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Abstract: Particle swarm optimization (PSO) is a population-based heuristic algorithm that is widely
used for optimization problems. Phasor PSO (PPSO), an extension of PSO, uses the phase angle
θ to create a more balanced PSO due to its increased ability to adjust the environment without
parameters like the inertia weight w. The PPSO algorithm performs well for small-sized populations
but needs improvements for large populations in the case of rapidly growing complex problems and
dimensions. This study introduces a competitive coevolution process to enhance the capability of
PPSO for global optimization problems. Competitive coevolution disintegrates the problem into
multiple sub-problems, and these sub-swarms coevolve for a better solution. The best solution is
selected and replaced with the current sub-swarm for the next competition. This process increases
population diversity, reduces premature convergence, and increases the memory efficiency of PPSO.
Simulation results using PPSO, fuzzy-dominance-based many-objective particle swarm optimization
(FMPSO), and improved competitive multi-swarm PPSO (ICPPSO) are generated to assess the
convergence power of the proposed algorithm. The experimental results show that ICPPSO achieves
a dominating performance. The ICPPSO results for the average fitness show average improvements
of 15%, 20%, 30%, and 35% over PPSO and FMPSO. The Wilcoxon statistical significance test also
confirms a significant difference in the performance of the ICPPSO, PPSO, and FMPSO algorithms at
a 0.05 significance level.

Keywords: particle swarm optimization; phasor PSO; PSO coevolution; optimization; multi-swarm

MSC: 68W50

1. Introduction

Particle swarm optimization (PSO) was initially introduced by Kennedy and Eber-
hart [1]. PSO is a simple stochastic searching technique for optimization that is motivated
by the ordinary swarming comportment of bird clustering and fish schooling. The per-
formance of PSO in finding virtuous solutions for optimization problems is very good.
The PSO algorithm has the advantage of fast convergence, easy code implementation, less
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computational complexity, and few parameter adjustments [2,3]. Instead of using only
the fittest particle, PSO uses all particles of the population for computation due to its
social behavior. All particles update their positions as determined by their individual best
position (pbest) and overall best position (gbest).

The productivity of PSO is assessed by the minimum number of iterations needed
to find an optimum solution with the indicated accuracy and minimal computation. The
performance of the PSO algorithm highly depends on the selection of parameters. In PSO
parametric modification, PSO parameters are adjusted to improve the convergence and
exploration capabilities [4]. Parameter adjustments include modification of the inertia
weight, cognitive factor, social factor, techniques for defining the own best pbest and overall
best gbest, and different prototypes for the velocity update. The inertia weight w was
introduced by Bansal et al. [5] to maintain and stabilize a broader scope of the search.
To improve PSO using the inertia weight, different strategies like the growing inertia
weight [5], falling inertia weight, and adaptive inertia weight are used.

Numerical optimization problems are important in computing and are commonly
solved using evolutionary computing algorithms such as PSO and differential evolution [6].
When considering optimization problems, PSO has been successfully applied in both
the continuous and discrete domains [7]. Among several discrete PSO variations, binary
PSO [7] is possibly the most well-known model, and it has been applied to many problems,
e.g., job-shop scheduling [8]. PSO is a heuristic algorithm like a genetic algorithm; however,
it is computationally less expensive [9]. PSO parameters depend on specific applications
and are adaptive according to the application. In multi-objective optimization problems,
the PSO algorithm with multiple sub-populations has been used to achieve prominent
results [10].

PSO has been efficiently applied in many real-world problems. Most real-world
problems have increasing complexity, so the proficiency and effectiveness of PSO need to be
continuously improved. Despite the many advantages of PSO, there are still certain research
gaps that require attention. These research gaps include early convergence, memory
efficiency, slow convergence toward the global optimum, PSO without parameters, and slow
computational speed for large populations. Many variants of PSO have been successfully
developed to handle large populations, where the population is divided into multiple sub-
swarms, and each particle maintains the information of the local best. In the cooperative
approach, the whole population is divided into many sub-swarms. Each sub-swarm
coevolves with the others to form a complete solution. In competitive coevolution, the
population is divided into many sub-swarms, and two sub-swarms are selected to compete
for coevolution, with the swarm with the best fitness earning the right to represent itself.

Efficient and effective information sharing between sub-swarms is also an important
research area, where each sub-swarm shares its individual best fitness with the others.
To enhance performance and population diversity, a competitive coevolution process is
applied to the sub-swarms. This improves the performance and population diversity of
algorithms. Phasor PSO (PPSO) provides efficient results compared to other PSO variants
in many multidimensional optimization problems. Introducing the phase angle in PPSO
enhances the effectiveness and adaptability of the algorithm. However, there is still a need
to modify PPSO to solve global optimization problems. In the case of a small population,
PPSO achieves effective results but in a large population, PPSO needs to efficiently handle
a large number of particles.

PPSO lacks population diversity due to a lack of competitive processes during evo-
lution. This reduced diversity results in the degradation of the performance of PPSO due
to stagnation in local optima. Diversity is incorporated by employing the competitive
coevolution process, where the fitness of individuals is estimated following the exchange
of information with individuals from other sub-populations.
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1.1. Research Motivation

PPSO lacks population diversity due to a lack of competitive processes during the
evolution of large-sized populations. Consequently, the results become trapped in local
optima. This diversity issue reduces the convergence speed of the PPSO algorithm and
ultimately reduces its performance. The inclusion of a competitive process for exchanging
information during the evolutionary process of PPSO helps achieve convergence more
quickly without compromising on performance.

1.2. Problem Statement

In the case of a large population, the PPSO algorithm suffers from a slow convergence
speed due to the large number of particles. The selection of a suitable technique for di-
viding the population into multiple sub-swarms is crucial for PPSO. A large population
size requires a large memory size to manage operations. PPSO spends more time and
computational load in managing memory for a large population, leading to premature con-
vergence within the population, which results in increased time complexity. PPSO requires
interaction among all individual algorithms to reduce both the space and time complexity
of the algorithm. The best individuals who share their values with the population help
increase the performance of the algorithm.

1.3. Research Significance

The incorporation of a competitive coevolution process in PPSO helps improve the
performance of the PPSO algorithm. In competitive coevolution, the process improves
population diversity and the performance of the algorithm. The coevolutionary process
makes PPSO more memory efficient and adaptable, resulting in a higher efficacy rate. The
increased complexity in terms of dimensions, number of particles, and population range
shows that the improved competitive multi-swarm phasor PSO (ICPPSO) performs better.

1.4. Research Contributions

This study makes the following contributions:

• A cooperative coevolution concept is incorporated into PPSO, which helps enhance
diversity in the population and avoid local optima issues.

• The hybridization of PPSO with the competitive coevolution method helps enhance
the performance of the PPSO algorithm.

• The experimental results of the average fitness performance metric and the results of
the proposed algorithm are presented by using six standard benchmark functions.

The rest of this study is divided into six sections. The operation of PSO and its
parameters are described in Section 2. Section 3 discusses the existing literature and PSO
variants. The operation of PSSO and its related challenges are presented in Section 4.
Section 5 elaborates on the proposed approach. The experimental results and discussions
are provided in Section 6. Finally, the conclusions are presented in Section 7.

2. Operation of PSO and Its Parameters

PSO is regarded as a well-organized population and resistor parameter-based pro-
cedure for the universal optimization of different problems. PSO algorithms and GAs
share several common aspects. The initialization of the population with a random solution
and the subsequent generation updates to search for optima are almost the same. Genetic
operators, like crossover and mutation operators, are not used in PSO because of its social
behavior. So, in PSO, each particle progresses by cooperating and competing with other
individuals [11]. Each particle modifies its movement according to its own best-reached
position and the overall best position among all particles.
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In PSO, every probable solution is characterized as a particle. Each particle has certain
parameters that continuously adjust to update its position. These parameters include the
current position, speed of the particle, and best position found by the particle thus far. At
the beginning of PSO, all particles in the population are initialized with a random position,
and their velocity is set to 0. In PSO, every particle in the dimensional space D is treated as
a point. XI represents the position of the ith particle and calculates the existing quality of
each particle. Each particle in the population updates its velocity V to evaluate the tracking
of its movement at t iterations, where XT

I = (xi1, xi2, xi3, . . . , xiD) signifies the position
of particles and VT

I = (vi1, vi2, vi3, . . . , viD) represents the velocity of particles for the dth

dimension (d = 1, 2, . . . , D). These parameters are updated using Equations (1) and (2).

