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Abstract: Background: DNA methylation is the best epigenetic mechanism for explaining the interac-
tions between nutrients and genes involved in intrauterine growth and development programming.
A possible contributor of methylation abnormalities to congenital heart disease is the folate methy-
lation regulatory pathway; however, the mechanisms and methylation patterns of VSD-associated
genes are not fully understood. Objective: To determine if maternal dietary intake of folic acid (FA) is
related to the methylation status (MS) of VSD-associated genes (AXIN1, MTHFR, TBX1, and TBX20).
Methods: Prospective case–control study; 48 mothers and their children were evaluated. The mothers’
dietary variables were collected through a food frequency questionnaire focusing on FA and the
consumption of supplements with FA. The MS of promoters of genes was determined in the children.
Results: The intake of FA supplements was significantly higher in the control mothers. In terms of
maternal folic acid consumption, significant differences were found in the first trimester of pregnancy.
Significant differences were observed in the MS of MTHFR and AXIN1 genes in VSD and control
children. A correlation between maternal FA supplementation and MS of AXIN1 and TBX20 genes
was found in control and VSD children, respectively. Conclusions: A lower MS of AXIN1 genes and
a higher MS of TBX20 genes is associated with FA maternal supplementation.

Keywords: folic acid intake; ventricular septal defects; congenital heart disease; methylation status;
AXIN1; MTHFR; TBX1; TBX20

1. Introduction

Folic acid (FA) deficiency is widespread and constitutes a significant global disease
burden, which also affects women during the reproductive period [1]. The main cause of fo-
late deficiency is poor dietary intake. Folate is an important substrate in carbon metabolism,
by which carbon groups are provided for DNA methylation and DNA, RNA, proteins,
and lipids synthesis [2]. These folate-dependent processes are essential during periods of
rapid cell division and growth. Therefore, the requirement of folic acid during pregnancy
increases markedly to satisfy the needs of embryonic and fetal growth and development.
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The protective effect of periconceptional folate in preventing neural tube defects is
widely recognized [3]. In recent years, the relevance of the relationship of folic acid intake
with the prevention of congenital heart disease (CHD) has increased, which has led to
a search for candidate genes involved in its metabolic pathway [4,5]. Four genes have
recently been shown to be related to CHD: MTHFR (methylenetetrahydrofolate reductase),
TBX1 (T-box transcription factor 1), TBX20 (T-Box transcription factor 20), and AXIN1 (axis
inhibitor 1) [6–9].

The MTHFR enzyme is a promising candidate because it regulates the availabil-
ity of active folate by catalyzing the reduction of 5,10-methylenetetrahydrofolate to 5-
methyltetrahydrofolate. Reduced MTHFR activity results in the decreased availability
of 5-methyltetrahydrofolate for the re-methylation of homocysteine to methionine [10].
Several studies have shown the association of MTHFR variants with increased risk of
isolated CHD, as well as differences in methylation patterns between promoter regions of
the MTHFR gene in children with CHD [6].

Moreover, the TBX1 gene encodes a T-box transcription factor implicated in DiGeorge
syndrome, which affects the development of many organs, including the heart [11]. Studies
have reported mutations in the TBX1 gene in families with a history of CHD, and some mu-
tations have been related to isolated abnormalities such as tetralogy of Fallot, interrupted
aortic arch, double ventricular right ventricle, pulmonary atresia, and ventricular septal
defects (VSD) [7], while the TBX20 gene performs critical activities in the development
of the heart and adult cardiac function [12]. Mutations in the coding region of TBX20
have been associated with sporadic and familial cases of coronary heart disease, including
atrial septal defects (ASD), tetralogy of Fallot, and dilated cardiomyopathy in adults [8].
Furthermore, differences in the methylation patterns between subjects with dilated heart
disease and VSD have been observed in the promoter region of TBX20 [13].

AXIN1 is a component of the WNT signal transduction pathway and plays a role
in the assembly of the b-catenin complex that regulates cell proliferation and promotes
myogenesis or osteogenesis. Recent studies have found an association between the presence
of allelic variants of this gene and the risk of CHD [9].

