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Tuberculosis (TB) is an airborne disease caused by Mycobacterium tuberculosis. It is imperative to detect cases of TB as early as
possible because if left untreated, there is a 70% chance of a patient dying within 10 years. The necessity for supplementary tools
has increased in mid to low-income countries due to the rise of automation in healthcare sectors. The already limited resources are
being heavily allocated towards controlling other dangerous diseases. Modern digital radiography (DR) machines, used for
screening chest X-rays of potential TB victims are very practical. Coupled with computer-aided detection (CAD) with the aid of
artificial intelligence, radiologists working in this field can really help potential patients. In this study, progressive resizing is
introduced for training models to perform automatic inference of TB using chest X-ray images. ImageNet fine-tuned Nor-
malization-Free Networks (NFNets) are trained for classification and the Score-Cam algorithm is utilized to highlight the regions
in the chest X-Rays for detailed inference on the diagnosis. The proposed method is engineered to provide accurate diagnostics for
both binary and multiclass classification. The models trained with this method have achieved 96.91% accuracy, 99.38% AUC,
91.81% sensitivity, and 98.42% specificity on a multiclass classification dataset. Moreover, models have also achieved top-1
inference metrics of 96% accuracy and 98% AUC for binary classification. The results obtained demonstrate that the proposed
method can be used as a secondary decision tool in a clinical setting for assisting radiologists.
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1. Introduction

Lung diseases are often associated with excruciating pain and
suffering as they affect the breathing pattern of the patient due
to suffocation and related symptoms. Tuberculosis (TB) is one
such detrimental variant of lung infections that has created a
devastating impact on humankind. Tuberculosis is caused by
the Mycobacterium tuberculosis bacteria. In general, the lungs
are the main target area of this disease, but it can also affect
other parts of the body. TB is a contagious disease, i.e., when
people infected with TB cough or sneeze, they transmit the
disease-causing bacteria in the air. Only a small quantity of
these germs are enough to effectively infect a healthy person.
Although scientific discoveries and research have been
helping to curb the growing influence of TB, the meagre
annual medical progress rate in this sector has been unsuc-
cessful in bringing a drastic drop of TB affected patients.
According to the Global Tuberculosis Report, 2020, generated
by the WHO [1], approximately 10 million people were af-
fected by TB worldwide in 2019. Additionally, HIV/AIDS and
TB form a deadly combination. The HIV infection signifi-
cantly minimizes the strength of the immunity system of an
individual, which serves as a favourable condition for an HIV
positive patient to contract TB. Out of the 1.4 million deaths
caused by TB in 2019, more than 200 thousand patients were
HIV positive. In Figure 1, description of chest X-ray of a
healthy, viral, and tuberculosis patient is provided [2].

Manual inspection methods are labour intensive and
require expertise in that particular domain to give accurate
inferences. Therefore, there arises a need to merge the state-
of-the-art technological advancements with medical theories
and procedures. Artificial intelligence as a sector has
boomed magnificently in recent decades and has spread
across numerous industries. The entry of artificial intelli-
gence into the medical field has propelled the progress rate
tremendously in several types of research and has given
scientists the freedom to explore uncharted territories.

Thus, the government authorities and multinational
companies in the health sector have been encouraging in-
stitutions and academicians to utilize the maximum po-
tential of machine learning and artificial intelligence to
accelerate research in important domains such as medical
imaging, diagnosis, and drug development. Dermatology,
which is an image and screening intensive subfield of
medicine, has great synergy with deep learning techniques
pertaining to image processing [3-6]. Automation is carried
out in electronic health records [7], therapeutic chatbots
[8-10], and health monitoring.

Systems [11, 12] have rapidly expanded with the help of
deep learning algorithms. With the help of natural language
processing, scientists are able to identify and enhance the
drug-drug interaction in medical literature [13]. Predictive
modelling and decision making are important applications
of Al in primary care [14-16].

In TB, computer-aided detection (CAD) is the most
widely used artificial intelligence tool. The tool analyses the
patient’s chest X-rays and determines if the patient is af-
fected by TB. This process reduces the load on the
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radiologists to meticulously scan through every radiographic
film and ultimately speeds up the screening process.

The unique approach in this research is to leverage the
power of normalization-free networks to escalate X-ray
image classification. We experiment on different normali-
zation-free architectures and compare them with their
standard versions to prove their superiority. An AUC of 98%
is obtained by the base line model. This proves the potential
use of CAD in the diagnosis of the deadly TB.

L.1. Contributions and Related Literature. A number of
papers have been published which diagnose TB using deep
learning. However, in this article, the novelty lies in a variety
of factors from data augmentation and regularization to the
use of classification network. Chest Visualization is also
discussed in this research which will help the medical
personnel. Following are our vital contributions to this
research.

(1) The use of RandAugement algorithm for augmen-
tation. It is an automated technique which is known
to deliver accurate results.

(2) The use of progressive resizing to augment the im-
ages based on their sizes.

(3) Classification using normalization-free network in-
stead of batch normalization to tackle performance
issues.

(4) Adaptive grading clipping technique used in this
research to avoid the problem of exploding
gradients.

(5) Furthermore, the Score-CAM technique used for
thorough chest visualization from a medical view-
point.

