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Abstract
Guayaquil, Ecuador, is in a tropical area on the equatorial Pacific Ocean coast of South America. Since 2008 the city has
been increasing its population, vehicle fleet and manufacturing industries. Within the city there are various industrial and
urban land uses sharing the same space. With regard to air quality there is a lack of government information on it. Therefore,
the research’s aim was to investigate the spatio-temporal characteristics of PM1 and PM2.5 concentrations and their main
influencing factors. For this, both PM fractions were sampled and a bivariate analysis (cross-correlation and Pearson's
correlation), multivariate linear and logistic regression analysis was applied. Hourly and daily PM1 and PM2.5 were the
dependent variables, and meteorological variables, occurrence of events and characteristics of land use were the independent
variables. We found 48% exceedances of the PM2.5-24 h World Health Organization 2021 threshold’s, which questions the
city’s air quality. The cross-correlation function and Pearson’s correlation analysis indicate that hourly and daily temperature,
relative humidity, and wind speed have a complex nonlinear relationship with PM concentrations. Multivariate linear and
logistic regression models for PM1-24 h showed that rain and the flat orography of cement plant sector decrease concen-
trations; while unusual PM emission events (traffic jams and vegetation-fires) increase them. The same models for PM2.5-
24 h show that the dry season and the industrial sector (strong activity) increase the concentration of PM2.5-24 h, and the
cement plant decrease them. Public policies and interventions should aim to regulate land uses while continuously moni-
toring emission sources, both regular and unusual.

1 Introduction

Particulate matter (PMi) is a heterogeneous mixture of
particle sizes with different chemical and physical charac-
teristics. It is the most common atmospheric contaminant
worldwide, generated from natural and/or anthropogenic
sources (Ostro et al. 2015). PM is classified according to its
equivalent aerodynamic diameter in different fractions

(PMi), mainly PM10, PM2.5 and PM1 (particles with an
aerodynamic diameter of≤10, 2.5 and 1 μm, respectively)
(Seinfeld and Pandis 2016).

Long and short-term exposure to outdoor PM2.5 has been
associated with mortality and morbidity health outcomes. A
recent systematic review of chronic or long-term exposures
([24 h) reported that a 10 µg m−3 increase in PM2.5 con-
centration is associated with an 8% increase in total mor-
tality (pooled RR 1.08; 95% CI: 1.06–1.09; 25 studies)
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(Chen and Hoek 2020). There are also consequences for
acute or short-term exposure (≤24 h); Orellano et al. (2020)
reported that a 10 µg m−3 increase in PM2.5 concentration is
associated with a 0.65% increase in all-cause mortality
(pooled RR 1.0065; 95% CI: 1.0044–1.0086; 29 studies):
the WHO (2021) uses the above information to propose PMi

thresholds considered safe for health. This organisation
warns that PM2.5 can penetrate deep into the lungs and even
enter the bloodstream, resulting in cardiovascular and res-
piratory diseases. Furthermore, it reports that there is still
not enough quantitative evidence to establish reference
threshold concentration for PM1, but it is expected that PM1

has a greater lung penetration capacity due to its smaller
size (WHO 2021). This has been confirmed by research
such as Chen et al. (2017), who warn that most of the
adverse health effects of PM2.5 come from the PM1 size
fraction. Furthermore, Yang et al. (2020) conclude that PM1

exposure may be more hazardous than PM2.5 in their study
of children’s respiratory health. Likewise, Wang et al.
(2021) in a study of childhood pneumonia, found that a 10
ug.m−3 increase in PM1 and PM2.5 was associated with
increased risks of admission to pneumonia by 10.28% (95%
CI 5.88−14.87%; Lag 0–2) and 1.21% (95% CI 0.3−2.09%;
Lag 0–2), respectively.

Spatio temporal analysis refers to the exploration of any
information relating to space and time (Gudmundsson et al.
2017). Determining the spatial distribution of an air, soil or
waterborne contaminant by its abiotic factors can help to
develop an understanding of its background sources and
influencing factors and is important for environmental and
health risk evaluation (Ambade et al. 2021a,b, 2022a,b;
Bisht et al. 2022; Gupta et al. 2022; Ambade and Sethi,
2021; Kurwadkar et al. 2021; Maharjan et al. 2021). This
explains the recent expansion of research on the spatio-
temporal analysis of PMi (Deng et al. 2022; Han et al. 2022;
Li et al. 2022; Wang et al. 2022a,b; Zhang et al. 2022; Zhao
et al. 2022; Owoade et al. 2021; Zhou and Lin 2019). This
also applies in Latin America (Carmona, et al. 2020;
Encalada-Malca et al. 2021; Chiquetto et al. 2020), but there
is a lack of research on Ecuadorian problems. A compre-
hensive overview of existing work is presented in TableS1,
and note that spatio-temporal studies aim to investigate the
key factors that influence PM concentrations, considering
meteorological and other parameters that vary in time and
space. It is also noted that each study relies on different
statistical techniques, but most are based on regression
analysis. Furthermore, spatio-temporal studies of PM most
often focus on a single size fraction (PM2.5 or PM10) and
one temporal scale (hourly, daily or annually). In this study,
the spatial dimension is represented by sampling PMi at
different sites of Guayaquil city and the temporal dimension
refers to their hourly, daily and seasonal variation (dry and
rainy season).