Congenital malformations are estimated to affect 7% of births [14]. VSD accounts
for 20% of all CHD. The incidence is approximately 1.5 to 3.5 per 1000 newborns [15].
In Mexico, it is estimated that each year between 12 and 16 thousand children are born
with CHD, and it is the second most prevalent cause of death in Mexican children under
five years of age [16]. VSD is the third most common isolated defect, after patent ductus
arteriosus (PDA) and inter-atrial communication (IAC) [17]. Some studies have reported
a prevalence of children under 6 years of age with VSD of between 9.3 and 10.29% in
Mexico [18,19].

Given the limited literature available on gene–diet interaction, and specifically on
maternal folic acid intake and its relationship with the global methylation of genes associ-
ated with VSD (MTHFR, TBX1, TBX20, and AXIN1), this research aims to determine the
relationship between maternal folic acid intake during pregnancy and the methylation
status (MS) of genes associated with VSD.

2. Materials and Methods
2.1. Study Population

A census was conducted at 2 local hospitals: Hospital Universitario “Dr. José Eleuterio
González” and Hospital Regional Materno-Infantil de Alta Especialidad, in Nuevo León,
Mexico, in 2010–2012. It found 50 children with CHD. For this study, all VSD patients were
recruited (n = 16; 32% of all CHD). The study was approved by the Ethics and Research
Committee of the Facultad de Medicina, Universidad Autónoma de Nuevo León (GE19-
00001), according to The Code of Ethics of the World Medical Association (Declaration of
Helsinki) [20]. Informed consent was obtained from all subjects involved in the study, as
established in the Regulations of the General Health Law of Mexico [21].



Nutrients 2021, 13, 2071 3 of 11

This prospective case–control study included all children with a positive diagnosis
of VSD and their mothers. Patients with a positive family history of CHD or with a
clear environmental risk factor related to the malformation were excluded. Patients with
other malformations that suggest a chromosomal or monogenic etiology for CHD and
subjects with additional symptoms were excluded. The controls were DNA samples
previously collected from healthy children from mothers whose medical history and
dietary information was known, which were stored in the DNA Bank of the Department of
Genetics of the Hospital Universitario “Dr. José Eleuterio González”.

2.2. Determination of Maternal Dietary Intake of Folic Acid

Via direct interview, the mother completed a data collection sheet, which included
the qualitative determination of the consumption of folic acid supplements before and
during pregnancy (nonusers were defined as those who never took folic acid supplements
alone or folic acid-containing multivitamins before conception and/or during pregnancy;
users were defined as those who took folic acid supplements alone or folic acid-containing
multivitamins before conception and/or during pregnancy), the presence of maternal
diabetes mellitus, alcohol intake, and exposure to medications during pregnancy. The
quantitative determination of folic acid derived from diet (including foods with folate
and foods fortified with folic acid) was carried out using a food frequency questionnaire
pertaining to the consumption of foods high in folic acid; this contained a list of 45 foods
and beverages, validated for the Mexican female population by the Facultad de Salud
Pública y Nutrición, Universidad Autónoma de Nuevo León, through which an estimate
of the weekly intake of folic acid was derived. Subsequently, each questionnaire was
evaluated using the Food Processor software (ESHA’s Food Processor® Nutrition Analysis
software, ESHA Research, Salem, OR, USA), which shows the weekly dietary intake of
folic acid expressed in micrograms (mcg); 400 mcg/day was considered the cut-off point of
FA intake [22].

2.3. Selection of Genetic Variants

A previous study carried out by our group (Hernández-Almaguer et al. 2019) found
statistically significant differences in genetic polymorphisms of the TBX20 and AXIN1
genes between cases and controls with a significant increase in the risk of congenital septal
heart defects in the population from northeast Mexico [9]. The MTHFR and TBX1 genes,
selected from the existing literature, might contribute to the presence of VSD [23–28].

2.4. DNA Extraction and Genotyping

DNA was extracted from blood samples (approximately 10 drops) obtained from
infants during neonatal screening using the commercial Wizard Genomic DNA purification
kit (Promega, Madison, WI, USA), following the manufacturer’s procedures. DNA quality
and quantity were also verified by spectrophotometry (UV–Vis) with the NanoDropTM
8000 (Thermo Fisher, Wilmington, DE, USA).

