
A lightweight deep learning approach for COVID-19
detection using X-ray images with edge
federation

Sohaib Bin Khalid Alvi1,2, Muhammad Ziad Nayyer1,
Muhammad Hasan Jamal3 , Imran Raza3, Isabel de la Torre Diez4,
Carmen Lili Rodriguez Velasco5,6,7, Jose Manuel Brenosa5,8,9

and Imran Ashraf10

Abstract

Objective: This study aims to develop a lightweight convolutional neural network-based edge federated learning architecture
for COVID-19 detection using X-ray images, aiming to minimize computational cost, latency, and bandwidth requirements
while preserving patient privacy.

Method: The proposed method uses an edge federated learning architecture to optimize task allocation and execution. Unlike in
traditional edge networks where requests from fixed nodes are handled by nearby edge devices or remote clouds, the proposed
model uses an intelligent broker within the federation to assess member edge cloudlets’ parameters, such as resources and hop
count, to make optimal decisions for task offloading. This approach enhances performance and privacy by placing tasks in closer
proximity to the user. DenseNet is used for model training, with a depth of 60 and 357,482 parameters. This resource-aware
distributed approach optimizes computing resource utilization within the edge-federated learning architecture.

Results: The experimental results demonstrate significant improvements in various performance metrics. The proposed
method reduces training time by 53.1%, optimizes CPU and memory utilization by 17.5% and 33.6%, and maintains accurate
COVID-19 detection capabilities without compromising the F1 score, demonstrating the efficiency and effectiveness of the
lightweight convolutional neural network-based edge federated learning architecture.

Conclusion: Existing studies predominantly concentrate on either privacy and accuracy or load balancing and energy opti-
mization, with limited emphasis on training time. The proposed approach offers a comprehensive performance-centric solu-
tion that simultaneously addresses privacy, load balancing, and energy optimization while reducing training time, providing
a more holistic and balanced solution for optimal system performance.

Keywords

Public health, federated learning, edge computing, deep learning

Submission date: 27 March 2023; Acceptance date: 8 September 2023

1Department of Computer Science, GIFT University, Gujranwala, Pakistan
2Department of Information Technology, University of the Punjab
Gujranwala Campus, Gujranwala, Pakistan
3Department of Computer Science, COMSATS University Islamabad, Lahore,
Pakistan
4Department of Signal Theory and Communications and Telematic
Engineering. Unviersity of Valladolid, Valladolid, Spain
5Universidad Europea del Atlántico. Isabel Torres 21, Santander, Spain
6Universidad Internacional Iberoamericana Campeche, México
7Fundación Universitaria Internacional de Colombia Bogotá, Colombia

8Universidad Internacional Iberoamericana Arecibo, Puerto Rico,
USA
9Universidade Internacional do Cuanza. Cuito, Bié, Angola
10Department of Information and Communication Engineering, Yeungnam
University, Gyeongsan, Korea

Corresponding author:
Imran Ashraf and Isabel de la Torre Diez, Department of Information and
Communication Engineering, Yeungnam University, Gyeongsan 38541,
Korea.
Emails: imranashraf@ynu.ac.kr; isator@tel.uva.es

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/
open-access-at-sage).

Original research

DIGITAL HEALTH
Volume 9: 1–12
© The Author(s) 2023
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/20552076231203604
journals.sagepub.com/home/dhj

https://orcid.org/0000-0002-0114-0887
https://orcid.org/0000-0002-8271-6496
mailto:imranashraf@ynu.ac.kr
mailto:isator@tel.uva.es
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/journals-permissions
https://journals.sagepub.com/home/dhj
http://crossmark.crossref.org/dialog/?doi=10.1177%2F20552076231203604&domain=pdf&date_stamp=2023-10-03


Introduction
Artificial intelligence (AI) is revolutionizing several emer-
ging solutions to automate the healthcare sector. The
advancements in healthcare automation have attracted
many researchers to propose cost-efficient and high accur-
acy providing solutions such as automatic diagnosis,
disease detection, prediction, bioinformatics, etc.
Similarly, several solutions have been proposed for
COVID-19 detection using X-ray images. However, algo-
rithms used in such solutions often require high computa-
tional resources and consume a substantial amount of
energy.1 The existing solutions implement a variety of
hybrid deep-learning (DL) algorithms to detect
COVID-19 using X-ray images. Promising results are
reported in several studies but complex DL algorithms
require additional computational resources and the time to
train such algorithms is also high.2–4 The computation scar-
city challenge is addressed by placing the DL models and
X-ray images on the cloud6–10 but this results in many con-
cerns such as data privacy, network latency, and additional
bandwidth requirements. Additionally, a solution imple-
menting localized model training and sharing the model
at a global level without compromising data privacy is the
need of the hour.