The spatio-temporal analysis of PMi and their influenc-
ing factors can be performed following a myriad of avail-
able statistical techniques, varying in their complexity, that
are chosen according to the aim of the study (Carmona et al.
2020; Deng et al. 2022; Han et al. 2022; Li et al. 2022;
Wang et al. 2022a,b; Zhang et al. 2022; Zhao et al. 2022;
Owoade et al. 2021; Zhou and Lin 2019). Multiple linear
regression (MLR) is one statistical technique applied in air
quality analyses to define linear statistical relationships
between PM concentrations and meteorological and
anthropogenic variables (Morantes et al. 2019; Kozakova
et al. 2017; Nazif et al. 2016). Similarly, logistic regression
(RLog) is used in air quality analysis to establish statistical
relationships between influencing variables and a predefined
contaminant threshold (usually a contaminant concentra-
tion) (Ordóñez et al. 2019; Kim et al. 2020; Upadhyay et al.
2017; Vélez-Pereira et al. 2019). Applying RLog needs an
established threshold so that the probability of being above
or below its value can be determined. The threshold is itself
determined from the health impacts of exposure to the
contaminant. RLog is also applied to study relationships
between health effects and contaminant concentrations
(Seifi et al. 2019; Bergstra et al. 2018; Ng et al. 2017; Ware
et al. 2016). A main advantage of using logistic regressions
is that it can provide a similar level of performance to other
more complex techniques, such as neural networks or
regression splines, but with lower complexity (Chang et al.
2020, Holdnack et al. 2013).

Guayaquil is one of the two largest cities in Ecuador with
an estimated population of 2.7 million inhabitants in 2020
(INEC 2016). It is located on the equatorial Pacific Ocean
coast of South America and occupies an area of 355 km2.
Guayaquil has a highly active maritime-port with several
cement production and thermoelectric plants, plus a group
of medium and small industries that share the same space
with urban land use (IND 2020). Up to the first quarter of
2022, the local government of Guayaquil has not yet
included the risks associated with poor air quality in their
agenda and so there is no official, systematic, and open
information available to the public, nor any public reports
on air pollution and its associated risks. The only infor-
mation found locally is that in scientific literature and in the
press. It is important to note that, in Ecuador, it is manda-
tory for local governments to monitor air quality (Article
191, Environmental Organic Code of Ecuador), and hence
official reporting would be expected. This is especially
import because there has been an increase in the concen-
tration of the urban population, in vehicular traffic, and in
manufacturing industries, in Guayaquil since 2008. This has
increased electricity demand and could be detrimental to air
quality of the city (Geo Ecuador, 2008). A survey con-
ducted in 2016 shows that Guayaquil’s inhabitants consider
the city to be polluted by particulate matter from vehicular
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traffic and industries. An environmental inventory con-
ducted between 2007 and 2012 reports that PM10 emissions
averaged 4.5 kt yr−1 (Efficacitas Consultora 2012). For
context, other Latin American cities, such as Santiago de
Chile, emitted an average of 14.9, 6.0 and 4.8 kt yr−1 of
PM10 from industrial sources in 2015, 2016, and 2017,
respectively (Alamos et al. 2022). Moreover, in the city of
Bogota, the average industrial emissions of PM10 reached 1
kt yr−1 (Pachon et al. 2018). The Mayor’s Office of
Guayaquil (Alcaldía de Guayaquil, 2018) reported that, in
2016, the annual average PM10 concentration was
23 µg m−3. This value was higher than the limits suggested
by the WHO for 2005 and 2021 of 20 and 15 µg m−3,
respectively (WHO 2006, 2021). There is little information
on air quality in Guayaquil in the scientific literature.
Moran-Zuluaga et al. (2021) found that the annual mean
concentrations of PM2.5 and PM1 were 7±2 and 1±
1 µg m−3, respectively, at Guayaquil’s airport between 2015
and 2016. Although annual average concentrations of PM2.5

were below the Ecuadorian standard of\15 µg m−3

(Morantes et al. 2016), they show that daily average con-
centrations sometimes exceeded the Ecuadorian norm of a
PM2.5-24 h of\50 µg m−3. The authors confirm that the
city’s flat orography and the south and south-western trade
winds disperse contaminants.