2.5. Quantitative Methylation Analysis

Methylation analysis of specific gene promoters was performed using the EpiJET™
DNA Methylation Analysis Kits (MspI/HpaII) (Thermo Scientific™ Vilnius, Lithuania),
following the manufacturer’s instructions. A DNA sample was divided into 3 tubes,
each digested with a different endonuclease cut from either: (1) methylated DNA; (2)
unmethylated DNA; or (3) undigested DNA. Methylated and unmethylated DNA controls
were also included. We incubated samples for 1 h at 37 ◦C.

2.6. Methylation Specific PCR

Quantitative PCR (qPCR) was used to estimate the methylation level of the MTHFR,
TBX1, TBX20, and AXIN1 gene promoters, using Sybr Green with the following specific
primers: TBX1-Fod—AATGGGCGTCTTGTCTTCGC, TBX1-Rev—GGGTCGCAGGGTCTG-
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ATTCC; TBX20-Fod—CTGTGCAGACTGTCGTCCTG, TBX20-Rev—CACTGGCCTCTATT-
CCCCAC; MTHFR-Fod—GGGCCTGAGCTGACAGAGAT, MTHFR-Rev—AACATGCTCC-
TCGGTGACAG; AXIN1-Fod—ATGTCAGCCCCTTGTTTTTGCT, and AXIN1-Rev—ATCT-
CGGGTAGCCGGTTTAGACT. The reaction was carried out in a final volume of 20 µL,
containing 40 ng of digested DNA. QPCR was performed in a Step One Plus thermocycler
(Applied biosystemsTM Foster City, CA, USA). The thermocycler protocol was as follows:
DNA denaturation by incubation at 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for
15 s, 60 ◦C for 30 s, 72 ◦C for 30 s and a final extension at 72 ◦C for 2 min. The methylation
of the promoters of the genes of interest was analyzed using the StepOne Real-Time PCR
System (Applied biosystemsTM Foster City, CA, USA). Methylation was quantitatively
expressed as the percentage of methylated cytosines over the total number of methylated
and unmethylated cytosines.

2.7. Statistical Analysis

Data normality tests were performed, and descriptive statistics and frequencies were
also obtained for quantitative and qualitative variables, respectively. To determine the
statistical differences between the cases and controls in terms of qualitative variables, the
Chi2 test was performed, while the Mann–Whitney U or Student’s t-test was used for the
quantitative variables, depending on the distribution of the data. OR values were obtained
to determine the association between folate intake and the risk of VSD. To determine the
association between the start time of maternal folic acid consumption and the presence of
VSD, Fisher’s exact test was performed. To correlate the dietary intake of maternal folic
acid and the MS of VSD-associated genes, Spearman correlation was performed. Statistical
analysis was performed in the SPSS v.22 statistical package (SPSS Inc.; Chicago, IL, USA).
Probability values less than 0.05 (p < 0.05) were considered statistically significant.

3. Results

The case group included 16 children with VSD (56.3% male and 43.8% female) and
their mothers, while the control group contained 32 binomials (mother and child). The
clinical and dietary characteristics of both groups are shown in Table 1.

Table 1. Contrast of clinical variables and maternal folic acid intake in children.

Presence of VSD

Healthy
n = 32

VSD
n = 16 p

Gender 1 n (%) n (%)
Male 13 (40.6) 9 (56.3)

0.306Female 19 (59.4) 7 (43.8)
Maternal age, mean ± SD 20.96 ± 3.03 25.22 ± 7.21 0.072

Presence of Maternal Diabetes Mellitus 1

Yes 2 (6.3) 3 (18.8)
0.181No 30 (93.8) 13 (81.3)

Family Background 1

Heart disease 7 (21.9) 5 (31.3)

0.845

Diabetes mellitus II 6 (18.8) 3 (18.8)
Cancer 0 (0) 1 (6.3)

Thyroid disease 1 (3.1) 0 (0)
Rheumatologic disease 1 (3.1) 0 (0)

No hereditary family history 17 (53.1) 7 (43.8)
Exposure to Medications During Pregnancy 1

No 23 (71.9) 11 (68.8)
0.822Yes 9 (28.1) 5 (31.3)
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Table 1. Cont.