The proposed work is focused on distributing the com-
putational requirement among several machines available
to the user in closer proximity as edge nodes.11 The
concept of the federation in cloud computing is entirely dif-
ferent from the concept of edge federation. The edge feder-
ated model is based on a central brokerage system and
considers the closer proximity edge devices where the
broker also resides at the edge.12 The broker is responsible
for maintaining the information of all the edge nodes. The
broker allocates the tasks to edge nodes based on available
resources on the edge nodes. These edge nodes in return
send the results of the assigned task to the broker for the
aggregation of the results.

The proposed approach is divided into a three-tier feder-
ated learning (FL) architecture, where the first layer com-
prises clients that send data to the nearest fixed node in
the second layer. After receiving the data in the form of
chest X-ray images13,14 of the patients from the clients
and the updated convolutional neural network (CNN)
from the broker, the fixed nodes start model training. The
extracted features from each client are sent to the edge
nodes on the third layer. These edge nodes then aggregate
the results using an artificial neural network (ANN) and
send the results to the broker to update the aggregated
model. However, during feature extraction or model train-
ing, if any node faces a resource scarcity issue, the node
can request the broker to find the nearest node within the
federation to offload the task. To the best of the authors’
knowledge, no technique targets resource sharing and
load balancing, training time, and privacy altogether,

without compromising accuracy. The concept of the edge-
based federation has also not been reported in the literature
for distributed DL problems. The major contributions of the
proposed work are as follows:

• Novel lightweight CNN-based edge FL architecture:
The proposed architecture, combining lightweight
CNNs with edge FL for COVID-19 detection using
chest X-rays, presents a novel approach to address the
challenges of cloud deployment. This novel architecture
focuses on minimizing computational costs, reducing
latency, and optimizing bandwidth requirements, thus
offering a unique solution in the field.

• Enhanced privacy preservation in edge FL: The
approach introduces an innovative method to preserve
patient privacy by enabling multiple clients, such as hos-
pitals, to collaboratively train the model without sharing
their local data. This novel privacy-preserving technique
ensures data confidentiality while allowing for effective
model training, which is particularly important in health-
care settings.

Related work
Multiple studies on FL have been reported in the literature
that focus on the utilization of resources, security, privacy,
and energy efficiency. The dispersed FL (DFL) proposed in
Khan et al.15 minimizes the FL cost by using an integer
linear optimization approach for DFL and dividing the
problem into two sub-problems. The first problem is
resource allocation and association, while the second
problem is the relaxation of association and allocation pro-
blems, which are converted into convex optimization pro-
blems. The proposed algorithm works iteratively to
resolve the variable of association and compute the
second variable of resource allocation. The algorithm runs
iterations till the optimization of resources is complete.
While keeping in view resource utilization, privacy is also
a big issue that is resolved using privacy-enhanced FL
(PEFL) in Hao et al.16 The privacy enhancement using
FL is initiated to allow the participants to share models
without sharing their local data. Despite that the parameters
must still be shared, posing a risk to privacy in different
industries such as robotics, auto-driving, navigation, etc.
As a solution, this study introduces the factor of encryption
for sharing the parameters. The data is trained on the local
machine after which the encrypted parameters are shared
with other participants using a public–private key pair.

The application of FL in internet of things (IoT)-based
applications is gaining popularity recently. The scheme pro-
posed in Khan et al.17 uses the Stackelberg game based on
an incentive model for active participation in the model train-
ing by the members. The study uses edge networks for the
implementation of a federation. The impact of dependent
and identically distributed device data is reduced by
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assigning higher weights to devices with lower capacities to
increase the efficiency of the algorithm. An energy optimiza-
tion scheme, based on fifth generation plus (5G+) technol-
ogy is proposed in Shi et al.18 that employs software and
hardware-based solutions at the edge networks. High
energy consumption is the main obstacle to 5G+ technology.
The scheme works by examining different energy consump-
tion models for graphical processing units and wireless trans-
mission. The energy-efficient techniques such as weight
quantization, pruning, and gradient sparsification are used
for the selection of an optimized model.

FL-based camouflage learning is proposed in Sigg
et al.19 that can be implemented using multiple deep learn-
ing (DL) approaches to secure privacy. The proposed
approach avoids the sharing of models and data to preserve
privacy. The scheme is simulated using camouflage learn-
ing on an IoT application that is equipped with the ability
to sense light, temperature, and humidity.20 The data is
scaled based on the maximum and minimum sensed
values. These values are averaged over 60 s intervals and
sent to the coordinator to train a logistic regression model
with a learning rate of 0.8 to achieve maximum accuracy.