Given the lack of governmental environmental air quality
information, the scarcity of research on the topic, and the
uncertainty about PM1 and PM2.5 pollution in the city of
Guayaquil, it is essential to study PMi contamination at
different temporal scales, and their spatial distribution
around the city. Therefore, the aim of this study is to
investigate the spatiotemporal characteristics of PM1 and
PM2.5 concentrations for the city of Guayaquil and to
identify their key influencing factors using regression and
correlation statistical analyses. Any analysis will support the
development of adequate policy engagement at the local
level by responsible authorities.

2 Study area

The city of Guayaquil is located in a coastal plain below the
equator in South America. It is bounded by the Estero
Salado and Guayas Rivers, which flow into the Gulf of
Guayaquil of the Pacific Ocean. This flat city has some low
elevation hills (\300 m above sea level) (Delgado 2013).
Guayaquil is the most important seaport in Ecuador. It has
three thermoelectric plants that supply energy to the pro-
vince and has a group of industries spread throughout the
city: cement plants (with open-pit mining), food and bev-
erage industries, chemical industries, and asphalt industries,
amongst others. In 2016, the vehicle fleet was 362,857
vehicles with an average age of 12.2 years and a growth of

5.7% over 5 years (INEC 2020). The typical urban land-
scape is characterised by regular orthogonal streets bordered
by low buildings.

The climate of this coastal region is stable, warm, and
humid. It is influenced by the cooling effect of the Hum-
boldt Current along the coast and by the warming effect of
the El Niño. This generates a rainy and a dry season (Rossel
and Cadier 2009) with rainfall between 500 and
2000 mm year−1, and an average relative humidity of above
60%. The wind has a strong maritime influence blowing the
Southwest with average speeds of less than 3 m s−1 (Galvez
and Regalado 2007). Figure 1 shows meteorology of the
city (1992–2017). The rainy season (January-April) and the
dry season (May-December) are shown. In the image below
the time-varying behaviour of the average temperature and
average relative humidity (1992–2017) is shown, evidenc-
ing higher temperatures and humidity in the rainy season.
The mean temperature remains between 26.3 and 27.4 °C,
and the mean relative humidity is 69–80%. Johansson et al.
(2018) point out that the hottest thermal conditions are
found in the rainy season because the atmospheric tem-
perature and vapour pressure are higher, and the wind speed
is slower than at other times of the year.

3 Methodology

3.1 Sampling locations andsampling method

A sampling campaign for PM1 and PM2.5 was carried out
between October 2016 and March 2017. We sampled in the
rainy and dry seasons to perform a temporal analysis of PM
behaviour and in four city sectors for the spatial analysis.
Figure 2 shows a map of the city of Guayaquil, with close-
ups of the four sampling points/sectors:

● The cement plant sector in which two major cement

plants operate with capacities of 5.4 and 0.9 Mt year−1,
plus others with lower capacity (\0.4 Mt year−1)
(Holcim Ecuador 2015). Raw material for these indus-
tries comes from four collocated open-pit quarries. These
industries operate continuously 24 h a day, 7 days a
week. This sector is crossed by the only road that links
the city to the coastline, and has vehicular traffic 24 h a
day, 7 days a week. Many middle-class residential areas
have been built around the road, which include a set of
shopping centres that generally operate from 08:00 to
20:00 h.

● The downtown sector has significant commercial activity
and a large number of government and private office
buildings, together with lower and lower-middle class
residential buildings. Many traffic lights slow traffic,
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causing frequent traffic jams at rush hour, and much of
the public transport is diesel-powered (INEC 2016).
There are also recreational activities that are open to the
public until late at night. Business hours are from 08h00
to 21h00 and office hours from 08h00 to 17h00.

● The industrial sector is located north of the city and is
circumscribed by two highways that surround the city
with high vehicular traffic. Industries, wholesale busi-
nesses, and residential areas coexist. The industrial
activity comprises medium and small industries, such as
food and beverages, chemicals, paints, asphalt, carpet
factories, and plastics production. Industry hours are
generally from 07h00 to 18h30 from Monday through
Saturday noon, although some operate 24 h a day, 7 days
a week.

● The residential sector is representative of middle-class
gated communities that limit vehicular traffic but are
generally located near trunk roads with high vehicular
traffic and commercial activity. This residential sector is
located at the foot of a hill (\180 m) and has
approximately 4 000 residents.

A real-time environmental particulate air monitor, model
EPAM 5000 (Haz-Dust™), with a detection range of 0.001–

20.0 and 0.01–200.0 mg m−3 and a sampling flow rate of
4.0 L min−1, was used to measure PM concentration. The
EPAM 5000 can sample every second; however, data was
only recorded every minute as this frequency is sufficient to
be translated into hourly averages for the subsequent anal-
ysis. An hourly resolution was deemed acceptablebecause
the aim is to describe hourly patterns in the PMi data per
day. The manufacturers calibrated the equipment prior to
sampling using the NIOSH gravimetric method. The sam-
pling instrument was positioned at a height of 2.5 m above
the floor.

