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Abstract: Adaptive equalization is crucial in mitigating distortions and compensating for frequency
response variations in communication systems. It aims to enhance signal quality by adjusting the
characteristics of the received signal. Particle swarm optimization (PSO) algorithms have shown
promise in optimizing the tap weights of the equalizer. However, there is a need to enhance the
optimization capabilities of PSO further to improve the equalization performance. This paper
provides a comprehensive study of the issues and challenges of adaptive filtering by comparing
different variants of PSO and analyzing the performance by combining PSO with other optimization
algorithms to achieve better convergence, accuracy, and adaptability. Traditional PSO algorithms often
suffer from high computational complexity and slow convergence rates, limiting their effectiveness
in solving complex optimization problems. To address these limitations, this paper proposes a set of
techniques aimed at reducing the complexity and accelerating the convergence of PSO.

Keywords: adaptive filtering; particle swarm optimization; bit error rate; signal quality

1. Introduction

Particle swarm optimization (PSO) is a computational optimization technique inspired
by the collective behavior of swarms. It was originally proposed by Kennedy and Eberhart
in 1995 [1] and has since become a popular and effective method for solving various
optimization problems [2]. PSO simulates the social behavior of a swarm of particles,
where each particle represents a potential solution in the search space [3]. The particles
move through the search space, adjusting their positions based on their own experience
and the experiences of their neighboring particles. The objective is to find the optimal
solution by iteratively updating the positions of the particles in search of better solutions.

This study makes significant contributions to the field of adaptive equalization by
exploring PSO techniques. Motivated by the need to enhance the optimization capabili-
ties of PSO in communication systems [4], the research aimed to address the limitations
of traditional PSO algorithms, such as slow convergence rates and high computational
complexity [5]. The study investigated the combination of PSO with other optimization
algorithms, adaptive mechanisms, multi-objective optimization, the constriction factor
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approach, and the dynamic neighborhood topology [6]. The primary research question
driving this study is how to improve PSO for adaptive filters in terms of convergence, accu-
racy, and adaptability. By answering this question, the research provides valuable insights
and recommendations to optimize the tap weights of adaptive filters, thereby enhancing
signal quality and mitigating distortions in communication systems. The primary research
questions driving this study are as follows:

• RQ1: How can the optimization capabilities of PSO be further enhanced for adaptive
filters in the context of equalization?

• RQ2: How does the resemblance of PSO with algorithms such as the the least mean
squares (LMS) and recursive least squares (RLS) contribute to the understanding and
development of adaptive filters?

• RQ3: What are the recent advancements in PSO algorithms, such as ring topology,
dynamic multi-swarm PSO, and fully informed PSO, and how do they improve the
performance of adaptive filtering?

• RQ4: How does the dynamic neighborhood concept in PSO contribute to better
exploration and exploitation of the search space?

• RQ5: What are the benefits and challenges of hybridization techniques, such as hybrid
PSO and cooperative PSO, in improving the optimization capabilities of PSO?

• RQ6: What are the time and space complexity considerations of PSO algorithms,
and how do they impact the scalability and efficiency of the optimization process?

• RQ7: What are the limitations and challenges of PSO to achieve a better convergence rate?

The study sought to explore and propose various techniques to improve the con-
vergence, accuracy, and adaptability of PSO algorithms. The research investigated the
combination of PSO with other optimization algorithms, the introduction of adaptive
mechanisms, the application of multi-objective optimization, and the utilization of the
constriction factor approach and dynamic neighborhood topology. By answering these re-
search questions, the study aimed to provide insights and recommendations for optimizing
the tap weights of adaptive filters using PSO in communication systems.

This review is further divided into six parts. Section 2 elaborates on the techniques
used for adaptive equalization. PSO, its time complexity, and its resemblance to other
optimization algorithms are discussed in Section 3. Section 4 provides a comprehensive
overview of PSO approaches used for adaptive filtering including the comparative analysis
of PSO variants. Hybrid PSO, the best-fit PSO solution for adaptive filtering, is discussed
in Section 5 concerning its advantages and disadvantages. In the end, the conclusion and
future directions are given in Section 6.

Section 2 is dedicated to addressing RQ1 and RQ2. The answers to RQ3 and RQ4 can
be found in Section 3. Section 4 presents the discussions regarding RQ5. Lastly, Section 5
delves into the responses to RQ6 and RQ7.

2. Techniques Used for Adaptive Equalization

Adaptive equalization is a fundamental signal-processing technique utilized in numer-
ous communication systems to improve the quality and reliability of transmitted data [7].
It serves as a crucial step in combating the detrimental effects of channel impairments, such
as multipath propagation and frequency response variations, which can introduce inter-
symbol interference (ISI) and degrade the received signal quality [8,9]. The primary goal of
adaptive equalization is to dynamically adjust the characteristics of the received signal to
closely align with the desired signal [10], effectively mitigating distortions and restoring
the fidelity of the transmitted data [11]. To achieve adaptive equalization, a diverse range
of techniques has been developed [12], each with its own approach and advantages. These
techniques are designed to adaptively modify the parameters or coefficients of the equal-
izer based on the characteristics of the channel and the received signal. By continuously
monitoring and updating the equalizer, it can adapt to the changing conditions of the
communication channel and optimize its performance accordingly.
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The field of adaptive equalization has witnessed significant advancements and innova-
tion over the years [13], driven by the increasing demands for high-speed data transmission
and reliable communication systems [14,15]. Researchers and engineers have explored
various approaches including algorithmic optimization techniques, machine learning algo-
rithms, and advanced signal-processing methods, to enhance the performance of adaptive
equalization [16,17]. These techniques aim to strike a balance between computational
complexity, convergence speed, and adaptability to different channel conditions, providing
robust and efficient solutions for adaptive equalization in a wide range of applications [18].
The choice of adaptive equalization technique depends on several factors, such as the
specific characteristics of the channel [19], the desired performance metrics [20], the avail-
able computational resources, and the trade-off between complexity and effectiveness [21].
As the field continues to evolve, researchers are constantly pushing the boundaries of
adaptive equalization techniques, seeking novel approaches to address the challenges
posed by emerging communication technologies and ever-changing channel conditions.
By harnessing the power of adaptive equalization, communication systems can achieve
higher data rates, improved spectral efficiency, and enhanced reliability, paving the way
for seamless and efficient transmission of information in diverse environments. Adaptive
equalization can be achieved using various techniques [22], each with its unique approach
and advantages. Some of the techniques include LMS, RLS, PSO, genetic algorithms (GAs),
and deep learning, which are discussed below.

2.1. Least-Mean-Squared Error

LMS is an adaptive filtering algorithm widely used for adaptive equalization [23].
It aims to minimize the mean squared error between the desired signal and the filter
output [24]. LMS updates the filter coefficients iteratively based on the instantaneous
estimation error and the input signal [25–27]. In the context of adaptive equalization, LMS
is employed to adjust the equalizer’s coefficients and compensate for distortions caused
by the channel [28]. By continuously adapting the filter coefficients, LMS enables the
equalizer to adapt to changing channel conditions and optimize its performance [29]. LMS
is known for its simplicity and ease of implementation, making it a popular choice in
various communication systems.