A training algorithm named FedGKT (Group
Knowledge Transfer) is proposed in He et al.,21 which sug-
gests that scaling up the CNN can achieve better accuracy.
When FL produces the load on the edge nodes, the FedGKT
minimizes the load of CNN from the edge devices and
transfers this load toward the consolidated servers by con-
verting it into a single framework. The model is trained
based on residual network (ResNet)22 variant ResNet-56
and ResNet-110 based on different datasets (CIFAR-10),23

CIFAR-100, and CINIC-1024). The study claims to take 9
to 17 times less computation power as compared to
FedAvg25 and also needs 54 to 105 times lesser parameters
than in an edge CNN.

In the medical field, X-rays and computed tomography
(CT) scans are easy and less costly resources to extract
patient information for diagnosis. FL is also applied in the
medical field to look for various anomalies such as abnor-
mal growth in the lungs.26 The authors proposed a decentra-
lized approach to improve privacy that consists of two
models. The first model detects the occurrence of nodules,
while the second model confirms its presence. Experimental
results show that the proposed approach achieves a higher
accuracy as compared to traditional models. Privacy is a
big concern in using medical images of patients. A novel
approach is proposed in Grama et al.27 that is robust and
has higher accuracy. It also detects and blocks malicious
nodes that send bad model updates. The proposed approaches
thus help in the reduction of computational and communica-
tion burdens and privacy concerns. The trials are run with two
healthcare datasets for the diagnosis and classification of the
data. From the two datasets, each dataset is trained using three
different FL approaches to avoid any malicious activity.
Experimental results show that the best robustness is achieved

by the Byzantine-robust aggregation keeping the differential
privacy intact.

Secure multiparty computation (SMC) is conventionally
used in FL, which is susceptible to differential privacy and
achieves lower accuracy against the data distributed among
different parties. A novel approach is proposed in Truex
et al.28 to gain equilibrium in SMC and differential
privacy. The hybrid of SMC and differential privacy
results in the reduction of noise injection (adding noise arti-
ficially to the ANN input data during the training process) as
multiple parties carry out the training process. A variety of
DL algorithms is trained using the given technique providing
better results in terms of accuracy and privacy. For warfight-
ing, techniques are developed to carry out activities such as
contesting, breaching, breaking, and exploiting opponents
under the multi-domain operations (MDO) Joint Force.
When AI techniques are implemented several challenges
arise such as data infection, noise, and partial or full errors
that can benefit the opponent. FL is a technique that does
not require any sharing of data and trains the model in a col-
laborative environment. The collaborative environment built
on Tactical Edge29 and FL is implemented in MDO using six
different AI strategies addressing the above-mentioned chal-
lenges. Table 1 shows a comparative analysis of the dis-
cussed techniques considering privacy, accuracy, training
time, load balancing, and energy.

The literature review highlights that most of the existing
studies focus on privacy and accuracy, and only a few studies
focus on load balancing and energy optimization while no
study targets training time which is the focus of this study.

Edge federation-based lightweight DL approach
Figure 1 shows the architecture of the proposed edge
federation-based DL approach. In edge federation, clients
receive services from the nearest edge devices in the feder-
ation without worrying about the delay in data transfer. The
broker in the federation manages all the edge federation
operations such as the management of resources, optimal
placement, model sharing, and migration decisions. Other
responsibilities of the broker include receiving and
sharing resource information with all the edge nodes in
the federation to carry out decision-making. In case of
resource scarcity at an edge node, a request is forwarded
to the broker to find a node in the federation with adequate
resources. The broker evaluates the optimal edge concern-
ing the proximity and available resources. If somehow the
broker is not working, any edge node can use the local
information matrix previously pushed by the broker thus
eliminating the chances of failure.1 Next, the task is off-
loaded from the connected node to the optimal edge node.
The task can be offloaded in the form of workload, code,
or virtual machine. In this study, we are considering the
task bundled as a virtual machine. After that, the client
and the fixed node communicate for the training of the

Alvi et al. 3



model. The model lending task is requested from the broker
which is responsible for the optimal DL model placement.
This process is independent of the platform, programmer,
or underlying infrastructure. If in the worst case, the
required resources are not available in the federation, the
request is forwarded to the cloud.

As shown in Figure 1, clients P, Q, and R are connected
to fixed devices A, B, and C, respectively, which are then
connected to access points M and N, respectively. These
access points are connected to the edge devices in closer
proximity. Model training for the classification of
COVID-19 chest X-rays starts at edge devices A, B, and
C. Due to the scarcity of resources, both devices request
resources from the broker. The broker assigns the task to
an optimal edge device K based on latency and computation
resource availability. Edge device K lends the model
against the specific request to the fixed devices A, B, and
C from vicinity Y to vicinity X using edge device J. Both
devices start to train the model and after the first round,
the weights are returned to the edge device K using the
same route as edge device J. Edge device K aggregates
the weights and sends these aggregated weights to the
fixed device A, B, and C for round two. Similarly, multiple
rounds are executed and in the end, the results sent by the
edge device K to the fixed device A, B, and C are considered
the final results. The same fixed devices A, B, and C are
used for detection purposes against the request sent by the
clients P, Q, and R.