Vk+1
id = vk+1

id + c1 × r1 × (pbestk
id − xk

id) + c2 × r2 × (gbestk
id − xk

id) (1)

Xk+1
id = Xk

id + Vk+1
id (2)

where c1 and c2 are acceleration controller coefficients, r1, and r2 are randomly generated
coefficients within the range of (0, 1), X is the position of a particle, and k represents the
current iteration. The range [−vmax, vmax] is defined for the velocity Vi to stop the particle
from moving outside the problem exploration area. Pbest is computed through a cognitive
learning approach, in which the best solution thus far from the current particle is stored.
Gbest is computed through a social learning approach, in which the best solution thus
far from every particle in the population is stored. Pbest and Gbest are calculated using
Equations (3) and (4).

pbestk+1
id = pbestk

idi f f (pbestk
id) ≤ f (Xk+1

id )

pbestk+1
id = Xid, Otherwise

}
(3)

Gbestk+1
id = pbestk

id IF f (pbestk+1
id ) ≤ f (Gbestk

id)

Gbestk+1
id = Gbestk

id, Otherwise

}
(4)

In Equation (3), Pbest is selected using the greedy criteria based on the fitness of the
new position and the current position of the particle. Equation (3) is used to update the
Pbest of each population member in each iteration. Gbest in Equation (4) represents the
best particle overall.

2.1. Inertia Weight

The success of the optimization algorithm is analytically dependent on accurate
stability among local and global searches during the progress of all iterations. To maintain
this balance between local and overall searches, Shi et al. [12] proposed a fresh parameter w
for the velocity update equation, called the inertia weight. The velocity update Equation (5)
is expressed as

Vk+1
id = ω× vk

id + c1 × r1 × (pbestk
id − xk

id) + c2 × r2 × (gbestk
id − xk

id) (5)

where Vid is the velocity, and ω is the inertia weight.
Equation (5) is used to update the velocity for the updating of the particle position of

the population of the swarm or sub-swarm. If the cost of inertia is high, particles have a
higher probability of traveling to new search areas. However, if the cost of inertia is small,
the probability of exploring the search area is reduced, resulting in fewer updates to the
particles’ velocity. At the initial value of inertia, w remains constant at 0.4 throughout the
search process, but later, researchers employed different strategies and made changes to
the inertia weight. These strategies can be classified into three types. To determine the
optimum value in dynamic locations, Eberhart and Shi [13] effectively used the random
cost of the inertia weight. The second type is a time-varying inertia weight approach,
in which the inertia weight differs with the number of iterations over time. A linearly
decreasing inertia approach was introduced by Lei et al. [14], which effectively contributed
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to the positive modification of PSO characteristics. Similarly, other linear methods [15]
and nonlinear approaches [16] have proven to be effective inertia weight approaches.
Arumugam et al. [17] introduced a method where the inertia weight is estimated from
the proportion of the Gbest fitness and mean of the best finesses in every iteration. The
selection of the inertia weight strategy is always problem-dependent.

2.2. Cognitive and Social Learning Coefficients

The cognitive and social learning coefficients also play an important role in bringing
stability to local and global searches. In Equation (5), c1 is the rational coefficient and c2 is
the social learning component. Equation (6) represents the cognitive part, and Equation (7)
represents the communal learning part. Initially, the values of c1 and c2 were equal and set
to 2.0 by Shi et al. [4]. The cognitive component c1 controls the footstep size of particles
taken toward the personal best solution, and the social coefficient c2 controls the footstep
size taken toward the global best solution. The social component c2 has a greater impact
on improving convergence compared to c1. Time-varying cognitive coefficients were
implemented by Cai et al. [18], which focus on convergence speed in the first phase, and the
second phase focuses on global search competency. Large values of the cognitive coefficient
c1 and social coefficient c2 equate to an enormous local search ability, and small values of c1
and the social coefficient c2 equate to an enormous global search space. In Equation (6), r1
and r2 are randomly generated numbers, CP is the cognitive part, and SP is the social part
of the velocity.

CP = c1 × r1 × (pbestk
id − xk

id) (6)

Equation (6) is used to calculate the relative contribution of the cognitive part by
utilizing the pbest position of the current individual.

SP = c1 × r1 × (gbestk
id − xk

id) (7)

The social part in the velocity is calculated using Equation (7), which focuses on the
contribution of the gbest individual.

2.3. Pseudocode of PSO Algorithm

In the Algorithm 1 of PSO, all particles X of the population are initialized with random
spots, and the fitness of each particle is computed. Then, the velocity V is updated using
the velocity update equation, followed by the position update of particle X. Pbest and
Gbest are updated for each particle in the population. This process is repeated unless the
termination criteria are reached.

Algorithm 1 Pseudocode for the PSO algorithm.

Require: X is an individual, NP is the population size, V is the velocity, Pbest is the
personal best position, Gbest is the personal best position, c1 and c2 are the social and
local amplification factors, r1 and r2 are two random numbers, and k is the iteration
number.

Ensure: Evolved population with Gbest at the optimal position to achieve optimal fitness
values of the problem.

1: for whole population do
2: Initialization of all particles
3: end for
4: while maximum iterations not reached do
5: for each particle do
6: Calculate the fitness of particles
7: if fitness value is better than the best fitness value (Pbest) in history then
8: Set current value as the new Pbest
9: end if
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Algorithm 1 Cont.

10: Select the particle with the best fitness value of all the particles as the Gbest
11: end for
12: for each particle do
13: Calculate particle velocity according to the given equation
14: Vk+1

id = ω× vk
id + c1 × r1 × (pbestk

id − xk
id) + c2 × r2 × (gbestk

id − xk
id)

15: Update particle position according to Equation (2)
16: Xk+1

id = xk
id + Vk+1

id
17: end for
18: end while

3. Particle Swarm Optimization Variants and Literature Review

The particle swarm optimization algorithm is a well-known evolutionary comput-
ing optimization that is known to be very effective for solving real-world optimization
problems [19]. Many variations of PSO algorithms have been presented, including various
swarms, fresh effective learning policies, diversity-retaining strategies, and hybrid algo-
rithms, to resolve several optimization complications. These enhancements of PSO include
the population initialization process, adjustment of parameters (inertia weight, coefficients,
pbest, gebest), sub-swarm techniques for large-scale optimization, and hybrid methods
with other algorithms. For population enhancement, different techniques can be used.

PSO-sono was introduced by Meng et al. [20] for numerical optimization problems.
They presented a hybrid paradigm based on the sorted swarm, adaptation schemes for
the constriction coefficient and the paradigm ratio, and fully informed variations of the
PSO algorithm. The experimental results showed the competitiveness of the presented
enhancement of the existing PSO for standard benchmark functions. In terms of modified
PSO, the concept of distance-based enhancement was presented by Lazzus et al. in [21]. A
random, guided new direction helped improve the search capability of the PSO algorithm.
The presented method showed significant improvements compared to standard PSO using
benchmark optimization functions.

Nabi et al. [22] introduced task scheduling-based adaptive PSO in their research work
to balance loads in cloud computing. They adaptively updated the inertia weight to update
the velocity of the PSO algorithm using an adaptive linear decreasing approach. The
research results demonstrated significant improvements compared to five other inertia-
weight techniques used in the PSO algorithm. The concept of an optimal control parameter
in PSO was introduced by Eltamaly in his research work on energy systems [23]. The
author used two nested PSOs to optimize the control parameters, where the inner PSO
was used as a fitness function for the outer PSO. The experimental results showed that the
presented approach helped optimize parameters for standard benchmark problems.

Quantum PSO is a new discrete PSO algorithm that utilizes the concept of a quantum
individual. Quantum PSO utilizes the concept of a quantum bit within the quantum particle.
The quantum bit can probabilistically take a value of 0 or 1 upon random observation [24].
The concept of soliton-based quantum-behaved PSO was presented by Fallahi and Tagha-
dosi to solve optimization problems in their research work [25]. In non-linear situations,
solitons can rearrange and reproduce themselves stably without becoming trapped. The
experimental results of soliton quantum-behaved PSO showed significant improvements
when considering probability density function-based motion scenarios.

Quantum-based PSO has also been applied to task scheduling in device–edge–cloud
cooperative computing [26]. Many other variants of the PSO algorithm are available, such
as bare-bone PSO [27], stochastic PSO [28], self-adaptive PSO [29], and multi-population
PSO [30].

3.1. Phasor PSO

PPSO is a new and improved, simple, and adjustable PSO model proposed by
Ghasemi et al. [31]. PPSO is built with the addition of the phase angle θ to particle update
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equations, aiming to achieve optimal results in high-dimension optimization problems. In
PPSO, each control parameter generated by the algorithm is merged with the phase angle.
The increase in optimization efficiency is the most significant advantage of PPSO. Because
of the phase angle (θ), PSO becomes a non-parametric algorithm with simpler calculations.
In PPSO, episodic trigonometric functions, e.g., sin and cos, are used as control parameters.