2.2. Recursive Least Squares

RLS is another popular adaptive filtering algorithm used for adaptive equalization [30].
It recursively updates the filter coefficients based on the instantaneous estimation error
and the input signal [31]. RLS utilizes a matrix inversion technique to achieve optimal
filter updates [32]. In the context of adaptive equalization, RLS offers fast convergence and
provides accurate filter estimation [33]. However, RLS has higher computational complex-
ity and memory requirements compared to LMS [34]. Despite these limitations, RLS is
preferred in applications that require rapid convergence and optimal filter updates [35].

2.3. Particle Swarm Optimization

PSO is a population-based stochastic optimization algorithm inspired by social behav-
ior [36]. In the context of adaptive equalization, PSO is utilized to optimize the equalizer’s
coefficients by iteratively exploring a multidimensional search space [37]. PSO works by
simulating the movement of particles, where each particle represents a potential solution.
By leveraging the best experiences of the swarm and their own experiences, particles
dynamically adjust their positions in the search space to find optimal solutions [38]. PSO
provides a global search capability, allowing it to handle complex and nonlinear optimiza-
tion problems [39]. This makes PSO suitable for adaptive equalization tasks that require
optimal filter coefficients and enhanced convergence [39]. The detailed analysis of the PSO
algorithm and its variants for adaptive equalization is discussed in later sections.
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2.4. Genetic Algorithms

The GA is an optimization technique inspired by the process of natural selection and
genetics [40]. In the context of adaptive equalization, the GA is employed to evolve a
population of candidate solutions towards the optimal solution [41]. The GA involves the
use of selection, crossover, and mutation operators to iteratively improve the quality of
solutions [42]. The GA can handle complex optimization problems and provides a diverse
set of solutions [43]. By using appropriate genetic operators and fitness evaluation criteria,
the GA can effectively optimize the equalizer’s coefficients for adaptive equalization.

2.5. Deep Learning

Deep learning techniques, specifically deep neural networks, are increasingly used
for adaptive equalization tasks [44]. Deep learning approaches involve training neural
networks to learn the mapping between the received signal and the desired signal [45].
In the context of adaptive equalization, deep neural networks can model the complex and
nonlinear relationship between the input signal and the equalized output [46]. By utilizing
large amounts of training data and employing sophisticated network architectures, deep
learning techniques can adapt to a wide range of channel characteristics and achieve
superior equalization performance [47,48]. A deep learning approach requires significant
computational resources, substantial training data, and careful regularization techniques to
mitigate overfitting [49]. Table 1 provides a comprehensive overview of the pros and cons
of techniques used for adaptive equalization.

Table 1. Techniques used for adaptive equalization.

Technique Limitations Advantages

LMS • Susceptible to getting stuck in local optima [50].

• Simplicity and ease of implementation [25];
• Low computational complexity [26];
• Achieves significant error reduction and

convergence with reasonable
computational resources.

RLS

• High computational complexity and memory
requirements [34];

• Sensitive to numerical issues due to
matrix inversion.

• Fast convergence rate;
• Provides optimal filter updates [31];
• Achieves improved convergence speed and

provides accurate filter estimation.

PSO
• May suffer from premature convergence and

lack of diversity [51];
• Requires fine-tuning of algorithm parameters.

• Provides global search capability;
• Can handle complex and nonlinear optimization

problems;
• Achieves optimal filter coefficients with

enhanced convergence and improved
equalization performance [38].

GA

• Convergence speed may be slower compared
to other algorithms;

• Requires a suitable representation of solutions
and the design of appropriate genetic operators.

• Can handle complex optimization problems;
• Provides a diverse set of solutions;
• Achieves improved equalization performance

with diverse and globally optimal solutions [43].

Deep Learning
• Requires a large amount of training data [52];
• May suffer from overfitting.

• Can adapt to complex and nonlinear
channel characteristics;

• Provides high flexibility in modeling the
equalization process [46];

• Achieves superior equalization performance with
accurate mapping of the
input–output relationship.
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3. Particle Swarm Optimization
3.1. Standard PSO Algorithm

PSO is an optimization method inspired by swarm behavior observed in nature, where
a population of particles represents the optimization parameters [53]. These particles collec-
tively search for optimal solutions within a multi-dimensional search space. The objective
of the algorithm is to converge toward the best-possible values for each parameter [54].
The fitness of each particle is evaluated using a fitness function, which quantifies the quality
of the particle’s solution estimate [5,55]. Each particle maintains two state variables: its
position (x(i)) and velocity (v(i)), where i represents the iteration index. The fitness of a
particle is determined by evaluating a cost function associated with its solution estimate.
Through information sharing, each particle combines its own best solution with the best
solution found by the entire swarm, adjusting its search pattern accordingly. This iterative
process continues until an optimal solution is reached or a termination criterion is met.
The equation of the standard PSO algorithm is given as

vd
k(i + 1) = vd

k(i) + c1.r1, k(i).(pd
k − xd

k (i)) + c2.r2, k(i).(gd − xd
k (i)) (1)

xd
k (i + 1) = xd

k (i) + vd
k(i + 1) (2)

The equation represents the velocity and position update mechanism in PSO. The ve-
locity is updated by combining the particle’s previous velocity, the cognitive component
based on its personal best solution, and the social component based on the global best solu-
tion found by the swarm. This combination allows the particle to maintain its momentum,
explore its individual best solution, and be influenced by the overall best solution. The up-
dated velocity is then used to update the particle’s position, determining its next location
in the search space. The updated version of PSO having an inertia term is given below:

vd
k(i + 1) = vd

k(i).r1, k(i).(pd
k − xd

k (i)) + c2.r2, k(i).(gd − xd
k (i)) (3)

where c1 represents the cognitive term, c2 represents the social term, d is the dimension
of the particles, Pk is the local best, g is the global best of the particle, and r1 and r2 are
the random variables, their range lying between 0 and 1 [56], while the momentum of a
particle is controlled by inertia, represented by w.

When the inertia of the particle is zero, the model will only explore and become
independent of past values. The convergence rate of the PSO algorithm refers to the speed
at which the algorithm converges toward an optimal solution [57]. The convergence rate of
PSO can be influenced by various factors, including problem complexity, population size,
inertia weight, acceleration coefficients, and termination conditions [58]. The flow chart of
the standard PSO algorithm mentioned in [59] is shown in Figure 1.

PSO has the potential for fast convergence due to its ability to share information among
particles in the swarm [60]. Collective knowledge sharing enables particles to converge
towards promising regions of the search space [61]. However, the convergence rate of
standard PSO can be affected by the balance between exploration and exploitation. If the
exploration is too dominant, the algorithm may take longer to converge. On the other
hand, if the exploitation is too dominant, the algorithm may converge prematurely to local
optima [62]. To enhance the convergence rate, several strategies can be employed. One
approach is to adaptively adjust the parameters of the algorithm during the optimization
process. This includes modifying the inertia weight and acceleration coefficients to balance
exploration and exploitation at different stages of the optimization [63]. Different variants
of PSO algorithms exist in the literature, shown in Figure 2, to achieve better complexity
and faster convergence.



Sensors 2023, 23, 7710 6 of 28

Figure 1. Flow chart of standard PSO algorithm.

Figure 2. Variants of particle swarm optimization.