Problem formulation

Let RR = {r1, r2, r3, . . . , rn} be the required resource set,
AR = {a1, a2, a3, . . . , an} be the available resource set,
and ARR = {ar1, ar2, ar3, . . . , arn} be the additional
required resources not available on the immediate edge
node, where immediate edge node represents the node
with which the user is currently connected. There may be
three cases:

(i) The immediate edge node has the required resources
available,

(ii) The immediate edge node is unable to fulfill the
requirements, and resources from other neighboring
edge nodes are borrowed using edge federation, and

(iii) Neither the immediate edge node nor the federation
possesses adequate resources to fulfill the requirement
and hence the request is forwarded to the cloud.

The last case is considered the worst-case scenario. All the
notations used in the system setup are shown in Table 2.

The condition for the eligible node is as follows:

f (x) = 1, if RR[ri] < AR[ai]∀i = 1, 2, 3, . . . , n
0, Otherwise

{
(1)

Figure 2 shows the workflow diagram of the proposed
approach. In case the function returns 1, the first round is
executed, and the eligible node is found and added to the

Table 1. Comparative overview of the discussed works.

Literature Privacy Accuracy Training time Load balancing Energy

DFL15 ✔ — — ✔ —

PEFL16 ✔ ✔ — — —

IoT-based17 ✔ ✔ — — —

5G+18
— — — — ✔

Camouflage19 ✔ — — — —

FedGKT21 — ✔ — — —

CT Scan26 ✔ — — — —

Medical Images27 ✔ — — — —

SMC28 ✔ ✔ — — —

MDO29 ✔ ✔ — — —

Proposed model ✔ ✔ ✔ ✔ —

DFL: dispersed federated learning; PEFL: privacy-enhanced federated learning; IoT: internet of things; 5G: fifth generation; CT: computed tomography; SMC:
secure multiparty computation; MDO: multi-domain operations.
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table of eligible nodes. However, if the function returns 0
the neighboring edge node is consulted, and the same con-
dition is checked again until the requirements are fulfilled.

Resource aware distributed approach

In a traditional edge network, the request of the fixed node
is resolved by the connected nearby edge device, or it is sent
to the remote cloud for execution. In the proposed edge fed-
eration model, the broker within the federation makes the
optimal decision for task offloading to provide the
optimal edge node. This decision is based on the current
parameters of the member edge cloudlets received at the
broker such as available resources and hop count since
the objective is to place the task in closer proximity to the
user, as shown in Algorithm ??. The main objective of

using federated deep learning (FDL) is to train the model
without transferring data from the fixed node, which helps
in achieving a higher scale of privacy. The fixed nodes
contain the data; however, share a small number of
weights obtained from the training of CNN. The weights
are averaged at edge nodes and used to train the model.
Later on, the optimal edge node referred by the broker
starts communicating with the requesting node. The DL
model is shared between the fixed devices where the data
is stored. Algorithm ?? provides details of the client and
server-side processing.

Experimental setup
Figure 3(a) to (c) illustrates the three use cases considered
in this study. Edge devices receive the DL model from

Figure 1. Edge federation-based lightweight deep learning (DL) approach.
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the broker to train on the data available at the edge devices.
Fixed client nodes use the trained model for the classifica-
tion of images.

This study uses three machines and one access point
to conduct the experiments. This study uses a testbed
for the experiments. The specifications of the machines
used for experimentation are given in Table 3. Machine
1 is used for the first case. For the second use case,
Machine 1 is used as a client while Machine 2 is used
as the server. For the third use case, Machine 1 is used
as the first client edge node, Machine 2 is used as the
second client edge node while Machine 3 is used as the
broker. The access point used for the communication

between the client and the server is a TP-link model
TL-WR840N V6.20 and has a 300Mbps speed.