3.2. Single Population Approach

Initially, PSO works best with small population sizes. However, modifications and
upgrades by researchers have made PSO efficient for large populations and multimodal
problems. PSO works better with different population sizes depending on the given
problem [32]. In PSO, the social iteration within the population is one of the key factors of
the algorithm. The population has a communication structure among particles that enables
them to collectively share search space experiences, aiming to solve complex problems
and improve population diversity. This social network for information exchange is called
topology. PSO has three commonly used topologies, as shown in Figure 1 [33].

Figure 1. Single population topologies [33].

The global topology shown in Figure 1 is also known as the star topology, in which all
the particles in the swarm are interconnected. Each particle in the population can share
information directly. The local topology, also known as the ring topology, is where all
particles in a swarm have only two neighbor particles to share information with. The von
Neumann topology is the local best topology, in which each particle in a swarm has only
four neighbor particles to share information with. In the von Neumann topology, particles
are arranged in a grid-like structure. All three topologies increase PSO performance
depending on the given problem.

3.3. Synchronous and Asynchronous Approaches to PSO

Original PSO uses a synchronous approach, in which the position and velocity of
the element are reorganized after the entire swarm ends the current iteration. This kind
of PSO is also known as S-PSO. S-PSO offers worthy information to all particles of the
population. In S-PSO, each particle of the swarm has the benefit of picking a healthier
neighbor and exploring the material delivered by this neighbor. However, premature
convergence is a common shortcoming of S-PSO. In asynchronous PSO (A-PSO) [34], once
the performance of the particle has been calculated, the pbest is updated immediately. In
A-PSO, particle information is upgraded by the current iteration instead of information
from the previous iteration. A-PSO has a shorter execution time but inadequate information
due to the upgrading of information during current iterations. Due to reliable solution
quality and robust exploitation, S-PSO performs better than A-PSO. So, the selection of
the approach between S-PSO and A-PSO is problem-dependent. In some problems, S-PSO
performs well, whereas in others, S-PSO shows good performance.

3.4. Multi-Population Approach

In PSO, population diversity is increased by dividing the entire population into
multiple substitute swarms [35]. At the start of the algorithm, the entire population is
divided into multiple sub-swarms. Then, the PSO algorithm is applied to each sub-swarm,
and each sub-swarm computes the best results of its region. In the last part, all sub-
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swarms share their best results and compute a single result for the whole population.
Different evolutionary and coevolutionary methods are used to exchange information
among sub-swarms.

3.5. Modified PSO for Multimodal Function

In the original PSO, the whole population is used for computation, but in the modified
PSO (MPSO), the whole population is divided into multiple sub-swarms regarding the
arrangement of the particles [36]. The best particle in each sub-swarm is stored as the local
best Lbest of the current sub-swarm. Instead of using the global best in the velocity update,
the Lbest is used as the best particle of each sub-swarm. Now, the velocity update equation
is modified, as shown in Equation (8)

Vk+1
id = vk

id + c1 × r1 × (pbestk
id − xk

id) + c2 × r2 × (Lbestk
id − xk

id) (8)

Instead of using the Gbest in the velocity update equation, each sub-swarm uses
its best particle thus far within its range. Because of the multiple sub-swarms, several
optimal solutions, like the Lbest and Pbest, can be found, which can be useful in multimodal
optimization problems. For a population p, with M as the total number of sub-populations
and N as the total quantity of particles in the population, the number of particles in each
sub-population is calculated using N

M .

3.6. Multi-Adaptive Strategy-Based PSO

In multi-adaptive strategy-based PSO (MAPSO), an entire population is divided
into several small-size sub-swarms [37]. Two adaptive strategies, i.e., adaptive learning
exemplars and adaptive population size, are introduced into the sub-swarms’ mechanism
to improve the comprehensive performance of MAPSO. According to the fitness value, the
search particle in a sub-swarm can adaptively select its own learning particles. Throughout
the entire optimization process, computational resources are rationally distributed based
on the adaptation of the population. The adaptive learning strategy facilitates a favorable
search behavior. In the adaptive population size strategy, the particle deletion process
can speed up the convergence of MAPSO. Introducing more particles generated with the
help of the differential evolution algorithm into the current population in the adaptive
population size strategy can provide more helpful information. MAPSO is a relatively
time-consuming variant of PSO, especially on simple uni-modal functions. It is more
appropriate for complex problems rather than simple uni-modal problems.

3.7. PSO Based on Multi-Exemplar and Forgetting Capabilities

The multi-exemplar and forgetting capabilities of PSO are employed in a new version
of PSO, called expanded PSO (XPSO) [11]. Initially, XPSO enhances the social learning
aspect of each particle by using certain exemplars, learning from both the best particle
in the local neighborhood and the best experience from the entire population, referred to
as the global best. Then, diverse forgetting abilities are assigned to different particles by
XPSO. In addition, the acceleration coefficients of each particle can be adjusted during
the evolution process. It is very important to select a good neighbor for each particle to
extract more useful information from the exemplar to provide positive guidance for the
particles. In XPSO, a random order of numbers is assigned to particles, and neighbors are
determined for the current particle based on this assigned random order. Although XPSO
demonstrates reasonable performance compared to other PSO variants, two areas have
room for further improvement and research. One is the efficiency of the newly introduced
parameter in XPSO. The other involves finding ways to extract more valuable knowledge
from the collective experiences of the entire population, and then applying this information
to the parametric adjustment and learning models of PSO.
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3.8. Multiple Archive-Based PSO

The idea of triple archive-based PSO was introduced by Xia et al. in their research
work [38]. They effectively addressed the issues related to learning models and handled
proper exemplar selection in their paper. They stored the proficient individuals in the
archive and then reused the archive.

3.9. Coevolution Algorithm in Multi-Population Problems

Cooperative coevolution and competitive coevolution are two categories of coevo-
lution algorithms. These approaches have been used by numerous researchers in their
research on various versions of the PSO algorithm. The coevolution algorithm is a tech-
nique that provides an extension of the evolutionary algorithm for multi-objective and
large population problems [10]. Coevolution improves diversity and reduces the risk of
premature convergence of the whole population. It also aids in decomposing the problem
into sub-parts [39]. In coevolution, the whole population is divided into two or more
sub-populations, and the progress of all sub-populations is accelerated simultaneously [40].
In each sub-population, the fitness of particles is evaluated based on collaboration with
individuals from other populations. In the evolutionary algorithm, each sub-population
advances by manipulating its own values. So, the performance of the coevolutionary
algorithm depends on direct communication between two or more particles from differ-
ent sub-populations. In evolutionary algorithms, the fitness of particles is determined
empirically and is independent of population circumstances. While the coevolutionary
algorithm uses a biased approach, the fitness of an individual is estimated after an exchange
of information with individuals from other sub-populations [38].

Niu et al. [41] introduced collaborative and competitive versions of multi-swarm
cooperative PSO using the concept of master and slave swarms. Diversity in multiple
slave swarms was maintained by independently running PSO on each slave swarm, which
then communicated with the master swarm to evolve the knowledge of the master swarm.
Wang et al. [42] presented a two-step cooperative PSO, where a two-swarm strategy is
used in the first step to perform dimension partition and integration using a cooperative
strategy. The velocity is controlled adaptively in the second step using an amplification
factor of the velocity with a value of 0.9 to control the landscape of the considered problem.
Hu et al. [43] tackled the problem of path failure in reconstructing the network topology
by introducing an immune cooperative particle swarm optimization algorithm in the
domain of heterogeneous wireless sensor networks. They considered macro-nodes and
source sensors, creating sub-swarms in the form of k disjoint communication paths to
provide alternative paths in case of broken paths. They used the immune cooperative
mechanism to enhance the global search capability. The concept of adaptive cooperative
PSO was introduced by Wang [44] to tackle the curse of dimensionality in cooperative
PSO by dividing the swarm into sub-swarms of smaller dimensions. They controlled
the exploration and exploitation capabilities of sub-swarms by exchanging information
cooperatively using the adaptive inertia weight.