A variety of algorithms have been used and compared
with the proposed model. There is a drastic improvement in
the results obtained by using the above preprocessing and
classification techniques. A lot of public datasets have been
tested too. Table 1 gives information about the various
datasets used in this research. The main novelty in the work
is the usage of RandAugment for the augmentation of the
data and the utilization of normalization-free network for
the classification. Problems with batch normalization: batch
normalization is a key component of most image classifi-
cation models, but it has many undesirable properties. There
can be discrepancies between the behavior of the network
during training and testing times. While training, the net-
work might have learned and trained to certain batches,
which makes the network dependent on that batch-wise
setup. So, it might not perform well when a single example is
provided at inference. Batch normalization breaks the in-
dependence between examples within a batch. This means
the examples selected in a batch are significant and lead us to
two more prospects: Batch Size matters and inefficient
Distributed training that will lead to the network cheating
the loss function. To overcome these problems, normali-
zation-free network is utilized and also, the comparison of
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(a)
FIGURE 1: Illustration of Chest X-rays. (a) Healthy. (b) Viral infection. (c) Tuberculosis.
TaBLE 1: Tuberculosis: chest X-ray datasets.
Sr. No Dataset name/source Number of images Reference
1 Find and treat screening program TB:87, healthy: 113 [17]
2 TB-NEAT research study TB: 66, Healthy: 134 [17]
3 Montgomery county chest X-ray set TB:58, Healthy: 80 [18]
4 Shenzhen dataset TB: 336, healthy: 326 [18]
5 DA TB: 78, healthy: 78 [19]
6 DB TB:75, healthy: 75 [19]
7 Belarus tuberculosis portal dataset TB:304 [20]
8 Tuberculosis (TB) chest X-ray database TB:3500, healthy: 3500 [21]
9 NIAID TB dataset TB:3000 [22]
10 JSRT TB: 154, healthy: 93 [23]
11 KIT TB: 3828, healthy: 7020 [24]
12 ChestX-ray8 TB: 51,760, healthy: 60,360 [25]
13 TBX11K TB: 800, Healthy:3800, Sick: 3800 [26]

NFNet with other state of the art image classification al-
gorithms is mentioned in the paper.

Few recent studies have reported changes in X-ray
images in patients at the onset of TB. Here, we review related
literature which use AI and deep learning to diagnose this
bacterial infection. Liu et al. [2] employed AlexNet and
GoogleNet with shuffle sampling to classify TB from chest
X-rays and achieved an accuracy of 85.68%. Hooda et al. [27]
designed an ensemble of AlexNet, GoogleNet, and ResNet to
detect TB. The models were trained from scratch and
achieved an accuracy of 88.24%. The benchmark TB dataset
(TBX11K) was proposed by Liu et al. [26]. The authors
compared the performance of various deep learning models
to achieve simultaneous detection and classification with an
accuracy of 88.2%. Hwang et al. [24] designed a modified
AlexNet that was pretrained on ImageNet dataset to achieve
TB classification. It achieved an accuracy of 90%. The
pipeline data augmentation technique and ResNet18 model
developed by Ghorakavi et al. [28] achieved an accuracy of
65.77181%. A D-CNN that involved demographic details
along with images achieved better accuracy than I-CNN that
considered only images in TB detection from chest X-rays
[29]. Lakhani and Sundaram et al. [30] employed AlexNet

and GoogleNet to detect TB. The ensemble of both gave an
AUC score of 0.99. Nguyen et al. [31] proposed that
ImageNet weights were insufficient for the modalities like
X-Rays and discussed a new technique to obtain low level
features by training the models in a multiclass multilabel
scenario. Among the models trained, DenseNet-121 out-
performed others by achieving an AUC score of 99% and
80% on Shenzhen and Montgomery datasets. Performance
of pretrained AlexNet VGG16, VGG-19, and Xception
ResNet 50 were compared in [32]. They identified that the
features from shallow layers gave better results than deeper
layers. Sivaramakrishnan et al. [25] employed InceptionV3
to obtain the classification of TB. They arrived at a con-
clusion that a supervised deep learning model trained from
one population would not have the same diagnostic per-
formance in another population. Hijazi et al. [33] proposed
an ensemble of VGG16 and InceptionV3 which utilized the
features extracted from original images of chest X-rays and
canny edge detected images. The model with probability
decision and variation of features led to improved TB de-
tection. Pasa et al. [34] proposed a simple CNN model with
five convolutional blocks to achieve the TB classification.
They also employed saliency maps and grad-CAMs



visualization techniques and discussed them from the ra-
diologist’s perspective. VGG16, Artificial Neural Network
(ANN), and a customised CNN were employed to classify
between drug resistant and nondrug resistant TB [35]. The
ANN outperformed other models as the size of the dataset
was small. Vajda et al. [36] employed the atlas-based lung
segmentation and feature extraction to obtain the sets of
features that could differentiate normal chest.

X-rays from the TB suspicious ones. A neural network-
based classifier was utilized to achieve the classification. A
maximum area under the curve and accuracy of 99% and
97.03% was obtained with Montgomery and the Shenzhen
dataset. An ensemble of classifiers by combining the Support
Vector Machines (SVMs) trained using the features
extracted from chest X-Rays utilizing GoogLenet, ResNet,
and VggNet is proposed in [37]. The models performed
extremely well in diagonising TB. In research by Yan et al.
[38], ML was used to diagnose TB using CT images.

892 CT scans of patients were included. The overall
classification accuracy obtained was 81.09% to 91.05%. The
paper concluded that deep learning has a lot of scope to
diagnose TB in the future. Deep learning based Mycobac-
teria detection was conducted in [39]. Two autopsy patients
and 40 biopsy cases were used for this research. A 100%
specificity was obtained by the algorithms. The sensitivity
ranged from 29% to 86%. Podder et al. [40] used transfer
learning to diagnose COVID-19 and other diseases. The
Modified Xception classifier obtained an accuracy of 84.82%.