All experiments are repeated five times and the best results
are reported in this paper as there was insignificant difference
across runs. For training the CNN model, two rounds are exe-
cuted, each of 10 epochs using a publicly available dataset13,14

containing 13,808 chest X-ray images, each of size 291× 291
pixels. The dataset comprises 10,192 normal X-ray
images and 3616 X-ray images of COVID-19-positive
cases. The raw images were red–green–blue,, which
consumes more processing power and memory, there-
fore, before training, the images were preprocessed by
removing the edges and converting them to grayscale,
as the grayscale images were sufficient for our experi-
mentation and it consumes less processing power and
memory. For the third use case, the images are split
equally between the two clients’ edge nodes. For
CNN, we have used DenseNet with a depth of 60 and
a total of 357,482 parameters. The total memory used
by the CNN model is 1.30 GB. DenseNet is used in
this study because it gives smoother decision boundar-
ies and performs well when training data is insufficient
which suits our scenario where the data on individual
fixed nodes is of small size.

Results
We evaluate the performance and efficacy of the proposed
edge-based distributed DL approach using accuracy, pre-
cision, recall, and F1 score parameters, the equations of
which are shown in equations (2) to (5). To evaluate the
resource utilization and load balancing of the proposed
approach, we consider execution time, central processing
unit (CPU) utilization, and memory utilization.

Accuracy = TP + TN
TP + TN + FP + FN

(2)

Table 2. Table of notations.

Notation Description

Ci Clients

Ei Edge device

SD Pending decision list

Ri Resources

ai Available resources

Im Images

Ro Rounds

Wi Weights

Ar Aggregated weights

Sr Server

Figure 2. Communication flow between nodes.
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Precision = TP
TP + FP

(3)

Recall = TP
TP + FN

(4)

F1-score = 2 × Precision × Recall
Precision + Recall

(5)

In the proposed model, the request is forwarded to the
broker where the resource information of all edge nodes
is already available. As the request matrix is delivered to

Algorithm 1. Broker.

Input: List of clients, list of edge devices, available resources at
edges

Output: Required resources to client

1: Begin:

2: for each Ei request broker checks the status do

3: Check status SD

4: if SD = "DecisionPending" then

5: for each edge Ei in edge list do

6: for each resource ai and ri
in available and require
resources list do

7: if ai ≥ ri then

8: Push edge Ei in the eligible cloudlet list

9: end if

10: end for

11: end for

12: for each cloudlet in the eligible cloudlet list do

13: Calculate h

14: end for

15: end if

16: E_o = E_i

17: end for

return Eo, h(Eo)

End:

Algorithm 2. Client--server federation model.

Input: Raw images of X-rays

Output: Trained model and updated weights.

1: Begin: Client side

2: Preprocessing on the images (Im)

3: Perform statistical operations

4: for each client (Ci) do

5: for each round (Ro) do

6: send a request for the weights (Wi)

7: end for

8: end for

9: Train the model

10: for each client (Ci) do

11: for each round (Ro) do

12: send results to the server (Sr )

13: end for

14: end for

15: Receive aggregated results (Ar )

End:

16: Begin: Server side

17: for each client do

18: if Ro = 1 then

19: allot weights to requesting client

20: receive and aggregate results (Ar )

21: else if Ro > 1&Ro ≤ n then

22: allot aggregated weights to requesting client

23: receive and aggregate results

24: end if

25: save aggregated results

26: end for

return results to client

End:
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the broker, the broker finds one machine in closer proxim-
ity with the same model and shares the required resources
with the requesting machine. The images remain on the

fixed nodes, but the memory and processor resources are
shared by edge nodes. The memory and CPU utilization
by the broker is negligible as it only receives the request
from fixed nodes A and B and lends the model and
weights for model training.

For the first use case, the client and server reside on the
same computer. CNN is applied to the actual environment
of FDL. The split ratio of data is 80% and 20% for train
and test sets, respectively. Table 4 shows the comparative
results obtained for all three use cases. For the first use
case, the achieved accuracy, precision, recall, and F1
scores are 86.3%, 92.7%, 74.8%, and 82.7%, respectively.
For the second use case, the achieved accuracy, precision,
recall, and F1 score are 89.6%, 90.5%, 78.3%, and
83.9%, respectively. For the third use case, scores for accur-
acy, precision, recall, and F1 are 87.8%, 89.9%, 76.3%, and
82.5%, respectively. The model training time for the first
use case is 17min and 10 s. The model training time for
the second use case is 15min and 30 s and the model train-
ing time for the third case is 8min and 3 s. The training time
for the third use case is 53.1% and 48.1% less than the first
and second use case, respectively. It is observed that our
approach significantly reduces the training time without
compromising the F1 score.

Figure 4 shows the confusion matrix obtained for the
three use cases considered in this study. In the third use
case, the data is distributed between two different fixed
nodes A and B. Figure 5 shows the confusion matrix
obtained from the fixed node A and fixed node B for the
third use case. The calculated accuracy, precision, recall,
and F1 score for fixed node A are 89.1%, 93.9%, 73.1%,
and 82.2%, respectively. Similarly, for fixed node B, the
accuracy, precision, recall, and F1 score are 86.6%,
86.9%, 79.6%, and 82.9%, respectively.