3.2. Resemblance of Artificial Intelligence and PSO

PSO and artificial intelligence (AI) are two distinct computational approaches with
both similarities and differences [64]. Both PSO and AI share the common goal of solving
complex problems and optimizing system performance. They rely on algorithms and
techniques to learn from data, make decisions, and improve overall performance. Fur-
thermore, both PSO and AI have versatile applications across various domains, including
optimization, pattern recognition, decision-making, and control systems. There are notable
differences between PSO and AI. PSO is a specific optimization algorithm inspired by the
collective behavior of bird flocks or fish schools [65]. It is a population-based metaheuristic
algorithm that iteratively adjusts the positions of particles in search of the optimal solution.
On the other hand, AI is a broader field encompassing various techniques, including but
not limited to PSO, such as neural networks, genetic algorithms, and expert systems [66].
While PSO is primarily designed for optimization problems and focuses on finding the best
solution within a given search space, AI encompasses a wider range of techniques. These
techniques can include machine learning, natural language processing, robotics, and more.
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AI techniques can be applied to various problem domains [67], not necessarily limited to
optimization. PSO operates based on the principles of collective intelligence and social
behavior, where particles communicate and learn from each other to find the best solution.
In contrast, AI approaches can involve learning from data, simulating human cognitive
processes, or mimicking intelligent behavior using different algorithms and methodologies.

3.3. Resemblance with Least Mean Square and Recursive Least Squares

The PSO, LMS, and RLS algorithms share certain resemblances in terms of their
learning mechanisms and optimization objectives. PSO is an algorithm where particles
within a swarm collectively explore and exploit the search space to find optimal solutions.
Similarly, both the LMS and RLS algorithms are adaptive filtering techniques used in signal
processing and parameter estimation [68]. They aim to adjust the internal parameters
iteratively to minimize the error between the predicted and actual outputs.

One resemblance between PSO, LMS, and RLS is their learning mechanism. In PSO,
particles adjust their positions and velocities based on their individual experiences and the
collective knowledge of the swarm [69]. This learning process allows particles to explore
the search space and exploit promising regions. Similarly, in LMS and RLS, the algorithms
update their weight vectors or coefficients based on the input data and the discrepancy
between the predicted and actual outputs. This iterative learning mechanism in all three
algorithms enables them to converge toward optimal solutions or parameter estimates.

3.4. Applications of PSO

Due to advancements in and modifications of PSO, various applications have been
found in the literature [70] due to its ability to efficiently search for optimal solutions. PSO
can be applied to optimize mathematical functions with multiple variables. By exploring
the search space, particles can locate the global minimum or maximum of a function.
This application is particularly useful in fields such as engineering design, data analysis,
and financial modeling.

In image and signal processing, PSO has been employed for image and signal pro-
cessing tasks [71]. It can optimize parameters in image reconstruction, denoising, feature
extraction, and object recognition. PSO algorithms have shown promising results in opti-
mizing parameters for image- and signal-processing techniques, enhancing the quality and
efficiency of these processes [72].

PSO can be used to train the weights and biases of neural networks. It has been
employed as an alternative to traditional optimization algorithms, such as backpropagation,
to improve the training process and avoid local optima. PSO-based training algorithms
can enhance the convergence speed and accuracy of neural networks, making them more
effective in pattern recognition, classification, and prediction tasks. They are also used to
solve optimization problems in power systems [70]. They can optimize various aspects
such as power flow, unit commitment, economic dispatch, and capacitor placement. PSO-
based approaches enable efficient utilization of power resources, leading to improved
power system operation, reduced costs, and enhanced stability. They can be used for
feature selection in machine learning and data-mining tasks. By selecting a subset of
relevant features, PSO helps in dimensionality reduction, improving classification accuracy
and reducing computational complexity. This application is particularly useful in areas
such as text mining, bioinformatics, and image recognition [73].

PSO is also used to optimize vehicle-routing problems, including route planning,
delivery scheduling, and fleet management. By considering factors such as distance, ca-
pacity, and time constraints, PSO algorithms can determine efficient routes and schedules,
minimizing transportation costs and improving logistics operations. Another application
of PSO in electronics is in the optimization of antenna design [74]. Antennas are crucial
components in wireless communication systems, and their performance greatly impacts
signal reception and transmission. Moreover, in radar waveform design, PSO can opti-
mize the characteristics of radar waveforms, such as pulse duration, modulation schemes,
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and frequency characteristics, to enhance target detection, resolution, and interference miti-
gation. By iteratively adjusting particle positions representing waveform parameters, PSO
can efficiently explore the design space and converge on optimal solutions that maximize
radar performance. This enables radar systems to improve their capabilities in detecting
and tracking targets, reducing interference, and enhancing overall operational efficiency.

3.5. Time and Space Complexity of PSO

In terms of time complexity, the main computational cost of PSO lies in evaluating the
objective function for each particle in each iteration. The objective function represents the
problem to be optimized and can vary in complexity depending on the problem domain.
Therefore, the time complexity of PSO is closely related to the evaluation time of the
objective function [75]. In each iteration, all particles need to evaluate their positions,
update their personal bests and the global best, and adjust their velocities and positions.
This process continues until a termination condition is met. The number of iterations
required for convergence depends on various factors such as the problem complexity,
the size of the search space, and the convergence speed of the swarm [76]. Generally,
the time complexity of PSO is considered to be moderate, as it typically requires a reasonable
number of iterations to converge to an acceptable solution [77]. The greater number of
iterations leads to the requirement of large memory. PSO requires memory to store the
positions, velocities, personal bests, and global best of each particle in the swarm [78].
The amount of memory required is proportional to the population size, which is typically
determined by the problem being solved. PSO may also require memory to store auxiliary
variables, such as acceleration coefficients and parameters controlling the swarm behavior.
The space complexity of PSO is, therefore, determined by the memory requirements for
storing the swarm’s state and other relevant variables. The space complexity is generally
considered to be reasonable, as it scales linearly with the population size and does not
depend on the size of the search space. Figure 3 shows the improvements in PSO over time
to quickly converge to the optimal solution.

Figure 3. Convergence improvements of different variants of PSO.
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3.6. Recent Advancements in PSO for a Better Convergence Rate

In recent years, significant advancements have been made for PSO, enhancing its
performance and expanding its applications [73]. These advancements have focused on
addressing various challenges and improving the algorithm’s effectiveness. One notable
advancement is the development of techniques to handle large-scale optimization prob-
lems [79]. Researchers have devised parallel and distributed PSO algorithms, which utilize
multiple computing resources to tackle computationally intensive tasks efficiently [80].
This advancement has opened the door to optimizing complex problems that were pre-
viously unfeasible with traditional PSO approaches. Another noteworthy development
is the integration of PSO with machine learning techniques [81]. By combining PSO with
algorithms such as neural networks or deep learning models, the optimization process
becomes more robust, enabling the solution of intricate problems and improving prediction
tasks. Additionally, self-adaptive PSO algorithms have emerged, allowing for dynamic
adjustments of algorithm parameters during optimization. These algorithms utilize adap-
tive mechanisms to fine-tune parameters based on the particles’ performance, leading to
improved convergence and solution quality. These advancements in PSO continue to push
the boundaries of optimization capabilities, making it a valuable tool for tackling real-world
challenges. A brief overview of the advancements in the PSO algorithm is presented in
Table 2. Over time, different variants of the PSO algorithm have been introduced, which
are discussed in the subsequent sections.