The dataset contained chest x-rays of patients. Mondal
et al. [41] used an optimized InceptionResNetV2 to diag-
nose COVID-19. The dataset contained both COVID-19
and non COVID-19 CT images. A maximum accuracy of
96.18% was obtained. A review of various ML and DL
algorithms for COVID-19 diagnosis was conducted by
Mondal et al. [42]. 52 articles were considered for this
extensive review. Results concluded that ResNet-18 and
DenseNet 169 were the efficient algorithms. Bharathi et al.
[43] developed “CO-ResNet,” an optimized algorithm
which diagnoses COVID-19 from chest X-rays. A maxi-
mum accuracy of 99% was obtained which distinguished
COVID-19 from other viral diseases. Bharathi et al. [44]
used deep learning to detect lung infections using chest
x-rays. Among all the algorithms, VDSNet performed best
with 73%. Bharati et al. [45] used CNN and lightGBM to
identify the lung carcinoma. ResNet 50 architecture was
compared with different models. The metrics used were log
loss and ROC curve.

2. Materials and Methods

In this paper, we propose a three-fold method aimed as
follows:

(1) Detect if a chest X-ray is related to a healthy patient
or to a patient infected with tuberculosis.
(2) To discriminate between sick (but not TB) and TB.

(3) To highlight the affected areas in the chest X-ray
symptomatic of TB.
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2.1. Dataset Description. The study is carried on two sets. The

first set is henceforth referred to as “Set 1” and the second set

is henceforth referred to as “Set 2.” The model’s performance

is tested by utilizing the two sets. The first set is referred as

“Test Set 1” and the second set is referred as “Test set 2.”
Set 1: this set is comprised of the below datasets:

(1) Tuberculosis X-ray (TBX11K): the dataset [26]
contains 11,200 chest X-rays from individual pa-
tients of different age groups and genders. Out of the
11,200 images, only 8400 images were provided with
ground truths. Hence, they are considered for
training and validation. This subset is split into 3800
(Healthy X-rays), 3800 (Sick but not TB X-rays), and
800 (TB X-rays). The images are in PNG format.

(2) Montgomery: this dataset consists of images collected
from the tuberculosis control program of the De-
partment of Health and Human Services of Mont-
gomery County, MD, USA. 80 X-Rays are normal and
58 X-Rays are abnormal with manifestations of tu-
berculosis. The images are in DICOM format.

(3) Shenzhen: this dataset consists of X-ray collected by
Shenzhen No. 3 Hospital in Shenzhen, Guangdong
providence, China. The set consists of 326 normal
X-Rays and 336 abnormal X-Rays [18]. The images
are in JPEG format.

(4) DatasetA + DatasetB: the images are collected from
the National Institute of TB and respiratory diseases,
New Delhi, India [19]. Dataset A includes 78 images
for each class, showing normal lungs and others with
various TB manifestations. Dataset B includes 75
images for each class, showing normal lungs and
other TB manifestations.

The images are in DICOM format
(i) Test Set 1:

A separate held out set is utilized. The test set is
composed of 1200 Healthy images, 1200 Sick but not
TB images, and 2800 images belonging to TB. The set
is retained as an online challenge [26]. All the images
are in PNG format.

Set 2: this set is comprised of the following datasets:

Belarus, NIAID, and RSNA :the Belarus set [46]
includes 306 CXR images belonging to TB positive
cases collected from the National Institute of Allergy
and Infectious Diseases, Ministry of Health, Republic
of Belarus.

The NIAID Set [47] consists of 2800 TB positive
images collected from seven different countries. The
RSNA set [48] consists of 3,094 normal images
collected from the RSNA pneumonia detection
challenge.

Test set 2:

Training set 2 is split into a 60-20-20 ratio. This set
has 700 images under the normal category and 700
images under the TB category.
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2.1.1. Augmentation Techniques and Regularization. To
prevent the model from overfitting on the train test split, we
utilized 4 layers of RandAugment [49] followed by con-
version of the images to Grayscale (with 3 channels, where
r=g=>b) which prevented any colored X-rays after the
RandAugments were done. RandAugment is an automated
data augmentation method. The main goal of RandAugment
is to remove the need for a separate search phase on a proxy
task. The search space has two interpretable hyper-
parameters M and N. N represents the number of aug-
mentation transformations to apply sequentially, and M
denotes the magnitude for all the transformations. A
number of works enumerated a policy of choosing which
transformations to apply out of available transformations,
and probabilities for applying each transformation. In this
algorithm, to maintain image diversity and reduce the pa-
rameter space, learned policies and probabilities for applying
each transformation are replaced with a parameter-free
procedure of always selecting a transformation with uniform
probability 1/K. K represents the number of transformation
options. With only these two parameters, RandAugment can
be utilized uniformly across different tasks and datasets. It
matches or exceeds the performance of the other
autoaugment techniques. In the proposed work, a constant
value of 0.5 for “M” (magnitude hyper-parameter) is chosen.
Also, the augmentations are applied at every epoch,
effectively giving our model new images to train/validate
against at each epoch. Augmentations are also applied on the
validation set due to the nature of random train/validation
split. This resulted in the proposed model to perform better
on the test set, than it did on the validation during training.
These operations provided very strong explicit regulariza-
tion. However, to further achieve better model generaliza-
tion, more techniques are employed. In Figure 2, various
augments chosen using RandAugment can be seen.

2.2. Progressive Resizing. 'The size of an image plays a crucial
role in determining the model’s performance. Images with
smaller dimensions lead to a small network capacity and
thus requires lesser regularization. On the other hand,
images with larger dimensions require extensive computa-
tions and are more prone to be overfitted. Thus, when the
model is being trained with variable image sizes, the strength
of regularization should be adjusted accordingly to boost the
model’s accuracy and improve its performance i.e., an image
with a smaller dimension works better with weaker regu-
larization and weaker augmentation techniques. Similarly,
images with larger dimensions work better with a stronger
extent of regularization and augmentation techniques to
defeat overfitting. The psuedocode for progressive resizing is
described in Algorithm 1.