Li et al. [45] introduced a mixed mutation strategy-based multi-population coopera-
tion PSO for higher-dimensional optimization problems. Multi-population cooperation
PSO utilized the mean learning strategy based on dynamic segments in the coevolution
process for information sharing. Covariance guidance-based multi-population cooperative
PSO [35] divides the population into inferior, exploratory, and elite groups based on the Eu-
clidean distance from the global leading particle. Cooperation between the inferior group,
exploratory group, and inferior group is used in the cooperative process to maintain the
balance between exploration and exploitation through information exchange. The concept
of multiple populations for multiple objectives was introduced in multiple populations of
coevolutionary particle swarm optimization [46]. The authors’ presented algorithm was
used for financial management in selecting specific values of stocks while adding cardinal-
ity constraints to balance return and risk to obtain a feasible solution. Health monitoring
systems normally exchange data and information in closely cooperating medical applica-



Mathematics 2023, 11, 4406 10 of 28

tions. Tang et al. [47] introduced coevolution-based quantum-behaved PSO to optimize the
allocation of resources in the cognitive radio sensor network domain. The experimental re-
sults showed excellent performance in the considered domain. Madni et al. [48] introduced
the concept of cooperative coevolution-based multi-guide PSO by applying cooperative
coevolution to each objective of the sub-swarm, aiming to reduce computational costs. The
cooperative coevolution-based multi-guide PSO algorithm exhibited excellent performance
in high-dimensional optimization problems.

3.9.1. Cooperative Coevolution Mechanism

Cooperative coevolution was introduced by Van den Bergh and Frans [49]. In cooper-
ative coevolution, the initial population is divided into multiple sub-swarms. Then, the
particle under assessment from the current sub-swarm is estimated by gathering the best
particles from other sub-populations to form a complete solution. After the evaluation of
each particle, the archive is updated. The archive stores the leading individuals throughout
the evolution. A completely appropriate solution formed by the sub-swarms will be placed
into the archive if no other leading solutions are found. If any leading solution is found
during the iterations, the appropriate solution is replaced with the leading solution.

The sub-swarms are assessed in a repetitive mode in cooperative coevolution. The
parameters of the current sub-swarm are updated before advancing to the next population.
The arrangements of the current sub-swarm will be updated before moving to the succeed-
ing sub-swarm. This method of updating arguments is based on a reflexive, anti-symmetric,
and transitive order, such as using Pareto ranks and niche counts in commands to resolve
rank ties. Pareto ranks use the following Equation (9) for ranking:

Rank(i) = 1 + ni (9)

where ni is the number of dominant archive members of the ith particle.
The lower-ranked particle is selected. In the event of a tie between two particles, the

one with a lower niche count is chosen. The selection of a dominant particle helps increase
the diversity of the overall solution. Cooperative coevolution has significantly improved
the performance of team objectives.

At the start of the competitive coevolution mechanism, the whole population can be
divided into multiple sub-swarms, and the initially selected variable for the probability of
sub-swarms is initialized with the help of a uniform distribution. In a uniform distribution,
the chance of selection of each sub-swarm is equal. So, variable1 is initialized using 1/D for
uniform probability selection. After the first iteration, the variable of probability (variable1)
can be upgraded depending on the process of competition between sub-swarms. Initially,
the cycle probability variable is allocated to the ith sub-swarm, and the competitor sub-
swarm is designated using roulette wheel selection. After the selection of two sub-swarms,
the solution of the competitor and current sub-swarm coevolve with all further sub-swarms
to form two new sub-swarms. The sub-swarm with the improved solution is selected
and included in the population with a probability selection variable in the next iteration.
Now probability variable (variable1), which is first initialized with uniform probability, is
updated using Equation (10).

Pij(k) = Pij(k− 1)± 1
D

α (10)

where α denotes the level of learning. So, the value of p in the ith sub-swarm is increased
if the ith sub-swarm is more adapted by decision variable1. It is used for the cooperative
coevolution process in the next iteration of MOPSO.

3.9.2. Competitive Coevolution Mechanism

In competitive coevolution, variable ‘p’ is allocated to each sub-swarm, indicating the
probability of signifying certain sub-swarms. Competitive coevolution used a different
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strategy compared to cooperative coevolution, in which the population is divided into
multiple swarms, but only two sub-swarms—the recent sub-swarm and contestant sub-
swarm—can contest to be representative of variable1. Only one sub-swarm (current or
contestant) can be representative at one time. In competitive coevolution, fitness implies
only the robustness of the sub-swarm; improvement in one sub-swarm decreases the
performance of the other sub-swarm. The continuous competition between two solutions,
defeating each other, results in an increased solution quality. The evolution of the whole
population in the form of sub-swarms helps prevent the solution from becoming trapped
in local optima.

4. Phasor PSO Challenges and Limitations

PPSO is an improved version of PSO that uses episodic trigonometric functions, like
sin and cos, as control parameters. The isolated nature of sin and cos is harnessed to
characterize all control parameters of PSO. To meet this goal, each particle is linked with
a one-dimensional phase angle θ. The initial value of the inertia weight is set to 0. So,
the velocity update Equation (11) of PSO is now changed with the phase angle θ and an
updated position calculation using Equation (12).

vlter = p(θlter
i )× (pbestlter

i − Xiter
i ) + g(θlter

i )× (Gbestlter
i − Xiter

i ) (11)

The phase angle for the social aspect of PPSO is represented by p(θlter
i ) in Equation (11),

and the phase angle for the cognitive aspect is represented by g(θlter
i )

Xlter+1
i = Xlter

i + V lter
i (12)

The position of PPSO is updated by using the phasor velocity Vi in Equation (12).
In the velocity update of PPSO, p(θlter

i ) and g(θlter
i ) are calculated using trigonometric

functions of sine and cosine with the angle θ in the following equations:

p(θlter
i ) = | cos θlter

i |2×sin θlter
i (13)

g(θlter
i ) = | cos θlter

i |2×sin θlter
i (14)

The social aspect of PPSO uses a phasor-based amplification factor denoted as p(θlter
i )

in Equation (13) utilizing sine and cosine functions, and the cognitive aspect uses a phasor-
based amplification factor denoted as g(θlter

i ) in Equation (14).
In PPSO, initially, the population is randomly generated in the D-dimensional space,

similar to the original PSO but with the addition of the phase angle θ for each particle,
through a uniform distribution θlter=1

i = U(0, 2π) and an initial velocity limit V lter=1
max,i . Then,

the velocities of all particles are recalculated using Equation (6), and the positions of the
particles are updated using Equation (16), which is the same as in the original PSO. For the
next iteration phase, the angle θ and the maximum velocity of each particle are calculated
using Equations (15) and (16), and the iterations are repeated until the maximum number
of iterations is reached.

θlter+1
i = θlter

i + | cos (θlter
i ) + sin (θlter

i )| × 2π (15)

V lter+1
I,max = | cos θlter

i |2 × (Xmax − Xmin) (16)

The phase angle θ for the ith particle for the next iteration is calculated using an
amplified summation of trigonometric functions, as shown in Equation (15). The velocity is
updated using a non-parametric Equation (16). One of the preeminent benefits of PPSO
compared to some other PSO variants is its ability to enhance the optimization efficiency
of PSO even when dealing with higher dimensions of problems. For shaping the control
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parameters of PSO, planting the phasor angle is an effective, flexible, and trustworthy
strategy. Despite these advantages over PSO, PPSO does have several challenges and
limitations.

4.1. Slow Convergence Speed

PPSO is an efficient solution, particularly in the case of a small population size. But
in the case of a large population size, it suffers slow convergence speed due to a vast
number of particles. The selection of the suitable technique for dividing the population
into multiple sub-swarms is required for phasor PSO.

4.2. Memory Efficiency

A large population size requires a large memory size to manage its operation. PPSO
requires efficient techniques to manage memory for a large population size. PPSO consumes
more time and computational resources in managing memory for a large population.

4.3. Multi-Swarm Search Ability

PPSO is effective in a single population but for large-scale optimization, its population
needs to be divided into multiple swarms. A suitable strategy is required for dividing the
whole population into multiple swarms.

4.4. Less Diversity

PPSO suffers from premature convergence in large populations, resulting in increased
time complexity in the adjustment of the population. Insufficient population diversity is
also a cause for premature convergence. Population diversity needs to be improved to
enhance the exploration and exploitation abilities of PPSO.

4.5. Interaction Among Individuals

PPSO requires interaction among all individuals in an algorithm to reduce the space
and time complexity of the algorithm. The best individuals sharing their values with the
population help to enhance the performance of the algorithm.

5. Improved Competitive Coevolution-Based Multi-Swarm Phasor Particle
Swarm Optimization

Different variants of PSO yield efficient and minimized results for large-scale opti-
mization problems. PSO is adaptable, and its suitability for a particular problem depends
on the algorithm, meaning that some variants suitable for large populations may not be
as suitable for small populations. Conversely, variants that are suitable for small-scale
problems may not necessarily be suitable for large-scale optimization problems. In recent
years, researchers have focused on the development of PSO algorithms for large-scale
optimization and multidimensional problems.