Presence of VSD

Healthy
n = 32

VSD
n = 16 p

Hypoglycemic drugs 0 (0) 1 (20)

0.699

Antipyretics 2 (22.2) 1 (20)
Proton-pump inhibitor 1 (11.1) 1 (20)

Antibiotics 2 (22.2) 1 (20)
Systemic action antifungals 1 (11.1) 1 (20)

β2 adrenergic agonists 1 (11.1) 0 (0)
Antimuscarinics 2 (22.2) 0 (0)

Occasional Alcoholism 1

Yes 5 (15.6) 0 (0)
0.095No 27 (84.4)) 16 (100)

Folic Acid Supplementation 1

Yes 32 (100) 11 (68.8)
0.001 *No 0 (0) 5 (31.3)

Start of Consumption of Folic Acid Supplements 1

Before Pregnancy 1 (3.2) 2 (18.2)

0.309
First Trimester 23 (74.2) 6 (54.5)

Second Trimester 6 (19.4) 3 (27.3)
Third Trimester 1 (3.2) 0 (0)

Folic Acid Supplement Type 1,3

Folic Acid Alone 20 (62.5) 7 (77.8)
0.372Multivitamin 6 (18.8) 2 (22.2)

Both 6 (18.8) 0 (0)
Folic Acid Maternal Dietary Intake (mcg) 2

Weekly, mean ± SD 2604.11 ± 1689.81 2427.07 ± 1064.72
0.600Per day, mean ± SD 372.02 ± 241.14 346.72 ± 152.10

1 Chi2. 2 Mann–Whitney U. 3 Two women with a ventricular septal defects (VSD) child did not report the type of
supplement consumed. * Statistically significant difference (p < 0.05). SD: standard deviation.

Older maternal age was reported in mothers of children with VSD, but no significant
differences were found (25.22 ± 7.21 vs. 20.96 ± 3.03; p = 0.072). No significant differences
in maternal dietary intake of global FA were observed between the groups (p = 0.600).
However, a significant difference was found in the consumption of FA supplements; a
higher proportion of mothers of neonates with VSD had a lower intake (p = 0.001; Table 1),
which increased the risk of having a child with VSD (OR = 3909, 95% CI = 2.348–6.508;
Table 2).

Table 2. Associations between folate intake and the risk of VSD.

Presence of VSD
Healthy
n = 32

VSD
n = 16

OR 95% CI

Folic Acid Maternal
Dietary Intake n (%) n (%)

<400 mcg/day 21 (65.6) 12 (75)
1.571 0.409–6.040>400 mcg/day 11 (34.4) 4 (25)

Folic Acid Supplementation
No 0 (0) 5 (31.3)

3.909 2.348–6.508Yes 32 (100) 11 (68.8)

In the segmentation analysis of the start time of maternal folic acid consumption,
significant differences were found in the first trimester of pregnancy (p = 0.0255). There
were no data for the start time of folic acid supplement consumption for one mother, thus
these were excluded from the analysis (Table 3).
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Table 3. Associations between the start time of maternal folic acid supplement consumption and the
presence of VSD.

Folic Acid SupplementationStar Time of Maternal
Folic Acid Supplement

Consumption
With Supple-

mentation
Without Sup-
plementation

Marginal Row
Totals

p

Before Pregnancy n (%) n (%)
Healthy 1 30 31

0.264VSD 2 14 16
Marginal column totals 3 44 47

First Trimester
Healthy 23 8 31

0.025 *VSD 6 10 16
Marginal column totals 29 18 47

Second Trimester
Healthy 6 25 31

1VSD 3 13 16
Marginal column totals 9 38 47

Third Trimester
Healthy 1 30 31

1VSD 0 16 16
Marginal column totals 1 46 47

* Statistically significant difference (p < 0.05).

In the analysis of the global MS, significant differences were observed between healthy
children and children with VSD in terms of MTHFR and AXIN1 genes (0.88 ± 1.71 vs.
3.32 ± 4.44, p = 0.001; 89.57 ± 42.52 vs. 58.74 ± 28.47, p = 0.012, respectively; Table 4).
However, no correlation was found between maternal dietary intake of folic acid and the
MS of any gene studied (Table 5).

Table 4. VSD associated gene MS in all children.