3. Classification Using Normalization-
Free Network

Artificial Intelligence has impacted medical diagnosis in a
positive way. The models have been deployed in various
hospitals and medical facilities to assist the doctors and

radiologists. It also offers a second opinion and stabilizes the
conclusion derived from the X-ray images.

The batch normalization technique is used to scale the
activations as they pass through the hidden layers and helps
in restricting them to a certain range of values. This is
achieved by inserting normalization layers after every hid-
den layer. Despite its several advantages, the batch norm was
not the most appropriate alternative as it did not help us in
achieving the best possible performance for our specific use
case.

One issue always encountered with batch normalization
enabled models is the performance discrepancy during
training and testing. During the training process, the batch
norm technique requires the model to train over numerous
batches of preferably large size and the statistics (mean and
variance) are computed corresponding to the minibatch.

This tends to make the model batch-dependent. Hence,
when fewer images, lesser in comparison to the batch size,
are put to test on the model, and the results produced are
often inaccurate and deviate from the ground truth. For
instance, the batch normalization-enabled model would be
successful in training effectively over the X-ray images
present in a large batch size of 128, but, when it would be put
to test only on a single X-ray image, the statistics (mean and
variance) of the test image might vary significantly from the
minibatch statistics, which would ultimately lead to erro-
neous results.

Another issue faced while employing the batch nor-
malization technique is the slower prediction time and extra
computation. To tackle the problem of changing ranges of
weights between the layers and stabilizing the learning
process, the batch norm technique introduces a normali-
zation operation after every hidden layer. Although the
desirable results for the above problems are attained, the
training time gets compromised. Hence, the normalizing
operation after every hidden layer increases the model run-
time as well as the computational resources employed by it.

For the reasons stated above, we needed to utilize a
network that would not only provide us with robust training
performance and highly accurate results but also be time
efficient. The normalization-free network achieves signifi-
cantly better performance than most of its competitors (e.g.,
EfficientNet-B7) by eliminating the use of batch normali-
zation and slightly modifying the architecture of the nor-
malization-free ResNets [50]. Apart from being lightweight
and training efficiently on larger batch sizes, the NFNet
utilizes residual branches and Adaptive Gradient Clipping
(AGC) that bolster the model’s performance [50].

(1) Approach towards residual branches: this compo-
nent of the NFNet architecture is its “normalization-
free” feature. The residual branches of the NFNet
architecture make use of 2 scalars, namely « and /3
[50]. These scalar quantities help in scaling the ac-
tivations at the beginning and the end of the residual
branch, thus restricting the activations to a certain
range. This feature of the NFNet is analogous to the
scaling operation done by the normalization layers
inserted after every hidden layer in the batch
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Figure 2: Different types of augmentations applied using RandAugment: (a) Original image, (b) Posterize, (c) Rotate, (d) Sharpen,
(e) TranslateY, (f) ShearX, (g) ShearY, (h) Solarize, and (i) TranslateX.

normalization enabled models. Hence, the NFNet such that there is an exponential increase in its
adopts this merit from the batch normalization magnitude, the weights get updated inaccurately and
technique to compensate for its absence. consequently, and the network performance gets
(2) Utilization of adaptive gradient clipping: during the hampered. This is known as the exploding gradient
backpropagation process, when the norm of the issue and it is extremely critical to solving it to

gradient gets bigger as it passes through each layer improve the overall performance of the model.
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The gradient clipping technique is a popular option
utilized to tackle exploding gradients. During the training
process, when there is a certain norm of a gradient that is
very high such that it surpasses a threshold value “lambda”
(symbol needs to be inserted), the norm is said to be scaled to
the threshold (formula associated with it to be added). Thus,
the maximum possible value for a norm of a gradient is the
threshold value lambda and any value above the threshold is
clipped. For a gradient vector G = 0L/06, where L denotes the
loss and denotes a vector with all model parameters, the
standard clipping algorithm clips the gradient before
updating as shown in (1).

e 0

G, otherwise.

However, there are a few drawbacks associated with
gradient clipping. The threshold value is very sensitive, and
therefore, its appropriate selection is of paramount im-
portance. Secondly, every high gradient jump which sur-
passes the threshold value is said to be clipped. But, while
clipping, the weight associated with the corresponding
gradient jump is not taken into account. There might be a
few instances where the high gradient jump is justified by a
significant corresponding weight, but, since the weight
factor is not evaluated, all such gradients are also clipped.

As an improvisation to the existing gradient clipping
technique, the adaptive gradient clipping (AGC) takes into
account the weight associated with a particular gradient’s
norm during the filtering process. The AGC is computed as
the ratio of the norm of the gradient to the norm of the
weight associated with that particular layer. It measures how
much the weights are affected for a single gradient descent
step. For instance, if the value of the norm associated with a
certain gradient is high enough such that it surpasses the
threshold, but the weight associated with the same is sig-
nificant, then the high jump is said to be justified and the
gradient is not clipped. However, if the weight associated
with the abnormal rise in the norm of the gradient is not
sufficient, then that particular gradient is scaled to the
threshold value and is said to be clipped. Hence, the weight
corresponding to the particular norm of a gradient plays a
crucial role in the clipping decision as shown in (2).