PM1 and PM2.5 sampling started in the dry season on
October 17 and ended on December 17, 2016. Rainy season
measurements were recorded between January 7 and March
5, 2017. Our protocol established that measurements begin
in each sector with the PM1 fraction for 7 consecutive days
and then continue with the PM2.5 fraction for another 7
consecutive days. After sampling in one sector was com-
plete, the sampling station moved to a new sector, and the
protocol was repeated until all four sectors were sampled,
both in dry and raining seasons. 56 days were sampled for
both PM1 and PM2.5. Therefore, there were 2 688 hourly
data points: 1 344 for PM1 and 1 344 for PM2.5. The
scheduled measurement protocol makes it possible to know

Fig.1 Meteorology of the city of
Guayaquil, Ecuador (1992–
2017)*: Climogram (above);
average temperature and average
relative humidity (below). *
Guayaquil airport weather
station—radiosonde (MA2V)
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the hourly concentration of each contaminant and calculate
the 24-h arithmetic average of particulate matter, as estab-
lished by environmental regulations. Likewise, concentra-
tions were collected for the seven days of the week in the
four sectors and for the two climatic periods.

The surface wind speed, ambient temperature, and rela-
tive humidity in each sector were measured at the same time
with a Kestrel 4500 pocket weather tracker. The meteoro-
logical data was recorded simultaneously with the PMi

concentration and averaged to hourly and daily values. The
rainfall was measured using a TFA-47101 rain gauge.

We identified unusual events that occurred during the
sampling in the surroundings of the sectors that could
influence the PM concentration using social networks.
Events were classified as: (i)related to vehicular traffic:
traffic blockages, traffic accidents, traffic lights out of ser-
vice; (ii) related to torrential rain: slow vehicular traffic,
avenues cut off by floods or falling trees that interfere with
vehicular traffic; and (iii) related to emissions: emissions
from fires in green or wooded areas, vehicle fires, building
fires, explosions in quarries, street fumigations, exceptional
emissions from industries. The collected information was
organised by the type of event, its time and date, and sector
of the occurrence. As a result, 106 events were identified, of
which 80 were related to vehicular traffic, 8 to rainfall, and
18 to exceptional emissions. Industries in social networks
did not report operational problems related to emissions. Of

these events, 59 occurred during the PM1 sampling and 47
during the PM2.5 sampling. In total, 54 events occurred
during the dry season and 52 during the rainy one. A total of
18 events were identified in the cement sector, 6 in the city
centre, 81 in the industrial sector and 19 in the residential
one.

3.2 Contaminants andtemporal scales

3.2.1 PMi-1 h descriptors

The eight hourly time series (PM1, TPM1, RHPM1, WSPM1

and PM2.5, TPM2.5, RHPM2.5, WSPM2.5) for the two climatic
seasons were visually analysed separately and descriptive
statistics were calculated. The Dickey-Fuller test for sta-
tionarity (p\0.05) was applied to establish stationarity in
the time series. Overall, an analysis was made for each
fraction (PMi, i=1 and 2.5), each season (dry and rainy
season), and each sector (cement plant, downtown, indus-
trial, and residential).

Boxand whisker plots are used to determine possible
patterns in the hourly concentrations of PMi throughout the
day. For the two PM fractions and climatic season, the data
are grouped for hours of the day (regardless of the sector).
The number of records used for this analysis was: 1 188
from PM1-1 h, and 1 123 from PM2.5-1 h, due to failures
with the sampling equipment in the industrial sector.

Fig.2 Location of the four
sampling sectors of PM in
Guayaquil (Espín 2017)
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3.2.2 PMi-24 h descriptors

Hourly data was transformed into 24 h averages. For dry
and rainy seasons there were 56 values of PM1-24 h con-
centrations and 53 for PM2.5-24 h, giving 109 sampling
days. Daily average values are useful to establish whether a
site complies with 24-h reference thresholds. In this
research, the reference threshold used for both fractions is
the limit value proposed for PM2.5-24 h by the WHO (2021)
(PM2.5-WHO-24 h=15 µg m−3). This is because there are no
established threshold limit values for human health for
PM1-24 h. Given that in environmental regulations the
thresholds set for PM fractions decrease as the particle size
decreases, this reference threshold for PM1 could be
underestimating its effects, and so we consider it as a proxy
reference value.

3.3 Single influencing factor analysis onPMi

concentrations

3.3.1 Meteorological variables

For the correlation analysis, hourly PM concentration was
the dependent variable (PM1-1 h or PM2.5-1 h) and hourly
meteorological parameters were the independent variables:
ambient temperature (T), wind speed (WS), and relative
humidity (RH). A cross correlation function (CCF) (r; p-
value\0.01) was applied between these series to determine
the correlations simultaneously or with delay. ACCF was
applied between PMi (i=1 or 2.5) and the meteorological
variables. Before applying a CCF, we reviewed the time
series to ensure that we had consecutive data over time
(hours and days) and each record contained information for
all variables (PMi, T, RH, WS). The time series were
examined for each particle fraction, each sector and the two
seasons.