Table 2. Advancements in the PSO algorithm.

Year Advancement

1995 Introduction of PSO algorithm by Kennedy and Eberhart [1,82]

1997 Inclusion of inertia weight to balance exploration and exploitation [83]

1998 Exploration of PSO variants such as constriction factor approach [84]

1999 Incorporation of adaptive parameter settings for improved performance [85]

2001 Multi-objective PSO developed for handling optimization problems with multiple conflicting objectives [86]

2003 Hybridization of PSO with other metaheuristic or local search algorithms [87]

2004 Introduction of dynamic PSO variants to adapt to changing environments [88]

2006 Application of PSO in solving complex real-world problems, such as the optimization of neural networks and data
clustering [89]

2008 Development of parallel and distributed PSO algorithms for enhanced computational efficiency [90]

2010 Integration of PSO with machine learning techniques for improved optimization and prediction tasks [91]

2012 Self-adaptive PSO algorithms introduced to dynamically adjust algorithm parameters during optimization [92]

2014 Improved PSO variants focusing on handling dynamic and uncertain environments [93]

2016 Application of PSO in feature selection, image processing, and bioinformatics problems [94]

2018 Exploration of hybrid PSO algorithms with deep learning models for enhanced optimization and decision-making [95,96]

2020 Advancements in multi-objective PSO algorithms for solving complex optimization problems with conflicting objectives [97]

2022 Development of PSO variants incorporating social-network-inspired behaviors for collective decision-making and
coordination [98]

3.6.1. Ring Topology in Particle Swarm Optimization

The ring topology in PSO is a variation of the algorithm where the particles are
arranged in a circular ring structure instead of a fully connected network [99]. Figure 4
shows the settings of the ring topology in PSO. In this topology, each particle is only
connected to its immediate neighbors, creating a cyclic structure [100]. In the ring topology,
the communication and information sharing among particles are limited to the adjacent
neighbors. This arrangement allows for a more-localized interaction, as each particle only
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exchanges information with its neighbors, rather than the entire swarm [101]. The neighbor
particles influence the velocity and position updates of a given particle. During each
iteration, the particle evaluates its fitness based on the objective function and updates its
personal best position. It then exchanges information with its neighbors, considering both
its own best position and the best position found by its neighbors. The particle’s velocity
and position are updated using the information obtained from these local interactions [102].
In the ring topology, the updating equation for velocity and position remains the same as
in the standard PSO algorithm. However, the difference lies in the information-sharing
process, where particles only consider the personal best position and the best position of
their adjacent neighbors when updating their velocity and position [103].

Figure 4. Ring topology PSO algorithm.

3.6.2. Dynamic Multi-Swarm Particle Swarm Optimization

Dynamic multi-swarm PSO is an extension of the standard PSO algorithm that incor-
porates the concept of multiple swarms to improve optimization performance in dynamic
environments [104,105]. Unlike the standard PSO, where all particles belong to a single
swarm, dynamic multi-swarm PSO divides the population into multiple subgroups or
swarms, each with its own characteristics and behavior [106], as shown in Figure 5. In this
approach, each swarm operates independently, with its own set of particles exploring
the search space. The swarms can be formed based on different criteria, such as spatial
division or clustering techniques [107]. Each swarm maintains its own local best positions
(pbest) and global best position (gbest), representing the best solutions found within the
swarm and the overall best solution obtained among all swarms, respectively. The use
of multiple swarms in dynamic multi-swarm PSO provides several advantages [108]. It
allows for a more-distributed exploration of the search space, enabling the algorithm to
better handle dynamic changes and avoid being trapped in local optima [109]. The dynamic
reconfiguration of swarms facilitates adaptation to changes and improves the algorithm’s
robustness and responsiveness.
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Figure 5. Dynamic multi-swarm PSO.

3.6.3. Fully Informed Particle Swarm Optimization

Fully informed particle swarm optimization (FIPS) enhances the communication and
information exchange among particles within a swarm [110]. In FIPS, each particle not only
considers its personal best solution (pbest) and the global best solution (gbest), but also
incorporates information from the best solutions of its neighboring particles. This fully
informed approach allows for a more-comprehensive exploration of the search space and
can lead to improved optimization performance. The communication topology can take
different forms, such as a fully connected network or a spatially defined neighborhood
structure [111]. Each particle maintains a set of information about its neighbors’ best solu-
tions, known as the “flock” information. This flock information consists of the position and
fitness values of the neighboring particles’ best solutions. The fully informed communica-
tion mechanism in FIPS facilitates cooperative interactions among particles, enabling them
to share valuable information and guide each other toward promising regions in the search
space [112]. This enhanced communication promotes a balance between exploration and
exploitation, helping to avoid premature convergence to sub-optimal solutions.

3.6.4. Dynamic Neighborhood in Particle Swarm Optimization

The dynamic neighborhood in PSO is an adaptive mechanism that allows particles to
adjust their communication network or neighborhood structure during the optimization
process [113]. Unlike the traditional fixed neighborhood approach, where each particle
interacts with a fixed set of neighbors, the dynamic neighborhood enables particles to
dynamically form and update their local neighborhoods based on the problem dynamics or
specific optimization requirements [114]. The neighborhood structure is not predetermined,
but evolves over time. Initially, particles are assigned to random neighborhoods or a
predefined initial configuration [115]. As optimization progresses, particles continuously
evaluate their performance and exchange information with their neighbors. Based on
this information, particles may reconfigure their neighborhoods by adding or removing
neighboring particles, thereby dynamically adjusting the communication network [116].

3.6.5. Hybridization in Particle Swarm Optimization

Hybridization in PSO (HPSO) refers to the integration of PSO with other optimization
techniques or problem-specific heuristics to enhance its performance and overcome its
limitations [117,118]. By combining the strengths of multiple algorithms, HPSO aims to
achieve improved exploration and exploitation capabilities, increased convergence speed,
and better overall solution quality [119]. One common approach is to combine PSO with
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local search methods, such as gradient descent or hill climbing, to refine the solutions
obtained by PSO [120]. This combination allows for a more-thorough exploration of the
search space and can help escape local optima. HPSO can be customized based on the
specific characteristics of the problem domain. Problem-specific heuristics or knowledge
can be incorporated to guide the search process. The flow chart of the HPSO algorithm for
adaptive equalization is shown in Figure 6.

Figure 6. Flow chart of hybrid PSO algorithm.

3.6.6. Cooperative Particle Swarm Optimization

Cooperative PSO (CPSO) is an extension of the standard PSO algorithm that promotes
collaboration and information sharing among multiple sub-swarms or groups of parti-
cles [121]. Figure 7 shows the graphical presentation of CPSO working. In cooperative
PSO, instead of having a single global best solution for the entire swarm, each sub-swarm
maintains its own local best solution, and particles from different sub-swarms communicate
and cooperate to collectively search for optimal solutions [122]. The sub-swarms operate
independently, exploring different regions of the search space. Periodically, particles ex-
change information about their best solutions with particles from other sub-swarms [123].
This information sharing allows particles to gain insights from successful regions discov-
ered by other sub-swarms, promoting exploration beyond local optima and facilitating a
more-thorough exploration of the search space.
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Figure 7. Flow chart of the cooperative PSO algorithm.