Gl — 1 "WIU : F, i ”CI;"F > 1,
¢ — |aile = wil - @
Gf, otherwise,

where W' e RV denotes the weight matrix of the /" layer,
G' e R¥M denotes the gradient with respect to WY, and the
Frobenius norm is denoted by |||

Additionally, the AGC serves to be advantageous for our
specific use case because it significantly reduces the prob-
ability of exploding gradients occurring during the training
process by preventing the imprecise updation of the weights.
Accurate classification of X-ray images is of prime

importance as it is the question of life and death for a
particular patient; any slight error can lead to deleterious
circumstances. Although batch normalization was not
specifically designed to tackle the exploding gradient issue, it
was able to mitigate its effects, but not eliminate it. AGC on
the other hand was specifically devised to tackle exploding
gradient issues and does a much better job in reducing the
erroneous effects of gradient explosion as compared to batch
norm [51]. The entire flowchart of the proposed model is
described in Figure 3. Figure 4 explains the architecture of
various deep learning networks.

We denote h; € R™*" to be the outputs of previous block
and a=0.2 be a constant scale factor.

Nontransitional block.

The matrix X € ™", denotes the output of a nontransi-
tional block.

A is the composition of operations on h; that when
summed with the original input give the output X i,

X = A(hi) + hi. (3)

We can denote A as follows: A=fk ° fk—1 ..
where (fi: k=1...11).

The composition of operations are as follows: (1) f; = (1/
B)h;. Here, input of previous block is scaled by a factor 1/f.
Where ;=PVar (h;) and Var (h;,,) = Var (h;) + «’. B is the
standard deviation of the inputs A;. (2) Fori=2..n -2, ifiis
an even number: fi = ScaledAct (x) Otherwise: fi= WSConv
(x).

The scaled activation function [50, 52] (the Gamma
Activation) is a ReLU activation scaled by a constant factor
r=1/2/1- (1/n).

WSConv [52] is the standard weight standardization
function: w;; — wﬁj.

This is done to reparameterize original weights w;j —
w;; — w;/A/Noy,

where ui = (1/N)Pj Wij and 02 = (1/N)Pj(Wij — ui)2. (3)
10 = SE(x), which is the queeze and Execitation block. (4)
f11 = ax, (scalar-vector multiplication), where « (as defined
earlier) is a scalar value that regulates the rate at which the
variance of the activation increases.

Transitional block.

The transitional block is almost identical to the previ-
ously described in nontransitional block, with a few changes.

Here, instead of summing outputs of a series of oper-
ations A(h;) with the previous layers input directly, the series
of functions is as follows:

° f1(hi)

1
g(h;) = WSConv © AvgPool ° ScaledAct( (B) X h,»), (4)

where after scaling the inputs by (1/f) feeding the product
into the scaled activation (Gamma activation) function.

The matrix is first reduced by average pooling and then
expanded again by standard weight standardization.

The output of the transitional block is
Y e™ " =Mh;) + G(hy).

The details of the training and validation datasets are
described in Table 2 and figuratively given in Figure 5. The
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Figure 3: Flow of the proposed model.

various training parameters for the NFNet model are
explained in Table 3.

4. Performance Criteria for Classification Using
Normalization-Free Network

The performance of different models for testing dataset was
evaluated after the completion of training and validation
phase and was compared using the following performance
metrics: Accuracy, Sensitivity, Specificity, Area under 255
Curve (AUC), Average Precision, and Average Recall. TP
represents true positive cases, TN represents true negative
cases, FN represents false negative cases, and FP represents
the number of false positive cases. The metrics are defined
below:

(1) Accuracy: the number of positive and negative TB
cases identified correctly among all classified cases. It
is calculated using the equation given below:

A (TP+TN)
ccuracy = .
Y S TPY{FN+FP+TN

(5)

(2) Sensitivity: it is the number of positive TB cases
identified accurately. It is also called recall. When the
number of false negative cases are minimum, the
sensitivity is extremely high. It is described using the
formula given below:

TP
Sensitivity = ﬁ (6)

(3) Specificity: it is the number of negative TB cases
identified correctly. When the number of false
positives are minimum, the obtained specificity will
be maximum. It is calculated using the formula given
below:

TN
Specificity = ﬁ . (7)

(4) AUC (Area Under Curve): the area under the curve
when the graph is plotted between the true positive
rate and false positive rate. When the AUC is high, it
means the model is classifying the instances
correctly.
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Classifier
3 |
() (b) (0)

FIGURE 4: (a) Normalization-free network architecture. (b) NFNet transition block. (c) NFNet non transition block.

(i)  Require image, resolution, counter, currEpoch
(i)  if counter-1>0 then
(iii) image « resize(image, resolution - 32 X (counter-1))
(iv) i—20
) for i =4-counter do
(vi) end
(vii) image < randAugment (image)
(viii) end
(ix) return image

ALGORITHM 1: Progressive resizing.
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FIGURE 5: Dataset split.
TaBLE 2: Details of training and validation set for the classification problem.
Total no. of X-Ray images per . -
Dataset Type classy ges b Training set Validation set
Healthy 3800 2660 1140
TBX11K Sick but not TB 3800 2660 1140
B 800 560 240
Healthy 167 116 51
henzhen
S TB 160 112 48
Healthy 31 21 10
Montgomer
gomery TB 42 29 13
Healthy 54 37 17
DA +DB
TB 34 23 11
NLM (shenzhen and montgomery), Belarus, NIAID, Healthy 3500 2100 700
SNA TB 3500 2100 700

(5) Average precision: it summarizes all the values of the
precision-recall curve into a value. It also represents
the mean of all the precision’s obtained. It is cal-
culated using the formula:

M) (8)

AveragePrecision :( n

(6) Average Recall: the mean of recalls calculated from
thresholds of 0.5 to 1 to summarize the distribution.
It is calculated using the formula:

LA

)

AverageRecall :( n

4.1. Visualization Technique: Score-CAM. To highlight the
areas in the chest X-ray symptomatic of TB, we utilize the
Score-CAM [53] technique.