Figure 6 shows the CPU and memory utilization of all
three use cases. The CPU utilization for the first use case,
where only a single machine is used, is 90% on average,
the memory utilization is 5.5GB on average, and the training
time is 17min and 10 s. The CPU utilization for the second
use case is 87.5% on average, the memory utilization is
4.75GB on average, and the training time is reduced to 15
min and 30 s. As compared to the first use case, a decrease
of 2.5% is observed in terms of CPU utilization and a
decrease of 13.6% is observed in terms of memory utilization.

The CPU utilization for the proposed third use case is
72.5% on average, the memory utilization is 3.65GB on
average, and the training time is reduced to 8min and 3 s.
In terms of CPU utilization, a decrease of 17.5% and
15% is observed for use case three as compared to the
first and second use case, respectively. In terms of
memory utilization, a decrease of 33.6% and 23.1% is
observed for use case three as compared to the first and
second use case, respectively. Since the processing at the
server is not playing a significant role in the model training,
the results of the server side are ignored.

Figure 3. Use cases for the experimental setup. (a) First use case:
Client and server are both executed on the same machine; (b)
Second use case: Client and server are executed on two separate
machines; (c) Third use case: Edge federation comprising two fixed
client nodes, two edge devices, and a broker.
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Table 4. Comparison of three use cases.

Accuracy (%) Precision (%) Recall (%) F1 score (%) Training time

First use case 86.3 92.7 74.8 82.7 17min and 10 s

Second use case 89.6 90.5 78.3 83.9 15min and 30 s

Third use case 87.8 89.9 76.3 82.5 8min and 3 s

Table 3. Specification of devices used for experimentation.

Model RAM/speed HDD Processor

Machine 1 HP Pro book 450 8 GB 512 GB 2.20 GHz

Machine 2 Lenovo Think pad 8 GB 128 GB (SSD) 2.10 GHz

Machine 3 Dell Inspiron 4 GB 512 GB 1.80 GHz

Access point TL-WR840N V6.20 300Mbps — —

Figure 4. Confusion matrices of the three use cases: (a) first use case; (b) second use case; (c) third use case.

Figure 5. Confusion matrices of nodes in the third use case: (a) fixed node A and (b) fixed node B.

Alvi et al. 9



In the first use case, the feature extraction and model
training is performed on a single machine, which takes
more time due to resource constraints. In the second use
case, the task of model training and feature extraction is
divided between the server and client, respectively, which
helps reduce the memory and CPU utilization. However,
with the proposed distributed approach, as in the third use
case, an edge federation consisting of multiple systems is
deployed, which substantially reduces the CPU and
memory utilization as well as model training time as com-
pared to the first and second use cases. Additionally,
privacy is preserved as the images remain on the fixed
nodes in the proposed model.

Discussion
COVID-19 detection using DL methods with X-ray images
has been widely studied in the literature. However, these
methods often involve complex algorithms that consume
significant computational resources and require extensive

training time. Moreover, the conventional FL models used
for this purpose are centralized in nature and rely on a
single heavy-duty machine to execute the complex DL
algorithms. This poses challenges when dealing with
X-ray data belonging to different patients, which is distrib-
uted across various machines in hospitals and medical facil-
ities. The transfer of such confidential data to a single
machine not only raises privacy concerns, but also results
in significant time delays and encounters limitations related
to bandwidth and latency. These limitations underscore the
necessity for a distributed approach that eliminates the reli-
ance on a centralized heavy-duty machine, preserves
privacy, and reduces dependence on the Internet.

In this research, an edge federation-based lightweight
DL approach is proposed that successfully addresses the
limitations of conventional FL approaches and achieves
the desired objectives. The primary challenge in developing
the proposed edge federation approach was to design a dis-
tributed lightweight DL model that is well-suited to the
environment. Additionally, it was crucial to overcome the

Figure 6. Central processing unit (CPU) and memory utilization for the three use cases while model training: (a) CPU utilization and (b)
memory utilization.
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limitations of computational resources, bandwidth, and
latency while ensuring privacy and accuracy.

The proposed edge federation leverages the normal
systems already present in different medical facilities and
incorporates them into the federation. This enables the
direct transfer of images, whether from patients or diagnostic
facilities to fixed nodes within the hospital. Since the primary
objective of these images is the analysis by doctors, they nat-
urally need to reach the doctor’s system and subsequently
become part of the edge nodes as patient data. The proposed
model acquires the required model from the broker and
performs training on these images to reach a conclusion.
Importantly, as these images never leave the intended prem-
ises, privacy is effectively maintained. Moreover, the use of
edge nodes in closer proximity mitigates the challenges asso-
ciated with limited bandwidth and latency. Additionally, dif-
ferent edge nodes collaborate and share resources to address
computational challenges.