Likewise, to determine the influence of meteorological
parameters on daily particle concentrations, Pearson’s cor-
relation (r; p-value\0.05) was applied between PMi-24 h
and the daily average of minimum, mean, and maximum
temperatures, relative humidity, and wind speed. The
interpretation of the magnitude of the Pearson correlations
followed the guidelines proposed by Ratner (2011).

3.3.2 Dichotomous variables

The t-Student test was used to establish the relationship
between PMi-24 h (as continuous variable) and all
dichotomous variables of interest: occurrence of rainfall,
unusual events, climatic season, and the sector (cement
plant, downtown, industrial, residential).

3.4 Multiple linear regression: PMi-24 h

Multiple linear regression analysis (MLR) is a statistical
technique that establishes a relationship between a set of
more than two independent variables (IVs) to determine the
extent they can explain the dependent variable (DV). For a
DV (denoted as Yi), its best linear predictor from IVs (X i)
can be represented as (Cohen et al. 2014; Weisberg 2014):

Yi ¼ b1X1i þ b2X2i þ b3X3i þ bkXkiþ 2 i

ModelA : standardisedmodel½ � ð1Þ

Yi ¼ Boþ B1X1i þ B2X2i þ B3X3i þ BkXki

ModelB : predictivemodel½ � ð2Þ

where:
b0; b1; . . .bk�B0; B1; B2; . . .Bk , unknown fixed param-

eters. X1i; . . .;Xki independent variables whose values are
fixed by the researcher. 2 i unobservable random variable.
Random error.

Model A allows us to identify the variable that has the
most important contribution to the total variance using the
standardised regression coefficient (β): a variable has
greater importance in the regression equation the higher the
absolute value of β (Cohen et al. 2014). Model B is con-
structed with unstandardized coefficients (B for each vari-
able). The unstandardized Bcoefficients have the same
physical units as the measured variables.

A MLR must meet several assumptions for the model to
be generalised. Before performing the regression, the vari-
ables were checked for linearity (the relationship must be
linear), multicollinearity (most IVs were not highly corre-
lated [r\0.9]), and normality (normal distributions were
checked with Q-Q plot, skewness, kurtosis, and K-S). The
final model was checked for multicollinearity (using a
variance inflation factor [VIF\10] and tolerance [[0.2]),
normally distributed errors (checking Q-Q plot and his-
togram), independence of errors and homoscedasticity
(residuals plot has no tendencies) (Cohen et al. 2014). Two
models were developed, and the dependent variables used
for each MLR were PM1-24 h and PM2.5-24 h. In Table1 we
present the type, units and distribution descriptors for the
dependent variables of the MLR model.

To evaluate the goodness of fit for the MLR model, the
following performance indicators were used: normalised
absolute error (NAE), root mean square error (RMSE),
mean absolute error (MAE), index of agreement (IA) and
prediction accuracy (PA) (Willmott 1981, 1982). Table2
shows details of these indicators.

3.5 Exceedance’s analysis

To establish the individual relationship between a dichoto-
mous dependent variable and relevant independent
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variables, a bivariate analysis is performed using the t-
Student test (for variables of different types) and the Pear-
son correlation “r” (for variables of the same type). The
exceedance analysis is performed via logistic regressions
(RLog). This type of regressions serve to model the rela-
tionship between independent variables (IVs) and a
dichotomous response variable (or dependent variable, DV)
(Hosmer et al. 2013). The logistic regression models the
probability of an outcome based on individual characteris-
tics. Since chance is a ratio, the logarithmic transformation
of the chance is modelled by Eq. 3 (LOGIT model):

pi ¼
1

1þ e�ðb0�biÞxi ð3Þ

where:
pi probability of y=1 in the presence of covariates x;
xi set of n covariates;
βo constant of the model or independent term;
βi coefficients of the covariates.
Two logistic models were developed. The dependent

variable for RLog is defined as the discretization of the
exceedance of the concentration for PMi-24 h (EPM1-24 h
or EPM2.5-24 h), setting a value equal to “1” when the
concentration of PMi-24 h exceeds or equals 15 µg m−3 and
a value of “0” if PMi-24 h is less than 15 µg m−3. To
discretize the values of PMi-24 h in binary values, the
approach of Rincon et al. (2022) was used. The concen-
tration limit value of PM2.5-24 h\15 µg m−3 (WHO, 2021)
was used as a reference for establishing a threshold for
exceedances of PM1 and PM2.5. In Table1 we present the
type, units and distribution descriptors for the dependent
variables of the RLog model.

3.5.1 Model validation

To understand the effect of adjusting the LOGIT model, chi-
squared likelihood statistics were used. It compares the
values of the prediction against the observed values when
the model does not consider the independent variables and
when it does. The model makes an adequate prediction
when the chi-squared statistically decreases (p\0.05),
which occurs once the independent variables have been
introduced (Hosmer et al. 2013).