The Score-CAM visualization technique, built on top of
the CAM-based visualization method, follows a perturbation
265-based approach. This technique comprises two stages;

the first stage passes the input images into a CNN and
generates the activation maps. Subsequently, the maps are
upsampled as they are smaller in dimensions as compared to
the input image. In the second stage, the activation maps
generated are pointwise multiplied with the input image and
normalised. The normalization process significantly im-
proves the discriminative ability of the model. The masked
inputs are fed to CNN and corresponding scores of the
specified target class are generated. This process is repeated
270 until it has been applied to all the generated maps. The
Score-CAM metric is given as

C

k
Lscore—CAM = RelU Z (xiA[ > (10)
k

where

af = C(4)). (11)

Here, C(.) denotes the channel wise increase in confi-
dence for a particular activation map. The ReLU function is
used to eliminate those features which have had no impact
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FIGURE 6: (a) Confusion matrices for the training dataset. (b) Confusion matrices for the validation dataset.

on the target class. The proposed work utilizes Score-CAM
as it does not require mask sampling or any process for
optimisation. Gradients have not been utilized in the course
of heat map generation. The removal of global average
pooling layer (used in the class activation mapping tech-
nique) eliminates the need to retrain the entire process or
make any changes to the network structure.

5. Experimental Results and Analysis

In this section, we evaluate the models on the parameters
discussed in the previous section. The Score-CAM visuali-
zation is also explored in depth. Furthermore, the results are
also classified using other deep learning models for TBX11k
and Kaggle dataset.

5.1. TB Classification. TB classification using the proposed
normalization-free-network model is the main objective of
this research. Figure 6 describes the confusion matrix ob-
tained by the two datasets (training + validation). Figure 6(a)
represents the confusion matrices for the training data. The
matrix on the top represents the TBX11K dataset which
consist of three classes namely: healthy, infection (but not

TB), and TB. The bottom matrix is of the Kaggle dataset Test
dataset 285 (2) which consists of healthy and TB images.
These confusion matrices are obtained after training the
normalization-free network model. Figure 6(b) represents
the confusion matrices of the above datasets, but on the
validation set. As we can see, the false positive and false
negative values are extremely low (NonDiagonal elements).
This classifier promises us a good accuracy. All the metrics
such as accuracy, precision, recall, and others can be ef-
fectively calculated using the confusion matrix.

Figure 7 represents the accuracies and losses against the
number of epochs for the training and validation sets. From
the plots, it can be observed that there is no overfitting since
the accuracies and losses are almost similar between the
training and test datasets. Further various deep learning
architectures were used to classify the datasets along with
our proposed model.

The Score-CAM technique was utilized to highlight the
regions of the lungs affected by TB. This chest visualization-
295 technique can be used to highlight the abnormalities in
the specific region in the lungs, aiding the doctor to un-
derstand the region of interest. As discussed in the previous
section, this process consists of two stages. CNN is used in
the beginning to generate activation maps. Furthermore,
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FIGURE 7: (a) Training and validation accuracy and losses versus Epoch for Set 1. (b) Training and validation accuracy and losses versus

Epoch for Set 2.

these activation maps are multiplied with the initial image
using normalization. The normalization process is extremely
important to discriminate between the various image classes.
These modified images are again sent to the model for
classification. All the generated maps are subjected to 300 of
this procedure for accurate analysis. Figure 8 shows the
visual analysis of the chest X-ray. The first two rows rep-
resent the X-rays of a TB-infected patient. The last two rows
are the X-rays of patients infected with other lung diseases
(not TB). The first column represents the initial X-ray. The
doctors have examined these x-rays and have labelled
the region of interest (labelling). This is represented in the
second column. The third column represents the marking of
the region of interest by the Score-CAM algorithm. From the
figure, it is observed that the algorithm identifies the region
of interest accurately using a heat map (matches the ground
truth given by the domain experts.) However, in some
conditions, the heat maps generated can be wrong. This is
depicted using Figure 9. The first two rows represent TB
cases. The last two rows represent other lung diseases (not
TB). The ground truths (labels) by the doctors are present in
the second column. From the figure, it is clearly inferred that
the generated heat maps are not the same as the ground
truths (wrong classification). The Score-CAM is an effective

algorithm, but some false positive and false 310 negative
cases are observed.

The data was split into training and testing in the ratio of
80:20. The performance of the models are given in Tables 4
and 5. ResNet-18 is a highly efficient deep learning network
which consists of 18 different layers. Millions of images can be
easily loaded in this network. It can also classify images into a
variety of classes. Furthermore, it is already trained on the
ImageNet data. This model obtained an accuracy, AUC,
sensitivity, specificity, average 315 precision, and average
recall of 91.01%, 95.69%, 76.82%, 96.08%, 89.48%, and
88.75%, respectively, on the TBX11k dataset. For the Kaggle
dataset, the obtained accuracy, AUC, sensitivity, specificity,
average precision, and average recall are 90%,94%,
72%,95%,87%, and 86.25%, respectively. ResNet50 is a deep
residual network which is 50 layers deep. The network is
stacked upon each other just like other artificial neural net-
works. This neural network is pretrained on the ImageNet
dataset. The accuracy, AUC, sensitivity, specificity, average
precision, and average recall on the TBX11k dataset were
98.76%, 87.02%, 96.99%, 93.67%, and 93.6%, respectively. For
the Kaggle dataset, the obtained accuracy, AUC, sensitivity,
specificity, average precision, and average recall were 92.61%,
97.6%, 84.02%, 96.88%, 92.41%, and 92.1%, respectively.
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(a) (b) ()

FIGURE 8: Score-CAM visualization of correctly classified TB (first two rows), infected ,and sick but not TB (last two rows) chest X-ray:
(a) Original X-ray. (b) Ground truth given by domain expert. (c) Score-CAM heat map generated by the model.
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(a) () ()

FIGURE 9: Score-CAM visualization of incorrectly classified actual sick classified as TB (first two rows) and actual TB classified as sick but not
TB (last two rows) chest X-ray: (a) Original X-ray. (b) Ground truth given by domain expert. (c) Score-CAM heat map generated by the
model.