The results of the proposed work indicate its success in
achieving the set objectives. However, it is important to
acknowledge the limitations of this study. Firstly, there is
limited existing research available for comparison, as edge
federation for resource sharing in a distributed manner is a
relatively new concept. Further studies and comparisons
are necessary to establish benchmarks and evaluate the per-
formance of the proposed approach. Additionally, other chal-
lenges, such as security and ownership, remain unexplored
within this emerging paradigm. Since each edge node falls
under different administration compared to the cloud, it is
important to address these challenges to ensure the robust-
ness and viability of the proposed edge federation approach.

In conclusion, this research demonstrates the effective-
ness of an edge federation-based lightweight DL approach
for COVID-19 detection using X-ray images. By addres-
sing the limitations of conventional FL approaches and
adopting a distributed framework, this approach offers
advantages such as reduced reliance on a centralized
heavy-duty machine, preserved privacy, and improved util-
ization of limited resources. Nonetheless, further research is
needed to compare and validate the results, as well as to
explore additional challenges associated with security and
ownership in this new paradigm.

Conclusion and future directions
This study addresses the challenges of privacy, increased
model training time, and the need for higher computational
resources in DL algorithms. It introduces a novel light-
weight CNN-based edge FL architecture, offering an alter-
native to traditional cloud-based solutions. The proposed
approach employs a load-balancing mechanism that distri-
butes compute-intensive tasks among edge federation
nodes, ensuring privacy, reducing model training time,
and managing the computational load on edge nodes. The
experiments conducted in three phases demonstrate the

effectiveness of the approach, showcasing reduced model
training time, improved load balancing, and privacy pres-
ervation. By participating in an edge federation, healthcare
providers can benefit from better model training, data
sharing, and computational resources while upholding
privacy. Future work can explore additional parameters
such as energy and carbon dissipation, adopt hybrid
models combining CNN and graphical neural networks
for enhanced accuracy and performance, and emphasize
trust management in edge federations to expand the fed-
eration’s membership.

Acknowledgement: Not applicable.

Contributorship: Not applicable.

Declaration of conflicting interests: The authors declared no
potential conflicts of interest with respect to the research,
authorship, and/or publication of this article.

Ethical approval: Not applicable.

Funding: The authors disclosed receipt of the following financial
support for the research, authorship, and/or publication of this
article: This research was supported by the European University
of the Atlantic.

Guarantor: Not applicable.

ORCID iDs: Muhammad Hasan Jamal https://orcid.org/0000-
0002-0114-0887
Imran Ashraf https://orcid.org/0000-0002-8271-6496

References
1. Inam M and Nayyer MZ. Energy-aware load balancing in a

cloudlet federation. Eng Proc 2021; 12: 27.
2. Chola C, Mallikarjuna P, Muaad AY, et al. A hybrid deep

learning approach for covid-19 diagnosis via ct and x-ray
medical images. Comput Sci Math Forum 2022; 2.

3. Kaya Y, Yiner Z, Kaya M, et al. A new approach to
COVID-19 detection from X-ray images using angle trans-
formation with GoogleNet and LSTM. Meas Sci Technol
2022; 33: 124011.

4. Yılmaz A. Diagnosing covid-19 from x-ray images with using
multi-channel cnn architecture. J Fac Eng Archit Gazi Univ
2021; 36: 1761–1774.

5. Nair R, Alhudhaif A, Koundal D, et al. Deep learning-based
COVID-19 detection system using pulmonary ct scans. Turk
J Electr Eng Comput Sci 2021; 29: 2716–2727.

6. Jain R, Gupta M, Taneja S, et al. Deep learning based detec-
tion and analysis of COVID-19 on chest X-ray images. Appl
Intell 2021; 51: 1690–1700.

7. Li Z, Xu X, Cao X, et al. Integrated CNN and federated learn-
ing for COVID-19 detection on chest X-ray images. IEEE/

Alvi et al. 11

https://orcid.org/0000-0002-0114-0887
https://orcid.org/0000-0002-0114-0887
https://orcid.org/0000-0002-0114-0887
https://orcid.org/0000-0002-8271-6496
https://orcid.org/0000-0002-8271-6496


ACM Trans Comput Biol Bioinform 2022: 1–11. DOI: 10.
1109/TCBB.2022.3184319.

8. Feki I, Ammar S, Kessentini Y, et al. Federated learning for
COVID-19 screening from chest X-ray images. Appl Soft
Comput 2021; 106: 107330.

