survey on cyber security threats in IoT-enabled

maritime industry. IEEE Trans. Intell. Transp. Syst. 2022, 24, 2677–2690. [CrossRef]
49. Ashraf, I.; Narra, M.; Umer, M.; Majeed, R.; Sadiq, S.; Javaid, F.; Rasool, N. A deep learning-based smart framework for

cyber-physical and satellite system security threats detection. Electronics 2022, 11, 667. [CrossRef]
50. Ullah, F.; Naeem, H.; Jabbar, S.; Khalid, S.; Latif, M.A.; Al-Turjman, F.; Mostarda, L. Cyber security threats detection in internet of

things using deep learning approach. IEEE Access 2019, 7, 124379–124389. [CrossRef]
51. Anyanwu, M.N.; Shiva, S.G. Comparative analysis of serial decision tree classification algorithms. Int. J. Comput. Sci. Secur. 2009,

3, 230–240.
52. Troiano, L.; Scibelli, G. A time-efficient breadth-first level-wise lattice-traversal algorithm to discover rare itemsets. Data Min.

Knowl. Discov. 2014, 28, 773–807. [CrossRef]
53. Byers, J.; Flatté, M.; Scalapino, D. Influence of gap extrema on the tunneling conductance near an impurity in an anisotropic

superconductor. Phys. Rev. Lett. 1993, 71, 3363. [CrossRef]
54. Phyu, T.N. Survey of classification techniques in data mining. In Proceedings of the International MultiConference of Engineers

and Computer Scientists, Hong Kong, 18–20 March 2009; Volume 1.
55. Kulkarni, V.Y.; Sinha, P.K. Pruning of random forest classifiers: A survey and future directions. In Proceedings of the 2012

International Conference on Data Science & Engineering (ICDSE), Cochin, India, 18–20 July 2012; IEEE: Piscataway, NJ, USA,
2012; pp. 64–68.

56. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
57. Breiman, L. Bagging Predictors (Technical Report 421); University of California: Berkeley, CA, USA, 1994.
58. Lewis, D.D. Naive (Bayes) at forty: The independence assumption in information retrieval. In European Conference on Machine

Learning; Springer: Berlin/Heidelberg, Germany, 1998; pp. 4–15.
59. Domingos, P.; Pazzani, M. Beyond independence: Conditions for the optimality of the simple bayesian classifier. In Proceedings

of the 13th International Conference on Machine Learning, Bari, Italy, 3–6 July 1996; pp. 105–112.
60. Tan, S. An effective refinement strategy for KNN text classifier. Expert Syst. Appl. 2006, 30, 290–298. [CrossRef]
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