Computational Intelligence and Neuroscience

15

TaBLE 3: Training parameter of model for classification.

Parameter Value used for training set 1 Value used for training set 2
Batch size 128 32

Learning rate 0.1 0.001

Epochs 15 15

Adaptive gradient clipping 0.16 0.16

Weight decay 1.00E-05 1.00E-05

Optimizer Stochastic gradient descent Stochastic gradient descent
StepLR scheduler Every 2.4 steps Every 2.4 steps
Gamma 0.97 0.97
TaBLE 4: Performance metrics on TBX11K.
Model Accuracy AUC (TB) Sensitivity Specificity Average precision Average recall
ResNet18 91.01 95.69 76.82 96.08 89.48 88.75
ResNet50 94.85 98.76 87.02 96.99 93.67 93.6
DenseNet121 88.04 94.82 71.41 95.89 86.85 85.13
DenseNet201 92.64 97.23 79.91 97.18 91.63 90.6
InceptionV3 89.58 94.95 69.4 97.51 89 86.21
EfficientNet-B7 84.07 73.82 51.78 95.86 82.14 78.39
Proposed model 96.91 99.38 91.81 98.42 96.33 96.1
ResNet 18 ResNet 50 DenseNet-121 DenseNet-201
0.35 25 35
4 0.30 3.0
2.0
; 0.25 25
0.20 15 2,0
2 0.15 L5
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. 0.10 10
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0 0.0
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FIGURE 10: Training and validation losses versus Epoch of chest X-ray images present in TBX11k set.

The DenseNet-121 is known to have 120 convolutional
layers and four average pooling layers. The weights are
spread over multiple inputs for optimal accuracy. These
networks were specifically created to counter the vanishing
gradient problem. The model obtained an accuracy, AUC,
sensitivity, specificity, average precision, and average recall
of 98.0%, 94.82%, 71.41%, 95.89%, 86.85%, and 85.13%,
respectively. For the Kaggle dataset, the accuracy, AUC,
sensitivity, specificity, average precision, and average recall
obtained were 88.0%, 94.82%, 71.41%, 95.89%,86.85%, and
85.13% respectively. Another important CNN model is the
DenseNet-201 which consists of 201 layers. It has been al-
ready trained by the ImageNet database and can effectively

predict upto 1000 classes. The accuracy, AUC, sensitivity,
330 average precision, and average recall were 92.64%,
97.23%, 79.91%, 97.18%, 91.64%, and 90.6%, respectively, for
the TBX11k multiclassification dataset. For the Kaggle
dataset, the obtained accuracy, AUC, sensitivity, specificity,
average precision, and average recall were 90.11%, 95.14%,
79.81%, 94.21%, 91.22%, and 80.45%, respectively.
InceptionV3 is a deep learning model used to classify
images at a high accuracy rate. It includes both symmetric
and asymmetric building neurons, including convolutions
layer, max pooling, average pooling, drop outs, and fully
connected layers. Softmax algorithm is used to compute the
model loss. In this network, batch normalization is applied



16 Computational Intelligence and Neuroscience
ResNet18 ResNet50 DenseNet-121 DenseNet-201
0.80 0.40 110
13 078 035 105
12 076 : 1.00
11 074 030 0.95
L0 0.25 0.90
0.72
09 o0 0.20 0.85
0.8 i 0.15 0.80
0.7 068 0.10 075
0.6 0.66 : 0.70
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 02 4 6 8 10 12 14
Training Training Training Training
——— Validation Validation Validation Validation
InceptionV3 EfficientNet-B7 Proposed Model
25
14
12 20 o4
1.0 15 0.3
08 o 0.2
0.6
04 05 !‘*/\ 0.1
02 0.0 0.0
0 02 4 6 8 10 12 14 0 2 4 6 8 10 12 14 2 4 6 8 10 12 14
Training Training Training
Validation Validation Validation
FiGure 11: Training and validation losses versus Epoch of chest X-ray images present in Kaggle set.
TaBLE 5: Performance metrics on Kaggle dataset.
Model Accuracy AUC (TB) Sensitivity Specificity Average precision Average recall
ResNet18 90.23 94.31 72.21 95.41 87.54 86.25
ResNet50 92.61 97.6 84.12 96.88 92.41 92.1
DenseNet121 84.04 93.21 75.43 93.22 84.31 82.11
DenseNet201 90.15 95.26 79.86 94.21 91.22 88.45
InceptionV3 88.62 91.25 80.32 94.31 86.28 84.79
EfficientNet-B7 83.21 74.65 84.32 93.21 80.7 85.22
Proposed model 95.91 98.32 91.78 91.67 95.87 91.90