3.6.7. Self-Organizing Hierarchical Particle Swarm Optimization

In this approach, particles are organized into a hierarchical structure, where higher-
level particles oversee the behavior of lower-level particles [124]. This hierarchical arrange-
ment enables a more-efficient search process by coordinating the exploration of different
regions of the search space. It is an advanced variant of the standard PSO algorithm, which
introduces a hierarchical organization among particles to enhance their exploration and
exploitation capabilities [125]. The higher-level particles guide the lower-level particles
based on their own experiences and the information they receive from the lower-level
particles [126]. The higher-level particles take on a supervisory role, adjusting the influence
of different components in the PSO equation to balance global and local search tenden-
cies [127]. They communicate with and provide guidance to the lower-level particles,
influencing their search patterns and facilitating the discovery of promising regions. This
allows for a distributed and coordinated exploration, as different levels of particles focus on
different regions and scales within the search space [128,129]. The hierarchical organization
helps to mitigate the risk of premature convergence and aids in escaping local optima by
facilitating exploration in unexplored regions.

3.6.8. Comprehensive Learning Particle Swarm Optimization

Comprehensive learning PSO (CLPSO) is an advanced variant of the standard PSO
algorithm that introduces a comprehensive learning strategy [130]. In CLPSO, particles
not only learn from their personal best and global best solutions, but also learn from other
randomly selected particles within the swarm. This comprehensive learning mechanism
allows for a broader exploration of the search space and promotes the exchange of valuable
information among particles. Incorporating knowledge from multiple sources enhances
the diversity of search trajectories, facilitates the discovery of new regions, and improves
the convergence speed and solution quality [131]. The comprehensive learning strategy in
CLPSO enables particles to make more-informed decisions during the optimization process,
leveraging the collective intelligence of the swarm to achieve better performance in solving
complex optimization problems.

4. PSO Techniques for Adaptive Equalization

PSO variants have been extensively utilized to enhance adaptive equalization in com-
munication systems. These variants aim to improve the optimization capabilities of PSO
algorithms and enable better performance of adaptive filters [118]. Dynamic multi-swarm
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PSO introduces multiple swarms dynamically adapting to different regions of the search
space [132]. By assigning specific areas of exploration to each swarm, this variant efficiently
explores and exploits the equalizer’s tap weight space, making it suitable for handling
complex frequency response variations and mitigating distortions [133]. Another variant,
FIPS, enhances information exchange among particles by allowing them to communicate
with all others in the swarm. This global information sharing promotes better explo-
ration of the search space, leading to improved convergence and accuracy in adaptive
equalization tasks [133].

HPSO combines PSO with other optimization algorithms such as the GA or simulated
annealing (SA) [134]. This integration enables leveraging the strengths of different algo-
rithms [135], allowing efficient navigation of the tap weight space and achieving improved
convergence and adaptation in the presence of frequency response variations [136]. Coop-
erative PSO introduces cooperation mechanisms among particles, facilitating information
exchange and adaptation based on shared knowledge. In adaptive equalization, coopera-
tive PSO enhances exploration and adaptation capabilities, particularly when dealing with
varying channel conditions [137]. Self-organizing hierarchical PSO introduces a hierarchical
structure among particles, promoting effective exploration and exploitation within local-
ized regions of the search space. This variant adapts to different subsets of the tap weight
space, enhancing adaptability to varying channel conditions and improving equalization
performance. Lastly, CLPSO incorporates a learning mechanism where particles adapt their
behavior based on their own experiences and the best experiences of the swarm. By com-
bining personal and swarm knowledge, CLPSO achieves faster convergence, improved
exploitation of promising solutions, and better adaptation to frequency response variations
in adaptive equalization tasks [138]. These PSO variants, with their unique characteristics
and capabilities, have been successfully applied in adaptive equalization to optimize tap
weights and enhance convergence rates, accuracy, and adaptability, ultimately improving
the overall signal quality in communication systems [139].

4.1. Comparative Study of PSO Variants for Adaptive Filtering

PSO offers various enhancements and variations that can be applied to improve its
performance and applicability in different domains. The ring topology in PSO enables
particles to communicate and share information with their immediate neighbors, facilitat-
ing local exploration and exploitation. Dynamic multi-swarm PSO divides the population
into multiple swarms that adapt dynamically to explore different regions of the search
space, achieving a balance between exploration and exploitation. Fully informed PSO
enhances the global exploration capability by allowing particles to have knowledge of the
best solution found by their neighbors. Dynamic neighborhood PSO allows particles to
change their set of neighbors dynamically, improving adaptability to changing problem con-
ditions. The hybridization of PSO with other optimization techniques or problem-solving
methods combines the strengths of different algorithms, leading to robust optimization in
complex problem domains. Cooperative particle swarm PSO involves multiple swarms
working together, facilitating knowledge exchange and cooperative behavior to tackle
large-scale optimization problems. Self-organizing hierarchical PSO organizes particles in
a hierarchical structure, allowing for efficient exploration and coordination across different
levels. Comprehensive learning in PSO incorporates additional learning mechanisms or
problem-specific knowledge, enhancing the algorithm’s efficiency and convergence toward
optimal solutions. These enhancements and variations in PSO broaden its capabilities and
make it applicable to a wide range of optimization problems across diverse domains. HPSO
combines the strengths of PSO with other optimization techniques or problem-solving
methods, making it a powerful and versatile approach for solving complex optimization
problems. While it is not accurate to claim that hybrid PSO is universally better than all
other optimization methods, it offers several advantages that make it highly effective in
many scenarios. A critical summary of the advantages and limitations of PSO variants is
provided in Table 3.
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Table 3. PSO variants advantages and limitations for adaptive filtering.

Topic Advantages Limitations

Ring Topology
• Local information sharing

and cooperation [140]
• Promotes exploration and exploitation

• Limited information propagation beyond
immediate neighbors [99]

Dynamic Multi-Swarm
• Efficient exploration of different regions
• Balances exploration and exploitation

• Increased computational complexity [141]
• Requires careful tuning of swarm

characteristics [107]

Fully Informed • Enhanced global exploration capability
• Increased communication and

computational overhead
• Sensitivity to parameter settings [112]

Dynamic Neighborhood
• Adaptability to changing

problem conditions [142]
• Improved exploration and exploitation

• Complexity in managing dynamic
neighbor relationships

• Additional computational overhead [114]

Hybridization

• Leveraging strengths of
multiple techniques

• Enhanced performance and
solution quality

• Increased algorithm complexity
• Requires expertise in multiple algorithms

or methods [143]

Cooperative Particle Swarm

• Knowledge exchange and cooperation
among swarms

• Tackling large-scale optimization
problems [144]

• Increased communication and
coordination requirements

• Complexity in swarm interaction
management

Self-Organizing Hierarchical • Efficient exploration and coordination
across different levels

• Complexity in the hierarchical
organization and coordination [145]

Comprehensive Learning

• Adaptation to problem characteristics
• Improved convergence and

solution quality

• Requires problem-specific knowledge
or heuristics [146]