Premature convergence of PSO in global optimum problems is reduced by splitting the
whole population into multiple sub-swarms. This practice also improves the population
range of the exploration. Coevolutionary algorithms have been successfully applied to
different PSO variants to enhance diversity and efficiency. Although enormous progress
has been made in evolutionary and coevolutionary optimization like MPSO, efforts to
enhance PPSO for multidimensional optimization problem-consuming coevolutionary
algorithms have not been made thus far. There are two types of coevolution algorithms:
’competitive coevolution’ and ’cooperative coevolution’. In cooperative coevolution, each
individual coevolves with other individuals. The method proposed in the current research
involves the enhancement of PPSO using a competitive coevolution technique. This tech-
nique empowers PPSO to contribute effective and efficient results in the case of a large
population. This technique makes PPSO more memory efficient and reduces the risk of
premature convergence.
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In ICPPSO, a large population is distributed into multiple sub-swarms. Initially, the
current sub-swarm is selected through a uniform distribution, and the competitor sub-
swarm is nominated using the roulette wheel selection method. Then, in the competition
procedure, the characteristics of both selected sub-swarms merge with the characteristics of
all the other sub-swarms and produce two results. The sub-swarm that offers the finest
result is the winner and represents the jth decision variable. The winning sub-swarm
replaces the values of the current sub-swarm. Thus, the selected sub-swarm becomes more
adaptable because of coevolution, increasing its probability of representation in the next
iteration. After the coevolution process, the sub-swarms are combined to form one single
population. The pseudocode for ICPPSO is provided below as Algorithm 2.

Algorithm 2 Pseudocode for the ICPPSO algorithm.
Input: NP is the population size, Vmin is the minimum velocity, Vmax is the maximum
velocity, Xmin and Xmax are the minimum and maximum values of the search space of a
given problem, θ is the particle angle, f is the fitness function.
Output Evolved population with gbest at the optimal position to achieve optimal fitness
values of the problem.

1: Parametric initialization (NP, V_max, V_min, X_max, X_min)
2: Randomly and uniformly initialize particle position Xi(1, 2. . . NP)
3: Randomly and uniformly initialize particle angle θi(1, 2. . . NP)
4: Evaluate initial fitness f (X1

i ) and initial Pbest and Gbest
5: Divide the whole population into multiple sub-swarms.
6: Initial selection of current and competitor swarms using a uniform distribution
7: P(x) = 1

b−a
8: In subsequent cycles, roulette wheel selection is used for the selection process.
9: pi =

fi

∑N
j=1 fi

10: Coevolve current and competitor sub-swarms with other sub-swarms.
11: if sub-swarm particle <current sub-swarm then
12: Current sub-swarm =sub-swarm particle.
13: end if
14: Competition of current and competitor sub-swarms.
15: Select best (current sub-swarm, competitor sub-swarm).
16: Adapt relevant sub-swarm according to competition results.
17: Merge all sub-swarms into a single population.
18: Update velocity and position of particles.
19: Update pbest and gbest of the whole population.
20: Update value of θ and Vmax.
21: Jump to step 5 until termination criteria reached

5.1. Summary of Contributions and Implications of Improved Competitive Multi-Swarm Phasor
Particle Swarm Optimization

The contributions and implications of the improved competitive multi-swarm phasor
particle swarm optimization are as follows:

• Initially, PPSO was developed for small population sizes. But in the case of a large
population size, it suffers from slow convergence speed due to the vast number of
particles. The incorporation of competitive coevolution into PPSO helps divide the
population into multiple sub-swarms, which helps improve convergence speed.

• Simple PPSO is effective in a single population, but for large-scale optimization,
its population needs to be divided into multiple swarms. A suitable strategy is
required for dividing the whole population into multiple swarms. The incorporation
of competitive coevolution into PPSO helps improve multi-swarm search capability.
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5.2. Benefits of Improved Competitive Multi-Swarm Phasor Particle Swarm Optimization

• Simple PPSO suffers from premature convergence in populations, resulting in more
time complexity in the adjustment of the population. Less population diversity is
also a cause for premature convergence. Population diversity needs to be improved
to enhance the exploration and exploitation ability of PPSO. The incorporation of
competitive coevolution into PPSO can help improve population diversity.

• PPSO requires interaction among all individuals of the algorithm to reduce the space
and time complexity of the algorithm. The best individuals sharing their values with
the population help to increase the performance of the algorithm. The incorporation of
competitive coevolution into PPSO helps improve the interaction among individuals.

• A large population size requires a large memory size to manage its operation. Phasor
PSO spends more time and computational load on managing memory for a large
population. In the case of a large population size, it suffers from slow convergence
speed due to the vast number of particles. The proposed ICPPSO divides the main
swam into multiple sub-swarms so the algorithm processes one sub-swarm at a time,
which helps save memory.

5.2.1. Parameter Settings

In the proposed ICPPSO algorithm, the parametric adjustments differ from the original
PSO. In ICPPSO, the inertia weight is set to ’0’, similar to PPSO. Initially, the control param-
eters are set based on PPSO, and then some parameters are adjusted for the coevolution
process in ICPPSO. A population size of NP = 100 and a dimension size of D = 10 are
selected. Six fitness functions ( f 1, f 2, f 3, f 4, f 5, f 6) are used, along with 1000 iterations.

The whole population is divided into five sub-swarms, and the number of individuals
in each sub-swarm is assigned randomly from the main population. All sub-swarms are
evolved one by one. The pool contains two sub-swarms selected probabilistically, where
one sub-swarm is a competitor sub-swarm and the other is a current sub-swarm. Then,
two sub-swarms are used in coevolution with all other sub-swarms to form two new
sub-swarms. The results generated using these parameters are reported in Table 1.

Table 1. Average fitness values for f1 to f6 using varying dimensions and population sizes.

Dimension Population Size Algorithm f1 f2 f3 f4 f5 f6

10 100

PPSO 1.00 × 101 5.10 × 10−1 9.65 × 100 2.22 × 102 2.29 × 101 1.26 × 101

ICPPSO 2.69 × 10−2 2.69 × 10−1 5.90 × 100 2.01 × 100 3.90 × 10−1 5.36 × 10−1

FMPSO 3.00 × 10−2 4.00 × 10−1 8.07 × 100 1.12 × 102 1.25 × 100 6.47 × 100

30 150

PPSO 8.54 × 103 6.05 × 107 1.70 × 101 8.98 × 102 5.03 × 101 3.83 × 101

ICPPSO 4.81 × 103 2.44 × 106 3.70 × 101 2.65 × 103 2.33 × 101 1.06 × 101

FMPSO 5.94 × 103 2.91 × 107 1.10 × 101 6.84 × 102 2.56 × 101 1.86 × 101

50 200

PPSO 1.01 × 105 9.93 × 107 7.10 × 101 1.92 × 104 4.75 × 102 4.50 × 102

ICPPSO 8.12 × 104 3.36 × 107 6.30 × 101 8.30 × 103 3.95 × 102 2.33 × 102

FMPSO 8.33 × 104 3.74 × 107 6.50 × 101 7.90 × 103 4.00 × 102 2.72 × 102

5.2.2. Phasor Angle and Initial Velocity

In the proposed ICPSO, the inertia weight is set to zero, and the phasor angle θ is used
similarly to PPSO. Initially, θ is initialized with a uniform distribution of θi = U(0, 2π). In
later iterations, θ is adjusted according to Equation (17), and the maximum velocity limit is
upgraded according to Equation (18).

θlter+1
i = θlter

i + | cos (θlter
i ) + sin (θlter

i )| × 2π (17)
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V lter+1
I,max = | cos θlter

i |2 × (Xmax − Xmin) (18)

The phase angle θ for the ith particle for the subsequent iteration is calculated using the
amplified summation of trigonometric functions, as shown in Equation (17). The velocity is
updated using a non-parametric Equation (18).

5.2.3. Uniform Distribution

In the proposed ICPPSO, a uniform distribution is used for the initial values of θ, simi-
lar to the original PPSO. ICPPSO uses a uniform distribution in the initial selection of the
competitor sub-swarms. In the uniform distribution, each particle has an equal probability
in the selection process. The probability density function of the uniform distribution is
expressed in Equation (19).

f (x) =

{
1

b−a , a ≤ x ≤ b
0 , x < a or x > b

(19)

where a is the lower limit, b is the upper limit, and x must belong to the range [a, b];
otherwise, 0 is used.

5.2.4. Competition and Coevolution

PPSO lacks population diversity due to the lack of a competitive process during
evolution, which results in becoming trapped in local optima. The diversity issue reduces
the convergence speed of the PPSO algorithm, ultimately reducing performance. The
inclusion of any competitive process during the evolutionary process of PPSO helps achieve
convergence more quickly.

The competitive coevolution process increases diversity in the whole population,
which helps avoid premature convergence. Diversity is incorporated because the fitness of
an individual is estimated following the exchange of information with individuals from
other sub-populations in the competitive coevolution process.