The LOGIT model was validated using the summary
statistics of a contingency table, which give ways of mea-
suring the goodness of the predictions (Hosmer et al. 2013).
The classification tableindicates the absolute frequency, the
correct classification percentages when exceeding the
threshold, and the holistic success rate. It shows the per-
centage of correctly classified cases when model correctly
predicts the threshold is exceeded (sensitivity), as well as
the percentage of cases when the model correctly predicts
the threshold was not exceeded (specificity). The model was

also validated through classification errors (false positives
and false negatives). The holistic success rate was calcu-
lated based on the values of the main diagonal of the matrix
(correct classifications). The R2 of Cox and Snell, and the
R2 of Nagelkerke indicates the part of the variance of the
dependent variable explained by the model. The part of the
PV explained by the model oscillates between the values of
both R2, where a good fit is represented by values close to
one (Hosmer et al. 2013; Aznarte 2017).

The selection of the independent variables for the MLR
and the RLog were made from previous research associating
PMi-24 h concentration with other variables at the same
temporality scale. Table1 lists type, units, and distribution
descriptors of the independent variables used in the MLR
and RLog models.

4 Results anddiscussion

4.1 Spatial–temporal analysis ofPMi

4.1.1 PMi-1 h data anddescriptive statistics

Table3 presents the descriptive statistics for five variables
(PM1-1 h, PM2.5-1 h, T-1 h, RH-1 h, WS-1 h) for dry and
rainy seasons. The average concentration over the 56 days
monitored in each season was higher for PM2.5 than for
PM1. For PM2.5 in the rainy season the maximum concen-
tration recorded was 955 µg m−3 and the median was
12 µg m−3. Likewise, the standard deviation indicates the
large dispersion of this data set (156 µg m−3). During the
sampling, the temperature in Guayaquil was stableand
warm (T between 20 and 40 °C) with slightly higher tem-
peratures in dry than in the rainy season. The city showed
high relative humidity with the greatest values occurring
during the rainy season. The predominant wind was calm
(WS;\1 m s−1) and higher speeds in drought (light
breezes).

Figure 3 visually shows the tendencies of temperature,
relative humidity, and wind speed during the sampling of
PMi. Qualitatively, the meteorological variables do not
show variations during the sampling. Instead, changes in the
tendencies of these variables are observed during the two
seasons. In general, in the rainy season, temperatures were
warmer and relative humidity was higher, reaching 22% of
the sampling dates at 100% RH. Calm winds predominated
(84% of the sampling time) and the velocity rarely exceeded
3 m s−1 (1% of the sampling dates). The highest wind
speeds occurred during the dry season. In the rainy season,
the wind speed was often 0 m s−1. Finally, the Dickey-Fuller
stationarity test showed that all the series were stationary in
their original form (pvalue\0.01).
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Table1 Description of the dependent and independent variables used in PMi-24 h modelling

Category Variable Type Units Distribution descriptorsA

PM1 EPM1-24 h Exceeds or not Dichotomous n/a

PM1-24 h Daily Continue µg m−3 Parametric ¥=0.000

Ɵ=-0.437

K-S. p=0.200

Meteorology for PM1 Relative humidityB (RH) % ¥=0.040

Ɵ=-0.600

K-S. p=0.200

TemperatureB

(T)

°C ¥=-0.048

Ɵ=-0.238

K-S. p=0.200

Temperature MaxB (T.Max) ¥=-0.063

Ɵ=-0.160

K-S. p=0.200

Temperature minB (T.min) ¥=0.073

Ɵ=-0.458

K-S. p=0.200

Wind speedB (WS) m s−1 ¥=0.025

Ɵ=-0.437

K-S. p=0.200

PM2.5 EPM2.5-24 h Exceeds or not Dichotomous n/a

PM2.5-24 h Daily Continue µg m−3 Parametric ¥=0.033

Ɵ=-0.634

K-S. p=0.200

Meteorology for PM2.5 Relative humidityB (RH) % ¥=0.055

Ɵ=-0.504

K-S. p=0.200

Temperature (T) °C ¥=-0.482

Ɵ=1.025

K-S. p=0.129

Temperature MaxB (T.Max) ¥=-0.001

Ɵ=-0.344

K-S. p=0.200

Temperature min (T.min) ¥=0.152

Ɵ=-0.855

K-S. p=0.200

Wind speedB (WS) m s−1 ¥=-0.106

Ɵ=-0.439

K-S. p=0.200

Meteorological Season (Dry.season) Rainy and dry Dichotomous Adimentional

Precipitation event (Rain) Occurs or not

Event Unusual Event (Event.Unusual)
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Table1 (continued)

Category Variable Type Units Distribution descriptorsA

Land Use Sector

(Cement.Plant)

Sector

(Downtown)

Sector

(Industrial)

Sector

(Residential)