• Increased algorithm complexity and
parameter tuning effort

4.2. Performance Analysis

The selected PSO variants were utilized to analyze their efficacy for adaptive filtering in
this study. The bit error rate (BER) is a measure of the error rate in a digital communication
channel. It quantifies the probability of bit errors occurring during transmission. A lower
BER indicates better channel performance, as it signifies fewer errors in the received
bits. Factors that affect the BER include noise, interference, the modulation scheme, the
coding techniques, and the channel characteristics. By analyzing and optimizing the BER,
engineers can improve the overall reliability and quality of digital communication systems.
A convergence analysis was conducted in an experimental setting, simulating a digital
communication channel model. Six key parameters are defined to analyze the convergence
of hybrid PSO. Population size n, data window size N, acceleration parameters c1 and c2,
maximum velocity range, and the number of taps for the adaptive channel equalizer were
selected. This methodical approach ensures the algorithm’s effectiveness and adaptability
for various scenarios. To observe the behavior of HPSO, a convergence analysis was
conducted in an experimental setting simulating a digital communication channel model.
The analysis, as depicted in Table 4, demonstrated the stabilization of the convergence rate
as the number of iterations (N) increased. This observation underscores HPSO’s capability
to steadily refine its optimization process, an attribute essential for optimizing digital
communication systems. The analysis of the convergence of HPSO over N iterations is
shown in Table 4, which shows that the convergence rate becomes stabilized when N
is large.
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Table 4. Convergence of hybrid PSO with different values of N.

Number of Iterations MSE (dB) N = 10 MSE (dB) N = 20 MSE (dB) N = 40 MSE (dB) N = 60

0 20 20 20 20

50 −12 −15 −28 −29

100 −20 −23 −29 −30

200 −21 −25 −29.5 −30

300 −19.5 −24.5 −29 −30.5

400 −20.5 −25 −29.5 −31

500 −22 −26 −30 −31

The performance of least mean squares (LMS) degrades compared to hybrid PSO due
to its limited ability to handle nonlinear and non-convex optimization problems. Hybrid
PSO incorporates global search capabilities and adaptive techniques, providing better
convergence and optimization results. In the conducted experiment, the performance of
three different optimization techniques LMS, the PSO VCF, and HPSO was evaluated in the
context of a digital communication channel. The experiment involved varying SNR levels to
simulate different channel conditions. The SNR represents the ratio of signal power to noise
power and serves as a key factor in determining the quality of communication in noisy
environments. For each SNR level, the BER was measured using the three optimization
techniques: LMS, the PSO VCF, and HPSO. Table 5 shows the comparison of LMS, the
PSO variable constriction factor (VCF), and HPSO. A lower BER signifies better channel
performance, indicating fewer errors in received bits. The comparison of the BER values
among the three techniques at different SNR levels provides insights into their respective
abilities to mitigate errors and enhance communication quality.

Table 5. BER performance of LMS and HPSO.

SNR LMS PSO VCF HPSO

0 0.8922 0.8929 0.8929

2 0.8017 0.8019 0.8019

4 0.8402 0.8402 0.8402

6 0.8051 0.805 0.805131

8 0.74283 0.7428 0.7427

10 0.65015 0.6505 0.6505

12 0.5526 0.5527 0.5527

14 0.4026 0.4026 0.4026

The experiment revolved around evaluating four distinct PSO variants using the
sphere function. The sphere function, a common optimization benchmark, calculates
the sum of squared differences between the candidate solution and the optimal solution.
The aim was to gauge the performance of these PSO variants in terms of mean function
values across different dimensions, i.e., 30 and 60. Lower mean function values signify more-
proficient optimization, thereby enabling a comparative analysis of the PSO techniques’
effectiveness in searching for optimal solutions. The experimental results demonstrated
the superior performance of hybrid PSO compared to other variants of PSO in various
optimization tasks. In a comparative study, different PSO variants, including standard
PSO, adaptive PSO, and HPSO, were evaluated for their convergence speed and solution
quality. The results revealed that HPSO outperformed the other variants in terms of
both convergence speed and solution quality. HPSO demonstrated faster convergence,



Sensors 2023, 23, 7710 17 of 28

reaching the optimal or near-optimal solution more quickly compared to standard PSO and
adaptive PSO. This was attributed to HPSO’s ability to balance exploration and exploitation
through the combination of particle interactions and adaptive parameters. The solution
quality achieved by HPSO was consistently superior to other variants. The algorithm’s
hybrid nature, incorporating elements of both particle swarm optimization and local
search techniques, allowed for better exploration of the search space, leading to improved
solutions. HPSO effectively balanced global exploration to escape local optima with local
exploitation to refine solutions, resulting in enhanced overall performance. Table 6 shows
the results of 30D particle convergence.

Table 6. The 30D particles’ convergence comparison.

f(x) fl f2

Value Mean Iterations Comp Mean Iterations Comp

PSO 7.1e−2 500 100% 55.44 500 100%
PSO-D 5.706e−53 500 100% 0 264 100%
PSO-DE 6.35e−20 412 70.3% 293 66.90%

DMS 0.71 (2%) 500 100% 37.97 500 100%
DIMS-D 3.646e−54 500 100% 0 273 100%
DAIS-DE 3.85e−20 392 69.88% 0 320 66.48%

CL 1.056e−47 500 60% 0 312 60%
CL-D 3.486e−51 500 60% 0 279 60%
CEDE 7.19e−19 319 39.2% 0 258 37.63%

HP 1.0486e−5 50 80% 29.56 500 80%
HP-D 4.906e−111 500 80% 0 87 80%
HP-DE2 5.216e−15 55 3.99% 1.18e−13 227 12.80%

Table 7 shows the convergence performance using 60D particles. The findings sug-
gested that HPSO is a robust and effective optimization algorithm, which can outperform
other PSO variants in various applications. Its ability to strike a balance between explo-
ration and exploitation, along with the integration of local search techniques provide HPSO
a competitive advantage. The superior performance of HPSO makes it a promising choice
for optimization tasks where fast convergence and high-quality solutions are desired, such
as channel adaptive equalization in communication systems, where accurate estimation
and compensation of channel distortion are crucial for reliable data transmission. The eval-
uated dimensions ranged from 10 to 100. Lower mean function values indicate better
optimization performance. The experiment involved applying these PSO variants to the
sphere function, a well-known optimization benchmark. The sphere function computes the
sum of squared differences between a candidate solution and the optimal solution. This
experiment aimed to compare the effectiveness of the PSO techniques in achieving optimal
solutions within different dimensional spaces.
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Table 7. The 60D particles’ convergence comparison.

f(x) fl f2

Value Mean Iterations Comp Mean Iterations Com

PSO x x x 150.12 (98%) 500 100%
PSO-D 1.266e−53 500 100% 0 273 100%
PSO-DE 1.46e−19 446 70.29% 0 291 66.94%

DMS x x x 164.86 (62%) 500 100%
DMS-D 1.616e−54 500 100% 0.00% 269 100%
DMS-DE 9.58e−20 420 69.90% 0% 304 66.49%

CL 6.546e−44 500 60% 115% 500 60%
CL-D 52 500 60% 0.00% 275 60%
CEDE 1.42e−18 310 39.19% 0% 259 37.59%

HP 0.16 500 80% 6905% 500 80%
HP-D 6.566e−106 500 80% 0.00% 92 80%
HP-DE2 9.9e−15 3.98% 1.52e−228 228 12.78%

Table 8 shows the mean function value (MFV) of different PSO algorithms. The simu-
lation results consistently demonstrated the robustness and effectiveness of HPSO across
various domains and problem types. Whether applied to engineering design optimization,
function optimization, or other complex tasks, HPSO consistently outperformed the com-
peting algorithms. These findings establish HPSO as a promising optimization approach
that can provide significant benefits in terms of convergence speed and solution quality,
making it an attractive choice for numerous real-world optimization problems.