ICPSSO uses competition between the competitor and the current sub-swarms while
coevolving with the best particle. The competitor sub-swarm is initially selected using
a uniform distribution, and in subsequent iterations, it is selected using a roulette wheel
selection process. The selection process relies on the probability of each sub-swarm, as
expressed in Equation (20)

pi =
fi

∑N
j=1 fi

(20)

where fi is the probability of each sub-swarm, and ∑N
j=1 fi is the summation of probabilities

of all swarms. After competitor sub-swarm selection, the coevolution process begins. Both
the selected sub-swarms coevolve with all other sub-swarms, and the sub-swarm with
the best solution emerges as the winner, representing itself in the subsequent iterations.
Solutions with higher probabilities have a more significant area for selection, making them
more adaptable in the selection process.

5.3. Benchmark Functions

Details of the benchmark functions used to generate the experimental results are
provided in Table 2, including the name of the function, search space, and equation.

Although a large number of benchmark functions can be found in the existing litera-
ture, the choice of these functions depends on the nature of the evaluation, the modality of
the model, etc. A large number of existing studies have used benchmark functions f6, f7,
and f8 in their research works to reduce the complexity time of performance evaluation.
For example, [50–54] employed functions f6, f7, and f8 to evaluate the performance of their
proposed models. These studies suggest that functions f5, f6, or f7 suffice for the evaluation
and comparison of evolutionary computing algorithms [50,54–56]. While there are several
fixed-dimension functions available in the literature, our algorithm mainly addresses multi-
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dimensional problems. Therefore, we have considered six standard benchmark multimodal
functions, as suggested in [50–53]. The experimental results show that these functions can
effectively assess performance and facilitate significance tests of the proposed algorithm in
comparison to existing algorithms.

Table 2. List of benchmark functions.

Function Function Name (Type) Search Range Equation

f1 Sphere model Function [−100,100] [ f (x) = ∑n
i=1 i.x2

i ]

f2 Schwefel’s problem function 1 [−100,100] [ f (x) = ∑n
i=0
(
∑n

i=0 i.x2)2
]

f3 Schwefel’s problem function 2 [−100,100] [ f (x) = max0≤x≤D |xi|]
f4 Rosenbrock function [−2.048,2.048] [ f (x) = ∑D−1

i=0 (100(x2
i − xi+1)

2 + (xi − 1)2)]

f5 Rastrigin function [−5.12,5.12] [ f (x) = ∑D
i=1
(
x2

i − 10 cos(2πx) + 10
)
]

f6 Griewank function [−5.12,5.12]
[ f (x) = ∑D

i=1(y
2
i − 10 cos(2πy) + 10)]

Where yi = x2
i if |X| < 1/2 round(2x2

i ) if
|X| > 1/2

6. Experimental Results and Discussion

In this section, we implement the proposed ICPPSO method using variants of the PSO
algorithm, known as PPSO, including the competitive coevolution process in PPSO, to
demonstrate the coevolution and sub-swarm effect on the PPSO algorithm. The experimen-
tal results of the PPSO, ICPPSO, and FMPSO algorithms are generated using populations
of 100, 150, and 200 with dimensions of 10, 30, and 50, respectively. The number of training
iterations considered is 1000 for all algorithms during the experiments. The experimental
results for the fitness values of the PPSO, ICPPSO, and FMPSO algorithms are reported in
Tables 3–8. Tables 3 and 4 show the results using a population size of 100 and a dimension
size of 10.

Table 3. Average fitness values for f1 to f3, with NP = 100 and D = 10.

Iterations
f1 f2 f3

PPSO ICPPSO FMPSO PPSO ICPPSO FMPSO PPSO ICPPSO FMPSO

0 6412.00 6510.74 6969.90 7706.78 7546.74 8213.20 64.00 64.23 81.13

50 6412.00 6510.74 6512.90 7078.28 7546.74 7314.70 46.01 40.05 44.04

100 4861.61 4768.63 5389.70 6902.23 6374.85 7011.90 44.22 36.33 44.42

150 4861.61 4768.63 5035.30 6374.85 6312.85 6507.30 36.78 36.33 37.30

200 4861.61 4768.63 4821.50 6374.85 6312.85 6349.70 36.78 36.33 37.24

250 3454.63 3022.91 4167.80 5132.50 4144.89 4675.30 36.47 33.80 36.92

300 3454.63 3022.91 3258.80 4316.79 4144.89 4656.70 36.47 33.80 36.54

350 3454.63 2169.43 3416.60 4316.79 4144.89 4635.60 36.02 33.80 35.27

400 2802.98 2169.43 2522.20 3840.17 1365.25 2603.90 36.02 29.77 32.90

450 2802.98 2169.43 2508.50 3523.24 1365.25 2450.80 34.50 29.77 32.95

500 2678.23 2169.43 2424.70 2207.05 1365.25 1965.20 34.50 29.77 32.27

550 2189.49 2004.65 2396.30 2207.05 863.43 1543.60 31.52 29.77 31.23

600 2189.49 2004.65 2109.80 1181.02 863.43 1028.30 31.52 27.44 29.57
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Table 3. Cont.

Iterations
f1 f2 f3

PPSO ICPPSO FMPSO PPSO ICPPSO FMPSO PPSO ICPPSO FMPSO

650 2189.49 2004.65 2176.30 867.82 304.16 586.00 31.52 27.44 30.27

700 1865.27 1829.06 1999.20 867.82 304.16 465.30 31.52 27.44 29.73

750 1865.27 1102.65 1497.80 547.05 8.48 278.60 27.65 21.70 25.08

800 1587.23 1102.65 1494.90 226.50 8.48 121.40 23.49 19.05 21.49

850 556.63 540.60 548.80 78.65 4.92 42.10 23.49 17.14 20.43

900 358.96 50.22 47.20 10.52 2.89 7.40 17.98 5.90 12.47

950 50.25 1.39 1.01 6.53 1.39 4.00 11.56 5.90 8.75

1000 10.02 0.03 0.03 0.51 0.27 0.40 9.65 5.90 8.07

Table 4. Average fitness values for f4 to f6, with NP = 100 and D = 10.

Iterations
f4 f5 f6

PPSO ICPPSO FMPSO PPSO ICPPSO FMPSO PPSO ICPPSO FMPSO

0 1795.17 1766.33 1801.60 48.32 48.59 50.74 46.59 45.63 46.10

50 1067.91 1084.63 1195.79 48.32 46.47 53.78 46.59 40.95 43.82

100 1067.91 1084.63 1167.23 48.32 43.91 48.90 38.58 35.93 42.57

150 1005.21 1060.89 1146.08 48.32 33.45 41.60 38.58 35.93 37.29

200 1005.21 1020.89 1013.60 48.32 33.45 41.35 28.36 25.76 28.16

250 943.46 1020.43 1010.78 45.23 33.45 40.34 28.36 20.56 26.59

300 943.46 820.74 993.14 45.23 33.45 39.90 28.36 18.91 24.70

350 884.86 820.74 966.80 45.23 33.45 37.13 23.79 12.81 18.45

400 884.86 664.94 820.72 43.72 20.50 32.80 23.79 10.18 17.96

450 884.86 664.94 783.10 43.72 20.50 32.24 21.11 8.06 16.65

500 884.86 336.92 612.51 43.72 20.50 32.13 21.11 7.87 15.00

550 661.53 336.92 510.10 43.72 20.50 32.15 21.11 7.87 14.85

600 661.53 110.37 387.17 30.12 6.33 18.30 15.88 4.06 13.10

650 661.53 110.37 386.47 22.87 6.33 14.71 15.88 3.29 12.99

700 336.56 104.85 223.32 22.87 5.69 14.38 14.29 3.21 12.93

750 336.56 104.85 231.65 22.87 4.79 13.98 14.29 0.93 7.71

800 336.56 100.55 224.53 22.87 4.24 13.68 14.29 0.93 7.63

850 336.56 41.56 194.50 22.87 0.90 11.95 12.56 0.93 6.76

900 222.36 26.77 137.70 22.87 0.90 6.50 12.56 0.54 6.71

950 222.36 8.56 116.46 22.87 0.55 3.70 12.56 0.54 6.55

1000 222.36 2.01 112.20 22.87 0.39 1.25 12.56 0.54 6.47

Although this cannot be deemed the all-time best implementation, the results are more
optimized compared to the original PPSO, especially concerning large population diversity
and size. The results generally show that initially, the effectiveness of the proposed method
was almost the same, but as the population size and admissions size increased, so did
the effectiveness of the proposed method. The results columns represent the same six
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objective functions used for PPSO, FMPSO [46], and ICPPSO (proposed algorithm) to
assess the effectiveness of the proposed solution. For all objective functions, the proposed
solution performed well and became more effective with the increasing size and diversity
of the population.