9. Naz S, Phan KT and Chen YPP. A comprehensive review of
federated learning for COVID-19 detection. Int J Intell Syst
2022; 37: 2371–2392.

10. Nguyen DC, Pham QV, Pathirana PN, et al. Federated learning
for smart healthcare: A survey. ACM Comput Surv 2022; 55.

11. LeCun Y, Bengio Y et al. Convolutional networks for images,
speech, and time series. In: The handbook of brain theory and
neural networks. Cambridge, MA; MIT Press, 1998, 255–258.

12. Nayyer MZ, Raza I and Hussain SA. Cfro: Cloudlet federation
for resource optimization. IEEE Access 2020; 8: 106234.

13. Chowdhury MEH, Rahman T, Khandakar A, et al. Can AI
help in screening viral and COVID-19 pneumonia? IEEE
Access 2020; 8: 132665.

14. Rahman T, Khandakar A, Qiblawey Y, et al. Exploring the
effect of image enhancement techniques on COVID-19 detec-
tion using chest X-ray images. Comput Biol Med 2021; 132:
104319.

15. Khan LU, Alsenwi M, Yaqoob I, et al. Resource optimized
federated learning-enabled cognitive internet of things for
smart industries. IEEE Access 2020; 8: 168854.

16. Hao M, Li H, Luo X, et al. Efficient and privacy-enhanced
federated learning for industrial artificial intelligence. IEEE
Trans Ind Inform 2019; 16: 6532–6542.

17. Khan LU, Pandey SR, Tran NH, et al. Federated learning for
edge networks: Resource optimization and incentive mechan-
ism. IEEE Commun Mag 2020; 58: 88–93.

18. Shi D, Li L, Chen R, et al. Towards energy efficient federated
learning over 5G+ mobile devices. IEEE Wirel Commun
2022; 29: 44–51.

19. Sigg S, Ma J et al. Camouflage learning. In: IEEE inter-
national conference on pervasive computing and communica-
tions workshops and other affiliated events (PerCom
Workshops), Kassel, Germany, 22–26 March 2021,
pp. 724–729. IEEE.

20. Candanedo LM and Feldheim V. Accurate occupancy detec-
tion of an office room from light, temperature, humidity and
CO2 measurements using statistical learning models. Energy
Build 2016; 112: 28–39.

21. He C, Annavaram M and Avestimehr S. Group knowledge
transfer: Federated learning of large cnns at the edge. Adv
Neural Inf Process Syst 2020; 33: 14068–14080.

22. He K, Zhang X, Ren S, et al. Deep residual learning for image
recognition. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, Las Vegas, NV, USA,
27–30 June 2016, pp. 770–778. New York, NY, USA: IEEE.

23. Krizhevsky A, Hinton G et al. Learning multiple layers of fea-
tures from tiny images. Technical Report, Department of
Computer Science, University of Toronto, ON, Canada, 2009.

24. McMahan B, Moore E, Ramage D, et al.
Communication-efficient learning of deep networks from
decentralized data. In: Artificial intelligence and statistics.
Ft. Lauderdale, FL, USA: PMLR, April 20–22, 2017,
pp. 1273–1282.

25. Zheng Q, Chen S, Long Q, et al. Federated f-differential
privacy. In: International conference on artificial intelligence
and statistics, April 13, 2021–April 15, 2021, pp. 2251–2259.
San Diego, CA, USA: PMLR.

26. Baheti P, Sikka M, Arya K, et al. Federated learning on dis-
tributed medical records for detection of lung nodules. In:
VISIGRAPP (4: VISAPP), Valletta, Malta: 27–29 February
2020, pp. 445–451. Setúbal, Portugal: Science and Technology
Publications.

27. Grama M, Musat M, Muñoz-González L, et al. Robust aggre-
gation for adaptive privacy preserving federated learning in
healthcare. arXiv preprint arXiv:2009.08294, 2020.

28. Truex S, Baracaldo N, Anwar A, et al. A hybrid approach to
privacy-preserving federated learning. In: Proceedings of the
12th ACM workshop on artificial intelligence and security,
London, UK, 15 November 2019, pp. 1–11. New York,
NY, USA: ACM.

29. Zhang J, Chen C, Li B, et al. A practical data-free approach to
one-shot federated learning with heterogeneity. arXiv preprint
arXiv:2112.12371, 2021.

12 DIGITAL HEALTH

http://dx.doi.org/10.1109/TCBB.2022.3184319
http://dx.doi.org/10.1109/TCBB.2022.3184319

	 Introduction
	 Related work
	 Edge federation-based lightweight DL approach
	 Problem formulation
	 Resource aware distributed approach

	 Experimental setup
	 Results
	 Discussion
	 Conclusion and future directions
	 Acknowledgement
	 References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