AƟ(Skewness); ¥ (Kurtosis); K-S (Kolmogorov–Smirnov)
B Original variable did not have a normal distribution. Normality was achieved following procedure from Kim and Carter (1996)

Data set (PM1=46; PM2.5=39)

n/a. Normality is not measured for dichotomous variables

Table2 Performance indicators

Performance indicators Normalized absolute error (NAE) Root mean square error (RMSE) Mean absolute error (MAE)

Equation Pn

i¼1

Pi�Oij j
Pn

i¼1

Oi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

i¼1
ðPi� OiÞ2

s Pn

i¼1

Pi�Oij j
n

Good performance values Closer to zero

Performance indicators Index of agreement (IA) Prediction accuracy (PA)

Equation

1� ½
Pn

i¼1

ðP�OiÞ2

Pn

i¼1

ð Pi�Oj jþ Oi�Oj jÞ2
�

Pn

i¼1

ðPi�OÞ2

Pn

i¼1

ðOi�OÞ2

Good performance values Closer to one

n=number of data points

Pi=Predicted values

Oi=Observed values

P=Mean of predicted values

O=Mean of observed values

Table3 Descriptive statistics of
hourly series of PM1 and PM2.5,
temperature, wind speed and
relative humidity in dry and
rainy seasons

Variables Mean SD Median min Max Range

Rainy Season PM1-RainySeason (µg m−3) 13 7 12 1 60 59

PM2.5-RainySeason (µg m−3) 60 156 12 1 955 954

T-Rainy Season (oC) 28 3 27 23 40 17

RH-Rainy Season (%) 78 21 85 32 100 68

WS-Rainy Season (m s−1) 0.2 0.3 0.0 0.0 3.3 3.3

Dry Season PM1-Dry Season (µg m−3) 14 8 14 1 55 54

PM2.5-Dry Season (µg m−3) 17 11 16 1 82 81

T-Dry Season (oC) 27 4 25 20 40 19

RH-Dry Season (%) 62 20 69 22 95 73

WS-Dry Season (m s−1) 0.8 0.8 0.6 0.0 5.0 5.0

T, temperature; RH, relative humidity; WS, wind speed; SD, standard deviation
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Figure 4 shows a boxplot of PMi-1 h for both seasons
(88% of PM1 data; 84% of PM2.5 data). The highest con-
centrations of airborne particulate matter are observed
between 14h00 and 18h00. The lowest concentrations occur
after sunrise (06h00 and 10h00). The city's activities and
local meteorology influence the seasonal trend of the hourly
PM concentration.

At night a stablelevel of pollution is observed as a result
of the nocturnal atmospheric stability that prevents the
vertical movement of particles in air. During daylight hours,
there is a strong diurnal variation, since during the sunny
hours, the planetary boundary layer extends to a greater

height generating certain atmospheric instability that helps
the dispersion of contaminants (Azad 2012; Vilà-Guerau de
Arellano et al. 2015). This behaviour of the boundary layer
and the timetableof anthropogenic activities helps to explain
the hourly seasonal PM pattern during a day.

4.1.2 PMi-24 h data anddescriptive statistics

Figure 5 shows the concentration of PMi-24 h in the four
sampling sectors in dry and rainy seasons; the reference
threshold (PMi-24 h=15 µg m−3) is marked with a dashed
line. Three days for PM2.5-24 h-dry in the industrial sector

Fig.3 Hourly time series of temperature, wind speed and relative humidity during PM1 and PM2.5 sampling in dry and rainy seasons
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are not shown because less than two-thirds of the hourly
concentrations were recorded on each of those days. This
figureshows that the concentration is lower in the rainy
season due to the wet deposition generated by the high
precipitation that is common in Guayaquil. For both frac-
tions and seasons, the reference threshold was exceeded a
total of 45% of the time, which serves to question the
acceptability in the air quality in these sectors.

In the Cement plant sector, three days were recorded with
very high concentrations of PM2.5-24 h-rain (see Fig. 5). It
should be noted that no event was identified on the social
networks on those dates to justify it; this could be atypical
and the result of some fortuitous situation. Under this pre-
mise, it can be suggested that this sector has good air
quality. It is necessary to make continuous measurements in

this sector to verify whether the recorded concentrations are
unusual.

In the Industrial sector, the PMi-24 h concentrations were
exceeded on all sampling days, with higher concentrations
observed in the dry season. High PM2.5 concentrations
could be a consequence of the strong industrial activity and
the continuous occurrence of traffic-related events on the
two expressways that circumscribe the sector. The down-
town sector has a high influx of diesel-powered public
transport and has elevated PM1 concentrations during the
dry season (slightly exceeding the threshold in this season).
Meanwhile, the threshold is not exceeded during the rainy
season, possibly because of precipitation that occurred on
the sampling days.

Fig.4 Boxplot of PM1-1 h and PM2.5-1 h for the two seasons. Note: Red dashed line marks the threshold suggested by WHO (2021): PM2.5-24 h=
15 µg m.−3
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In the Industrial sector for PM2.5-24 h, during the rainy
season, insufficient hourly data were collected on three
dates to estimate the 24-h concentration.