Convergence graphs for all the employed models are shown in Figure 2a–f. The
competitive coevolution process within the sub-swarms played a major role in improving
the performance of the proposed solution. If any sub-swarm encountered a premature
convergence issue, the coevolution process provided assistance to escape from it. It was
observed that PPSO achieved a good convergence speed for smaller population sizes, but
for large population sizes and diversity, the chance of premature convergence increased.
In the proposed solution, premature convergence was reduced because of the coevolution
process. Based on the results obtained, it can be generally concluded that for all six
objective functions, the proposed method is more effective and successful in cases of larger
population sizes and diversity.

Figure 2 shows the logarithmic convergence graphs for PPSO, ICPPSO, and FMPSO
for functions f1 to f6, respectively. The x-axis shows the number of training iterations
in multiples of 50, and the y-axis shows the fitness values of Gbest for the considered
algorithms. These convergence graphs were generated using a population size of 100
and a dimension of 10. Figure 2a shows that the performance of all three algorithms was
similar in the initial iterations, but as the number of iterations increased, the performance
of ICPPSO and FMPSO improved compared to the PPSO algorithm until the final iteration,
at which point the performance of ICPPSO and FMPSO became similar. Figure 2b–d
clearly show that as the number of iterations increased, the performance of the proposed
algorithm gradually improved until the final iteration. Moreover, the performance of
FMPSO surpassed that of the PPSO algorithm, as indicated by the results.

Tables 5 and 6 present the results of the fitness values for the PPSO, ICPPSO, and
FMPSO algorithms for the test suite of six functions. A population size of 100 and a
dimension size of 30 were considered in generating these results. For all three algorithms,
Table 5 shows the results of functions f1 to f3, whereas Table 6 shows the results of functions
f4 to f6. It is clear from the results that the performance of ICPPSO was approximately
similar for function f1, but the proposed algorithm outperformed PPSO and ICPPSO
for functions f2, f3, f4, f5, and f6. So, we can say that the incorporation of competitive
coevolution significantly enhances the performance of the PPSO algorithm. On average,
ICPPSO achieved improvements of 15%, 20%, 30%, and 35% compared to PPSO and
FMPSO in terms of fitness results.

(a) (b)

Figure 2. Cont.
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(c) (d)

(e) (f)

Figure 2. Logarithmic convergence of PPSO, ICPPSO, and FMPSO algorithms, with NP = 100 and
D = 10.

Table 5. Average fitness values for f1 to f3, with NP = 150 and D = 30.

Iterations
f1 f2 f3

PPSO ICPPSO FMPSO PPSO ICPPSO FMPSO PPSO ICPPSO FMPSO

0 14,050 14,024 15,099 175,000,000 164,000,000 241,248,283 55 56 46

50 12,540 10,360 11,965 102,000,000 38,400,000 87,877,763 51 53 44

100 11,540 9301 11,133 80,000,000 10,200,000 60,702,189 45 53 42

150 11,540 9046 10,546 80,000,000 2,440,000 56,845,973 43 49 40

200 11,540 8593 10,502 60,500,000 2,440,000 47,646,675 31 49 20

250 8540 8593 8581 60,500,000 2,440,000 4,484,8163 30 37 17

300 8540 4811 6780 60,500,000 2,440,000 43,630,988 26 37 17

350 8540 4811 6697 60,500,000 2,440,000 39,809,808 18 37 14

400 8540 4811 6695 60,500,000 2,440,000 38,290,070 17 37 14

450 8540 4811 6691 60,500,000 2,440,000 37,754,894 17 37 14
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Table 5. Cont.

Iterations
f1 f2 f3

PPSO ICPPSO FMPSO PPSO ICPPSO FMPSO PPSO ICPPSO FMPSO

500 8540 4811 6559 60,500,000 2,440,000 36,716,098 17 37 14

550 8540 4811 6461 60,500,000 2,440,000 35,860,231 17 37 14

600 8540 4811 6284 60,500,000 2,440,000 34,600,925 17 37 14

650 8540 4811 6194 60,500,000 2,440,000 33,636,356 17 37 13

700 8540 4811 6206 60,500,000 2,440,000 32,727,560 17 37 13

750 8540 4811 6125 60,500,000 2,440,000 31,774,173 17 37 13

800 8540 4811 6114 60,500,000 2,440,000 31,351,568 17 37 13

850 8540 4811 6101 60,500,000 2,440,000 31,123,045 17 37 13

900 8540 4811 6083 60,500,000 2,440,000 30,557,021 17 37 12

950 8540 4811 6049 60,500,000 2,440,000 30,098,774 17 37 12

1000 8540 4811 5941 60,500,000 2,440,000 29,068,581 17 37 11

Table 6. Average fitness values for f4 to f6, with NP = 150 and D = 30.

Iterations
f4 f5 f6

PPSO ICPPSO FMPSO PPSO ICPPSO FMPSO PPSO ICPPSO FMPSO

0 4595 4656 2494 106 100 104 58 57 69

50 3385 4656 1920 80 40 61 56 51 54

100 2952 3466 1522 60 38 56 56 51 54

150 2290 2650 1087 50 38 45 56 50 53

200 2001 2650 983 50 29 43 56 45 52

250 1738 2650 900 50 29 41 48 41 45

300 966 2650 891 50 23 37 48 32 42

350 966 2650 835 50 23 37 48 32 40

400 966 2650 828 50 23 35 48 32 40

450 966 2650 742 50 23 35 48 27 40

500 966 2650 740 50 23 34 48 21 35

550 966 2650 727 50 23 33 38 11 34

600 898 2650 722 50 23 32 38 11 28

650 898 2650 715 50 23 32 38 11 24

700 898 2650 713 50 23 30 38 11 24

750 898 2650 710 50 23 29 38 11 24

800 898 2650 707 50 23 28 38 11 23

850 898 2650 703 50 23 28 38 11 21

900 898 2650 701 50 23 26 38 11 21

950 898 2650 699 50 23 26 38 11 20

1000 898 2650 684 50 23 26 38 11 19
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Figure 3 shows the convergence graphs of all algorithms for functions f1 to f6, respec-
tively. These graphs were generated using a population size of 100 and a dimension of
30. Figure 3a shows that for the initial iterations, the performance of all the algorithms
was similar; however, the performance of FMPSO and the proposed ICPPSO improved
as the number of iterations increased. The performance of the proposed ICPPSO was
better for functions f 1, f 2, f 5, and f 6 compared to both FMPSO and PPSO. Moreover, the
performance of FMPSO was superior to that of PPSO, as indicated by the results.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Logarithmic convergence of PPSO, ICPPSO, and FMPSO algorithms, with NP = 200 and
D = 30.
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Tables 7 and 8 present the results using a population size of 200 and a dimension size
of 50, with the convergence graphs being shown in Figure 4a–f. The experimental results
are indicative of the superior performance of the proposed ICPPSO compared to both PPSO
and FMPSO.

Table 7. Average fitness values for f1 to f3, with NP = 200 and D = 50.

Iterations
f1 f2 f3

PPSO ICPPSO FMPSO PPSO ICPPSO FMPSO PPSO ICPPSO FMPSO

0 124,665 123,689 132,712 159,000,000 159,000,000 172,801,337 86 85 94

50 100,633 81,228 96,953 99,300,000 33,600,000 74,821,574 71 63 72

100 100,633 81,228 95,420 99,300,000 33,600,000 71,587,729 71 63 70

150 100,633 81,228 94,388 99,300,000 33,600,000 66,450,164 71 63 67

200 100,633 81,228 92,938 99,300,000 33,600,000 62,723,479 71 63 67

250 100,633 81,228 91,402 99,300,000 33,600,000 60,642,275 71 63 67

300 100,633 81,228 90,192 99,300,000 33,600,000 60,094,319 71 63 67

350 100,633 81,228 89,454 99,300,000 33,600,000 59,332,208 71 63 67

400 100,633 81,228 88,351 99,300,000 33,600,000 57,250,660 71 63 66

450 100,633 81,228 88,049 99,300,000 33,600,000 552,869,66 71 63 66

500 100,633 81,228 87,921 99,300,000 33,600,000 51,938,099 71 63 66

550 100,633 81,228 86,443 99,300,000 33,600,000 50,313,669 71 63 66

600 100,633 81,228 85,106 99,300,000 33,600,000 47,799,437 71 63 66

650 100,633 81,228 84,200 99,300,000 33,600,000 46,279,179 71 63 65

700 100,633 81,228 83,998 99,300,000 33,600,000 43,236,207 71 63 65

750 100,633 81,228 83,898 99,300,000 33,600,000 41,989,082 71 63 65

800 100,633 81,228 83,771 99,300,000 33,600,000 39,503,950 71 63 65

850 100,633 81,228 83,626 99,300,000 33,600,000 38,500,179 71 63 65

900 100,633 81,228 83,593 99,300,000 33,600,000 38,039,391 71 63 65

950 100,633 81,228 83,451 99,300,000 33,600,000 37,526,643 71 63 65

1000 100,633 81,228 83,345 99,300,000 33,600,000 37,416,983 71 63 65

A population size of NP = 200 and a dimension size of D = 50 were selected. Six fitness
functions ( f1, f2, f3, f4, f5, f6) were used, and the experiments were run for 1000 iterations
using the PPSO, ICPPSO, and FMPSO algorithms. The convergence results are shown
in Figure 4, demonstrating the superior performance of the proposed ICPPSO across all
functions.