Presence of VSD
Methylation
Percentage Healthy

n = 32
VSD
n = 16 p 1

AXIN1, mean ± SD 89.57 ± 42.52 58.74 ± 28.47 0.012 *
MTHFR, mean ± SD 0.88 ± 1.71 3.32 ± 4.44 0.001 *

TBX1, mean ± SD 1.37 ± 3.27 1.63 ± 1.88 0.149
TBX20, mean ± SD 1.08 ± 0.81 2.12 ±2.16 0.090

1 Mann–Whitney U. * Statistically significant difference (p < 0.05).

Table 5. Correlation of maternal folic acid dietary intake with the methylation percentage of genes
associated with VSD in children.

VSD Associated
Genes

Methylation Percentage
Mean ± SD

Maternal Folic Acid
Intake Per Day (mg)

Mean ± SD
Rho * p

AXIN1 79.29 ± 40.83

363.59 ± 214.39

0.010 0.944
MTHFR 1.69 ± 3.09 0.015 0.918

TBX1 1.46 ± 2.86 −0.016 0.913
TBX20 1.42 ± 1.47 −0.161 0.273

n = 48. * Spearman correlation.

Regarding maternal intake of folic acid supplements, five women with a VSD child
reported no consumption of folic acid supplements (folic acid supplements alone or folic
acid-containing multivitamins before conception and/or during pregnancy)—they were
excluded from the analysis of the association between maternal intake of folic acid supple-
ments and the MS of genes associated with VSD. Two genes were proven to be associated
with VSD in healthy children as opposed to children with VSD. AXIN1 displayed a lower
MS in VSD children (89.57 ± 42.52 vs. 55.80 ± 29.99, p = 0.020; control vs. VSD, re-
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spectively), while TBX20 displayed a higher MS: 1.08 ± 0.81 vs. 1.87 ± 1.77, p = 0.049
(Table 6).

Table 6. Association of maternal intake of folic acid supplements with the methylation percentage of
genes associated with VSD in children.

95% CIMothers with
Folic Acid

Supplementation **
Presence of VSD

Methylation
Percentage
Mean ± SD

p 1
Lower Higher

AXIN1 Healthy (n = 32) 89.57 ± 42.52
0.020 * 5.656 61.881VSD (n = 11) 55.80 ± 29.99

MTHFR Healthy (n = 32) 0.88 ± 1.71
0.091 −6.564 0.571VSD (n = 11) 3.88 ± 5.27

TBX1 Healthy (n = 32) 1.37 ± 3.27
0.843 −2.328 1.910VSD (n = 11) 1.58 ± 1.96

TBX20 Healthy (n = 32) 1.08 ± 0.81
0.049 * −1.589 −0.002VSD (n = 11) 1.87 ± 1.77

1 Student’s t-test. * Statistically significant difference (p < 0.05). ** Five of the mothers of children with VSD did
not take folic acid supplements.

4. Discussion

To our knowledge, this is the first published study in which the relationship between
maternal dietary folic acid consumption and the MS of genes associated with VSD in
children is analyzed.

Compared to the recommended intake of folic acid in reproductive-age women, a
low dietary folic acid intake (<400 mcg/day) in the studied women did not relate to a
risk of VSD in their children (OR = 1.571, 95% CI = 0.409–6.040). This is probably because
the maternal dietary folic acid intake per day was very similar in both groups (controls:
372.02 ± 241.14 vs. cases: 346.72 ± 152.10, p = 0.600). However, no maternal consump-
tion of supplements with folic acid was a risk factor for VSD in children (OR = 3.909,
95% CI = 2.348–6.508). This opposes what was reported by Mao et al. (2017), who deter-
mined that there was an increased risk for those who in the lowest quartile of dietary
folate intake during pregnancy compared with the middle quartiles (25th to 75th) (OR: 1.63,
95% CI: 1.01 ± 2.62) [29]. In addition, compared to nonusers, folic acid supplement users
did not exhibit a significantly reduced risk of CHDs (OR: 0.81, 95% CI: 0.51–1.29).

Although no differences were observed in maternal folic acid dietary intake between
cases and controls, the intake of folic acid supplements in mothers, regardless of the time
of commencement or type of supplement (folic acid alone or in a multivitamin), seems
to be related to differences in methylation percentage in two of the four genes studied
(AXIN1: p = 0.020 and TBX20: p = 0.049).