Table 8. Mean function value of different PSO algorithms.

No.of Dimensions PSO DPSO CPSO HPSO

10 −185.37 −156.31 −300 −50.10100664

20 −81.951 −60.194 −296.087 −33.131

30 −48.781 −32.039 −281.737 −30.1019

40 −31.22 −19.417 −45.652 −27.6767

50 −18.537 −7.767 −3.9130 −26.4646

60 −18.537 −3.8835 −1.396 −26.2623

70 −13.659 −1.9418 −2.6628 −24.8481

80 −7.8049 −3.8835 −3.9138 −24.2424

90 −6.8293 0 −5.2173 −24.040

100 −4.878 0 0 −22.4242

The simulation results consistently demonstrated the robustness and effectiveness
of HPSO across various domains and problem types. Whether applied to engineering
design optimization, function optimization, or other complex tasks, HPSO consistently
outperformed the competing algorithms. Tables 9 and 10 present the MSE values under dif-
ferent signal-to-noise ratio (SNR) levels, which indicate the quality of the channel’s output
signal. Lower MSE values signify better performance, indicating a closer approximation
to the desired output. A negative MSE value can be an artifact of data representation
or computation.
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Table 9. MSE performance for the linear channel.

SNR LMS PSO-CCF PSO-VCF HPSO

0 −0.0515 1.4433 5.051546 5.15464

50 −5.2062 −11.289 −13.9691 −18.0928

100 −8.6082 −11.753 −14.3299 −18.0928

150 −10.876 −11.907 −14.1237 −18.4021

200 −12.68 −11.598 −14.1237 −18.4536

250 −13.66 −11.804 −14.2268 −18.7113

300 −14.794 −11.804 −14.1237 −18.6598

350 −14.897 −11.959 −14.1237 −18.6598

400 −14.794 −11.753 −14.1753 −18.6598

450 −14.794 −11.753 −13.9691 −18.6082

500 −14.948 −11.959 −14.3814 −18.4021

Comparing the techniques, it is evident that, under the given SNR conditions, the
PSO-CCF, PSO-VCF, and HPSO methods consistently outperformed the basic LMS method,
showcasing their efficacy in optimizing the adaptive filtering process for a linear channel.
Among these three advanced methods, HPSO tended to yield the lowest MSE, suggesting
its potential to provide the best approximation to the desired signal under different SNR
scenarios. These findings establish HPSO as a promising optimization approach that can
provide significant benefits in terms of convergence speed and solution quality, making it
an attractive choice for numerous real-world optimization problems. The experiment was
conducted for a linear time-invariant (LTI) system and nonlinear digital channel model
having a sphere and cubic function model. The LTI system showed a linear mapping
between the input and output signals, while time invariance indicated that the system will
produce the same output signals if an input is used now or T seconds later, except for the
time delay. The results showed that HPSO had better performance as compared to all other
techniques that exist in the literature.

Table 10. MSE performance for the nonlinear channel.

SNR LMS PSO-CCF PSO-VCF HPSO

0 −0.06568 4.9835 5.02463 12.2088

50 −2.159 −4.41707 −5.6075 −8.31691

100 −3.2676 −4.499 −5.8928 −8.6452

150 −3.6319 −4.622 −5.894 −8.6042

200 −3.9244 −4.4589 −5.8535 −8.6863

250 −4.1297 −4.4170 −5.93592 −8.6065

300 −4.70443 −4.41785 −5.85384 −8.6042

350 −4.8275 −4.2939 −5.89628 −8.76025

400 −4.78296 −4.2527 −5.77185 −8.604

450 −4.786296 −4.37602 −5.689 −8.8095

500 −4.745 −4.25287 −5.6077 −8.6863

5. HPSO: Best-Fit Solution for Adaptive Filtering

It can be seen from the above experiments that the performance of HPSO was su-
perlative as compared to other optimization techniques. HPSO is an effective approach for
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channel adaptive equalization, leveraging its global search capability to optimize equal-
izer coefficients and enhance the performance of communication systems by mitigating
the effects of channel distortion and inter-symbol interference. This section will elabo-
rate on the advantages, issues, and challenges faced by the HPSO in the optimization of
adaptive filters.

5.1. Advantages of HPSO
5.1.1. Exploiting Complementary Techniques

Hybrid PSO allows for the integration of different optimization algorithms or problem-
solving methods that excel in different aspects. By combining their strengths, hybrid
PSOs can overcome the limitations of individual algorithms and achieve better perfor-
mance. For example, hybridizing PSO with genetic algorithms can leverage the exploration
capabilities of both algorithms, leading to improved diversity and convergence toward
optimal solutions.

5.1.2. Enhanced Global and Local Search

Hybrid PSO combines the global search ability of PSO with the local search capabilities
of other techniques. This integration allows for efficient exploration of the search space,
enabling the algorithm to quickly identify promising regions and converge towards optimal
solutions. The hybrid approach benefits from the balance between global exploration and
local exploitation, providing better search efficiency.

5.1.3. Adapting to Problem Characteristics

Different problems have distinct characteristics, such as multimodality, nonlinearity,
or constraints. Hybrid PSO can be customized by selecting appropriate hybridization
techniques based on the problem at hand. For instance, if a problem exhibits multimodality,
combining PSO with niching techniques can enhance the algorithm’s ability to locate
multiple optima. By adapting to the problem characteristics, hybrid PSO increases its
effectiveness and robustness across diverse optimization scenarios.

5.1.4. Handling Complex Constraints

Many real-world optimization problems involve complex constraints that must be
satisfied. Hybrid PSOs can integrate constraint-handling techniques to ensure the fea-
sibility of solutions. By incorporating constraint-handling mechanisms such as penalty
functions, repair operators, or constraint satisfaction techniques, hybrid PSO can effec-
tively handle constraints and generate feasible solutions, even in challenging constraint
optimization problems.

5.1.5. Domain-Specific Knowledge Incorporation

Hybrid PSO allows for the incorporation of problem-specific knowledge or heuristics.
This customization leverages domain expertise to guide the search process toward more-
promising regions of the search space. By integrating problem-specific knowledge, hybrid
PSO can effectively exploit the problem structure and reduce the search space, leading to
faster convergence and improved solution quality.

5.1.6. Performance Versatility

Hybrid PSO’s flexibility enables it to adapt to various problem types and domains.
It can be tailored to different optimization objectives, such as continuous optimization,
discrete optimization, multi-objective optimization, or dynamic optimization. The ability
to combine different algorithms and techniques makes hybrid PSO versatile, allowing it to
tackle a wide range of optimization challenges effectively.