to the activation inputs. The InceptionV3 was able to obtain
an accuracy, AUGC, sensitivity, specificity, average precision,
and average recall of 89.58%, 94.95%, 69.4%, 97.54%, 89%,
and 86.21%, respectively. For the Kaggle dataset, the accu-
racy, AUC, sensitivity, specificity, average precision, and
average recall obtained were 88.62%, 91.25%, 65.21%, 94.31%,
86.28%, and 84.77%, respectively. EfficientNet B7 is a re-
thinking scaling CNN. It returns an image classification
model using transfer learning. This algorithm was developed
by a company named AutoML. It also uses a compound
coefficient to uniformly scale all the dimensions to its reso-
lution. The obtained accuracy, AUC, sensitivity, specificity,
average precision, and average recall were 84.07%, 73.82%,
51.78%, 95.86%, 82.14%, and 78.39%, respectively, for the
TBX11k dataset. For the Kaggle dataset, the obtained accu-
racy, AUC, sensitivity, specificity, average precision, and
average recall are 83.21%, 74.65%, 84.32%, 93.21%, 81.31%,
and 75.45%, respectively. The proposed normalization-free
network was able to perform better than all the models. The
accuracy, sensitivity, specificity, average precision, and av-
erage recall obtained by the base models were 96.91%, 99.38%,
91.81%, 98.42%, 96.33%, and 96.1%, respectively. This proves
that the model is highly efficient in classifying TB. For the
binary classification dataset (Kaggle), the obtained accuracy,
AUCG, sensitivity, specificity, average precision, and average
recall are 95.91%, 98.32%,91.78%, 91.67%, 95.33%, and 91.1%.
Figure 10 and Figure 11 describe the losses obtained during
training and validation for the two datasets.

An outline of comparison with previous literature-
based approaches on the TB datasets is compared. The
performance is compared with regards to the following
measures: accuracy, AUC (TB), sensitivity, specificity,
average precision ,and average recall. In research by Li et al.
[26], CNN was used to diagnose TB using chest X-rays.
AlexNet and GoogleNet were the models used. An accuracy
of 85.08% was obtained by the classifiers. Hooda et al. [27]
used three architectures: ResNet, GoogleNet, and AlexNet
to diagnose TB. The models were further ensembled to-
gether to obtain an accuracy and AUC of 88.24% and 93%,
respectively. In an article by Liu et al. [26], usage of image-
based classifiers for TB diagnosis was considered. The
accuracy, sensitivity, specificity, and AUC are 88.2%,88.4%,
89.5% and 93.8%, respectively. Furthermore, TB screening
was performed in [23] using deep learning based on chest
X-ray images. Three datasets were considered and the AUC
obtained by them were 96%, 93%, and 88%, respectively.
The TBNet model was created in [28] which diagnosed TB
using deep learning models. Mirroring, rotation, and other
augmentation techniques were used in the research.
However, the ResNet architecture was only able to deliver
an accuracy of 81%. Our best model was able to obtain an
accuracy, sensitivity, and specificity of 97%, 92%, 99% and
respectively. The performance of the comparative re-
searches is described in Table 5.

Tuberculosis is a dangerous disease and it must be
identified early to prevent the onset of severe symptoms. Al
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TaBLE 6: Comparison of various research studies along with our proposed model.

References Images Model Sensitivity Specificity AUC score Accuracy
Liu et al. [2] 4701 Alex net and Google net — — — 85.68
Hooda et al. [27] 1133 Alex net and Google net and ResNet ensemble 88.42 88 93 88.24
Liu et al. [26] 11200  SSD without pretraining and VGG net 1-16 as back bone 88.4 89.5 93.8 88.2
Hwang et al. [24] 10848 Modified pretrained Alex net — — 96.4 90
Ghorakavi et al. [28] 800 Reset 18 with data augmentation — — — 65.771
Heo et al. [29] 10000 D-CNN 81.5 96.2 92 —
Lakhani and 1007 Ensemble of Alex net and Google Net 97.3 94.7 99 96
Sundaram [30]

Nguyen et al. [31] 800 DenseNet-121 — — — 80
Si";fa[’;‘;]kmhnan 112,782 Inception v3 72 82 70.54 99
Hijazi et al. [33] 800 VGG 16 and inception V3 90.91 88.64 — 89.77
Pasa et al. [34] 1104 CNN — — 92.5 86.2
Jaeger et al. [35] 135 ANN,CNN, VGG16 — — 66 —
Vajda et al. [36] 814 Neural network — — 99 97.03
Lopes et al. [37] 1120 Gooogle net Res Net VGG net SVM — — 92.6 84.7
Proposed Model 3500 NF net model 91.81 98.42 99.38 96.91

can be used to diagnose tuberculosis at a faster rate. These
models can further help the doctors and radiologists to come
to a decision. The classifiers have a tremendous potential in
healthcare fields in the near future (Table 6).

6. Conclusion

Tuberculosis is a dangerous bacterial disease which af-
fects the lungs in the human body. It is very important to
diagnose this infection early since appropriate treat-
ments can be provided. Computer Aided Diagnosis is a
trending topic in Medical Artificial Intelligence. In this
research, deep learning-assisted TB diagnosis is per-
formed using normalizer-free network. For augmenta-
tion, RandAugment was used to convert the images to
gray scale. Further, progressive resizing is used to per-
form automated preprocessing. Adaptive grading clip-
ping is used to tackle the problem of exploding gradients
in this research. A variety of models have been tested and
our models achieved an accuracy, AUC, sensitivity,
specificity, average precision, and average recall of 98%,
99%, 92%,99%,97%, and 96.1%, respectively. Addition-
ally, a technique called the Score-CAM was used to draw
inference from the chest X-rays. Further, the model was
compared with the other state-of-art research studies to
prove its novelty and superiority. The classifiers can be
extremely useful in healthcare and will assist the doctors

disease, isochronic heart disease, chronic kidney disease,
cancers, and others.
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