The experimental results show the fitness values of the PPSO, FMPSO, and ICPPSO
algorithms for functions f1 to f6. These results were generated with population sizes of
100, 150, and 200 and dimensions of 10, 30, and 50. The results for all three algorithms
were generated using the same parameter settings. It is evident from the results that the
performance of ICPPSO surpassed that of PPSO and FMPSO for most of the functions. In
the case of D = 30, the performance of the proposed algorithm was superior for functions
f1, f2, f5, and f6, whereas FMPSO exhibited better performance for functions f3 and
f4. However, ICPPSO achieved competitive performance for functions f3 and f4. The
convergence graphs also show that ICPPSO exhibited the overall best performance for the
considered suite of benchmark functions.



Mathematics 2023, 11, 4406 23 of 28

(a) (b)

(c) (d)

(e) (f)

Figure 4. Logarithmic convergence of PPSO, ICPPSO, and FMPSO algorithms.

Besides improvements in the convergence of the proposed ICPPSO algorithm, it also
helped increase memory efficiency. Memory usage is discussed here in the context of
sub-populations rather than the whole population. Since the proposed algorithm divided
the whole population into six sub-populations, it increased memory efficiency.
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Table 8. Average fitness values for f4 to f6, with NP = 200 and D = 50.

Iterations
f4 f5 f6

PPSO ICPPSO FMPSO PPSO ICPPSO FMPSO PPSO ICPPSO FMPSO

0 45,000 44,965 46,373 610 610 630 700 629 665

50 27,950 26,975 32,771 475 395 486 450 233 482

100 24,300 22,008 23,247 475 395 486 450 233 365

150 24,300 20,477 22,509 475 395 437 450 233 362

200 24,300 20,305 21,541 475 395 429 450 233 361

250 19,157 17,383 18,701 475 395 428 450 233 355

300 19,157 16,664 18,107 475 395 423 450 233 345

350 19,157 16,311 18,060 475 395 421 450 233 340

400 19,157 15,432 17,648 475 395 419 450 233 334

450 19,157 13,674 17,016 475 395 416 450 233 333

500 19,157 12,541 16,342 475 395 416 450 233 327

550 19,157 11,677 15,297 475 395 413 450 233 325

600 19,157 11,565 14,123 475 395 412 450 233 323

650 19,157 11,221 13,076 475 395 411 450 233 318

700 19,157 10,654 11,007 475 395 406 450 233 308

750 19,157 9679 9901 475 395 406 450 233 300

800 19,157 9569 8615 475 395 405 450 233 292

850 19,157 9272 8217 475 395 403 450 233 286

900 19,157 8532 8181 475 395 402 450 233 282

950 19,157 8417 8005 475 395 402 450 233 279

1000 19,157 8304 7901 475 395 400 450 233 272

So, it can be concluded from these results that the competitive coevolution process
increases diversity in the whole population, which helps avoid premature convergence.
Diversity is incorporated because the fitness of an individual is estimated following the
exchange of information with individuals from other sub-populations in the competitive
coevolution process.

Statistical Analysis

The statistical analysis was performed using the Wilcoxon significance test. A null
hypothesis states that there is no significant difference between the performance of ICPPSO
and that of the other two algorithms, whereas the alternate hypothesis states that there is a
significant difference between the average fitness performance of ICPPSO and the other two
algorithms (PPSO and FMPSO). We applied the Wilcoxon significance test by considering a
significance level of 0.05, which was compared with the p-value of the used test.

The Wilcoxon significance test was applied to the average fitness results of all func-
tions used in this study by considering ICPPSO with PPSO and FMPSO separately. The
results from these tests are reported in Table 9 with a significance level of 0.05 across all
experiments. We used the default wilcox zero method in the Wilcoxon test. The significance
results showed that all experiments of average fitness values have different statistics that
demonstrated varying performance, and the p-values were smaller at the 0.05 significance
level across all functions. It can be observed in Table 9 that the proposed ICPPSO exhibited
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a significant difference in performance at the 0.05 significance level compared to the PPSO
and FMPSO algorithms.

Table 9. Wilcoxon significance test results for the proposed algorithm (ICPPSO) vs. the PPSO and
FMPSO algorithms for functions f1–f6, using 10D at a significance level of 0.05.

Function Wilcoxon Test for PPSO vs. ICPPSO Wilcoxon Test for FMPSO vs. ICPPSO

f1 Statistics = 17.000 ; p = 0.000 Statistics = 4.000; p = 0.000

f2 Statistics = 12.000; p = 0.000 Statistics = 10.000; p = 0.000

f3 Statistics = 1.000; p = 0.000 Statistics = 0.000; p = 0.000

f4 Statistics = 18.000; p = 0.000 Statistics = 3.000; p = 0.000

f5 Statistics = 1.000; p = 0.000 Statistics = 0.000; p = 0.000

f6 Statistics = 0.000; p = 0.000 Statistics = 0.000; p = 0.000

A significance level of 5% was used to conduct the Wilcoxon significance test on
functions f1 to f6. The results of the proposed algorithm were then compared to those of
the PPSO and FMPSO algorithms. It can be observed from the results of the significance
test that the statistics for all these functions varied in value. However, the p-value for all
the cases was 0.0000, leading to the rejection of the null hypothesis and acceptance of the
alternate hypothesis. Therefore, it can be deduced that there is a significant difference
in the performance of the ICPPSO algorithm compared to the state-of-the-art PPSO and
FMPSO algorithms.

7. Conclusions

Different variants of PSO have the ability to solve a diverse variety of problems. Some
variants, like MPSO, are effective in managing large-scale populations. The large size of
the population is directly proportional to a wide diversity of solutions. In the cooperative
approach, the whole population is divided into many sub-swarms, each of which coevolves
with the others to form a complete solution. In competitive coevolution, the population
is also divided into multiple sub-swarms, and two of these sub-swarms are selected to
compete for coevolution; the swarm with the best fitness ultimately earns the right to
represent itself. This competitive coevolution process is a great technique for tackling large-
scale problems. The hybridization of PPSO with competitive coevolution brings about many
effective enhancements for the algorithm. These enhancements include increased efficiency
in handling large-scale problems, reduced solution stagnation, decreased risk of premature
convergence, and greater population diversity within the algorithm. This study proposed
ICPPSO, which incorporates competitive coevolution into PPSO to increase its efficiency
for large populations. Six fitness functions were used to demonstrate the enhancements of
PPSO. Competitive coevolution not only increased population diversity but also enabled
the handling of more complex problems. Mostly, a multi-swarm strategy is used for
large-scale optimization problems in PSO. A combination of competitive and cooperative
coevolutionary processes was implemented to improve PPSO. Cooperative coevolution is
also used independently in large-scale problems of PPSO. A more effective strategy needs to
be developed without dividing the population into multiple sub-populations. Experiments
were performed by considering six standard benchmark functions and parameter settings.
The experimental results were discussed regarding the average fitness values of the PPSO,
FMPSO, and ICPPSO algorithms. Additionally, their associated convergence graphs were
presented for varying parameters. It can be concluded from the experimental results that
the performance of ICPPSO is superior to that of FMPSO and PPSO for the considered
benchmark functions and varying parameters. The performance comparison of ICPPSO
against PPSO and FMPSO showed the superior performance of the proposed ICPPSO
algorithm. The experimental results for the average fitness of the ICPPSO algorithm
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indicated average improvements of 15%, 20%, 30%, and 35% over the PPSO and FMPSO
algorithms. The results of the Wilcoxon statistical significance test for the ICPPSO algorithm
rejected the null hypothesis, showing a significant difference in performance compared to
the PPSO and FMPSO algorithms at a 0.05 confidence level. Our future work will involve
the incorporation of a dynamic and efficient self-adaptive selection process into ICPPSO
for large-scale problems.
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