As regards gene methylation, MTHFR has been reported to be associated with a risk of
CHD in Down syndrome children [30]. In addition, with an increase in promoter methyla-
tion level in MTHFR, the MTHFR protein’s activity is reduced, thereby increasing the risk of
various diseases. An increase MTHFR promoter methylation was also seen in DNA isolated
from cancer patients, patients with cardiovascular or renal disorders, and placental DNA
from women with pre-eclampsia [31,32]. In our study, a higher methylation percentage was
observed in children with VSD compared to healthy children, with significant differences
(3.32 ± 4.44 vs. 0.88 ±1.71, p = 0.001).

Previous studies have demonstrated that TBX20 is an important transcription factor
with a highly conserved DNA-binding region (T-box), and it plays an essential role in
the development of CHD in humans. During development, the TBX20 gene is expressed
in the atrioventricular channel, the outflow tract, and the developing right ventricle and
valves [33,34]. Recently, hypomethylation of the TBX20 promoter region was observed
in the tetralogy of Fallot patients [35], but no studies have been undertaken on VSD
patients. We found a low methylation percentage in both groups (cases and controls), but
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no statistically significant differences between them were observed (cases: 2.12 ± 2.16 vs.
controls: 1.08 ± 0.81, p = 0.090).

AXIN1 encodes a cytoplasmic protein that inhibits the Wnt signaling pathway [36,37].
An association has been reported between the hypermethylation of the AXIN1 promoter
and caudal duplication anomalies. Oates et al. (2006) analyzed methylation in the promoter
region of the AXIN1 gene in monozygotic twins, finding a significantly more methylated
promoter region in the twin with caudal duplication than in the unaffected twin [14].
Until now, no studies analyzing the association between AXIN1 gene methylation and
the presence of VSD have been reported. We found a significantly lower methylation
percentage in children with VSD than in healthy children (58.74 ± 28.47 vs. 89.57 ± 42.52,
p = 0.012). In addition, similar methylation percentage results were derived from the
analysis of maternal folic acid supplement consumption (control: 89.57 ± 42.52 vs. VSD:
55.80 ± 29.99, p = 0.020), which seems to be related to the start time of maternal folic acid
supplement consumption (p = 0.025).

The ventricular septum lengthens via the apposition process, meaning that cells are
added to the septum at its base [38]. This process starts in the fourth week of development
in humans (CS12) [39]. When apposition is abnormal, a hole or multiple holes form in the
ventricular septum, referred to as muscular ventricular septal defects. Different studies
have shown that periconceptional consumption of folic acid-containing multivitamins
results in a significant reduction in the prevalence of CHD [40–45]. Besides this, according
to Czeizel et al. (2015), there was a significant reduction in the prevalence of VSD (OR 0.57,
95% CI 0.45–0.73) in infants born to mothers who had taken high doses of folic acid during
the critical period of CHD development [46]. Moreover, low folate status is associated
with reductions in global DNA methylation, a covalent modification of genomic DNA
that affects gene expression [47]. The correct expression of AXIN1 (an important negative
regulator of the canonical Wnt signal transduction machinery, which is a rate-limiting
factor for b-catenin destruction complex assembly) plays a crucial role during embryonic
development [48,49]. The start time of folic acid supplement consumption and AXIN1
expression could thus together play a crucial role during cardiogenesis, including cardiac
septation. In our study, there was a lower proportion of maternal folic acid supplement
consumption in the first trimester (74.2% vs. 54.5%, control vs. VSD, respectively), a critical
period of ventricular septal formation [50].

In conclusion, although no significant differences were observed, there was a trend
towards higher maternal age in children with VSD. Similarly, no differences were observed
in dietary intake of folic acid; however, the consumption of FA supplements and the MS
of VSD-associated genes were different between cases and controls, and FA maternal
supplementation was identified as a risk factor of VSD, correlated with the MS of AXIN1
and TBX20 genes. Future studies should be undertaken to investigate the association of
maternal FA intake (dietary and supplementary) and DNA methylation patterns in children
with a risk of CHDs.
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