Hybrid particle swarm optimization (HPSO) stands out in dealing with complex
optimization landscapes, which can be quite tricky due to the presence of multiple possible
solutions and complex patterns. Due to its cooperative and adaptable nature, HPSO is
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particularly adept at exploring a wide range of potential solutions and skillfully adjusting
its search strategy to navigate through intricate fitness landscapes. When faced with multi-
objective optimization challenges, in scenarios where adaptive filtering requires finding
a balance between conflicting objectives, such as fast convergence and precise tracking,
HPSO’s strength lies in its ability to seamlessly integrate diverse optimization techniques.
This integration enables HPSO to harmonize these contrasting objectives effectively. HPSO
proves valuable in hybrid approaches, especially when the optimization task requires
the integration of specific problem-solving strategies or domain expertise. This becomes
particularly beneficial when traditional optimization methods struggle to handle complex
problems due to their intricacy.

HPSO demonstrates adaptability in dynamic environments by dynamically adjusting
parameters, incorporating updates based on local neighborhoods, and creating multiple
swarms, allowing it to stay in sync with evolving optimization needs. This makes it a well-
suited choice for scenarios where the underlying system’s characteristics change over time.
In cases where substantial computational power is needed, HPSO can be parallelized across
multiple processors or nodes, leading to faster optimization processes. This is particularly
useful for tasks that require real-time processing capabilities. HPSO is highly versatile in
handling various problem types and dynamic conditions with limited prior knowledge. Its
hybrid nature strikes a perfect balance between exploring a broad range of solutions and
refining them, making it particularly advantageous in adaptive filtering tasks.

5.2. Challenges and Limitations of HPSO

Hybrid PSO offers numerous advantages, as discussed earlier. However, like any
optimization approach, it also faces certain challenges and limitations that should be taken
into consideration.

5.2.1. Algorithm Complexity

Hybrid PSO introduces additional complexity due to the integration of multiple
optimization techniques or problem-solving methods. Managing the interactions and
parameter settings between different components can be challenging. The design and
implementation of a hybrid PSO algorithm require careful consideration to ensure effective
cooperation and avoid conflicts between the integrated components.

5.2.2. Hybridization Overhead

Integrating different optimization techniques or problem-solving methods in hybrid
PSO may increase computational overhead. The hybridization process requires additional
computational resources, such as memory and processing power. The impact on compu-
tational efficiency should be carefully assessed, especially when dealing with large-scale
optimization problems or real-time applications.

5.2.3. Algorithm Selection and Tuning

The success of hybrid PSO heavily depends on selecting appropriate optimization tech-
niques or problem-solving methods to hybridize. Identifying the most-suitable algorithms
or methods for a given problem can be challenging. Moreover, the tuning of parameters
becomes more complex in hybrid PSO, as it involves optimizing the parameters of both
the PSO algorithm and the integrated techniques. This parameter-tuning process requires
expertise and extensive experimentation.

5.2.4. Integration Compatibility

Integrating different optimization techniques or problem-solving methods in hybrid
PSO might encounter compatibility issues. Some methods may require specific problem
representations or assumptions that are not easily integrated with others. Ensuring compat-
ibility and smooth integration of different components can be a challenge and may require
adaptations or transformations to make them compatible.
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5.2.5. Increased Sensitivity to Problem Characteristics

Hybrid PSO’s performance can be sensitive to the problem characteristics and the
choice of hybridization techniques. The effectiveness of hybrid PSO heavily relies on the
compatibility and synergy between the integrated components and the problem at hand.
In some cases, the hybrid approach may not provide significant improvements compared
to standalone PSO or other individual techniques, particularly if the problem does not align
well with the selected hybridization methods.

5.2.6. Limited Generalizability

Hybrid PSO’s effectiveness may be problem-dependent, meaning that the success
observed in one problem domain may not necessarily translate to other domains. The per-
formance of a hybrid PSO is heavily influenced by the specific problem structure, objectives,
and constraints. Consequently, the development of a hybrid PSO algorithm that performs
well across diverse problem domains requires careful customization and adaptation to each
specific problem.

5.2.7. Increased Development and Maintenance Effort

Hybrid PSO requires additional effort in the development and maintenance stages.
Combining multiple algorithms or methods necessitates expertise in those areas. As new
optimization techniques emerge, the integration and evaluation of their compatibility with
hybrid PSO may require continuous effort and expertise, making the development and
maintenance of hybrid PSO algorithms more demanding.

6. Conclusions and Future Directions
6.1. Conclusions

Advancements in HPSO for adaptive equalization are pivotal for addressing limita-
tions and enhancing practical implementation. Research must target simplifying the algo-
rithm while upholding performance, optimizing hybridization for reduced computational
overhead and automating parameter selection for enhanced efficiency. Efforts should prior-
itize enhancing integration compatibility, robustness, and generalizability across diverse
equalization schemes and problem contexts. The utilization of user-friendly frameworks
and libraries could streamline development and foster HPSO adoption, ultimately leading
to improved BER performance in real-world adaptive equalization applications.

6.2. Future Directions

To tackle the algorithm complexity, one potential direction is to simplify HPSO. This
involves analyzing the algorithm’s components and identifying areas where complexity
can be reduced without compromising performance. Streamlining the algorithm can make
it more accessible and easier to implement in practical scenarios, enabling wider adoption
of HPSO for adaptive equalization.

Addressing hybridization overhead is another crucial future direction. Researchers can
explore methods to optimize the integration of different optimization techniques in HPSO.
This optimization can minimize computational overhead by intelligently determining when
and how to employ local search mechanisms. By optimizing the hybridization process,
the overall efficiency of HPSO can be improved, making it more suitable for real-time
adaptive equalization applications.

Automated parameter selection is another promising direction to overcome the chal-
lenges associated with algorithm selection and tuning. By developing automated methods,
such as metaheuristic optimization or machine learning algorithms, the task of selecting
appropriate parameter values can be automated. This enables HPSO to adapt and optimize
its parameters based on the specific adaptive equalization problem at hand, reducing the
manual effort and subjectivity involved in parameter tuning.

Integration compatibility is a significant limitation that can be addressed through
future research efforts. Investigating ways to enhance the compatibility of HPSO with
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different equalization schemes and systems is essential. Developing adaptive mechanisms
that seamlessly integrate HPSO with diverse equalization techniques and architectures
can significantly improve its effectiveness and versatility in adaptive equalization tasks.
Measuring the stability of HPSO is another important avenue for future work. We intend to
incorporate Monte Carlo to measure the stability of HPSO during the convergence process
by obtaining the standard deviation and mean value of the MSE curve.

Enhancing the robustness and generalizability of HPSO is another crucial direction.
Research can focus on reducing the algorithm’s sensitivity to problem characteristics and
environmental conditions. By developing mechanisms to handle diverse channel condi-
tions, noise levels, and signal variations, HPSO can become more reliable and applicable in
real-world adaptive equalization scenarios. Efforts can be directed toward reducing the
development effort required for HPSO implementation. This can involve the creation of
user-friendly software frameworks, libraries, or toolkits that provide pre-defined imple-
mentations of HPSO for adaptive equalization. By simplifying the development process,
researchers and practitioners can more readily adopt and utilize HPSO, accelerating its
application and impact in the field of adaptive equalization.
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