In the Cement plant sector for PM2.5-24 h, during the
rainy season, the outstanding concentrations were: 643, 181
and 113 µg m−3.

The Residential sector exceeded the PM2.5-24 h thresh-
old on most days. In this sector, unusual events were pub-
lished in social networks on every sampling day. These
events were vehicle blockages and fires (one of the fires
coincided with the day of highest concentration:
20.6 µg m−3). During the dry season, ten vegetation/forest
fires were published on social networks during the 28 days
of monitoring. Therefore, it would be advisable to carry out
continuous maintenance of green areas to reduce the prob-
ability of vegetation fires.

Overall, in the dry season, PM1-24 h exceeds the
threshold in the industrial and downtown sectors. Mean-
while, in the rainy season the threshold is exceeded in the
Industrial and Residential sectors. For PM2.5-24 h all sectors
continuously surpass the threshold in the dry season, while
in the rainy season the threshold is exceeded for the cement
plant, and the industrial and residential sectors.

Chen et al. (2017) mention that the health effects of PM1

are potentially more harmful than those of PM2.5. This
becomes relevant when noticing that PM1-24 h exceeded
the proposed threshold 50% of the monitored days.

Moreover, Hu et al. (2022) conducted a systematic review
finding that, for a 10 µg m−3 increase in PM1, there is a
pooled odds ratio of 1.05 (95% CI 0.98–1.12) for total
respiratory diseases, 1.25 (95% CI 1.00–1.56) for asthma,
and 1.07 (95% CI 1.04–1.10) for pneumonia. This estab-
lishes that there is a positive association between this con-
taminant and these health outcomes. Similarly, an increase
of 10 µg m−3 of PM2.5 was associated with a 0.65% increase
in mortality by Orellano et al. (2020).

4.2 Single influencing factor analysis onPMi

concentrations

4.2.1 Meteorological variables

The continuous variables are the meteorological parameters
measured during the sampling campaign (Table1). The
influence of ambient temperature and relative humidity,
wind speed and direction, and the planetary boundary layer
height on PMi remains a topic of interest in air quality
research (Chen et al. 2020). To measure the hourly temporal
influence of meteorological parameters (T-1 h; WS-1 h; RH-
1 h) on PMi, cross-correlation functions (CCFs) were esti-
mated for the dry and rainy seasons, enabling the determi-
nation of time lags at which a statistical relationship arises
(Table4 for PM1 and Table5 for PM2.5).

Fig.5 PM1-24 h and PM2.5-24 h concentrations by sector and season. Note: Red dashed line marks the threshold suggested by WHO (2021):
PM2.5-24 h=15 µg m.−3
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The sign of the relationship between ambient tempera-
ture and PM1-1 h was positive in both seasons and for all
sectors. The correlations for PM2.5-1 h and ambient

temperature were positive during the dry season. Relative
humidity was negatively correlated with PM1-1 h in both
seasons and for PM2.5-1 h in the dry season, and for one

Table4 Cross correlation
function results for PM1

Land use PM1 (dry season) (µg m−3) PM1 (rainy season) (µg m−3)

T RH WS T RH WS
(oC) (%) (m s−1) (oC) (%) (m s−1)

Cement Plant sector p-value 5.94E−24 5.12E−24 1.01E−03 4.76E−18 5.22E−20 5.02E−03

CC Max 0.680 −0.681 −0.269 0.644 −0.669 0.242

Lag Max 4 4 10 7 7 6

Lag Interval [0–9] [1–9] 2, [9–12] [3 and 12] [3–11] [5–8]

Downtown sector p-value 2.56E−15 4.05E-16 2.28E−02 4.90E−03 1.44E−03 –

CC Max 0.678 −0.693 −0.238 0.236 −0.265 –

Lag Max 4 5 8 7 6 –

Lag Interval [0–8] [1–9] 8 [4–7] [3–7] –

Industrial sector p-value – – – 4.41E−02 3.94E−02 1.75E−02

CC Max – – – −0.173 0.177 0.201

Lag Max – – – 12 12 8

Lag Interval – – – 12 12 8

Residential sector p-value 1.79E−16 1.40E−18 2.26E−03 1.13E−06 2.31E−06 2.24E−02

CC Max 0.603 −0.635 0.254 0.470 −0.458 −0.237

Lag Max 5 6 6 5 5 7

Lag Interval [1–9] [2–9] 4, [6–7] [2–9] [1–9] 7

T, temperature; RH, relative humidity; WS, wind speed; CC: cross correlation

“–” no significant correlation was found (p-value\0.01)

Table5 Cross correlation
function results for PM2.5

Land use PM2.5 (dry season)
(µg m−3)

PM2.5 (rainy season)
(µg m−3)

T RH WS T RH WS
(oC) (%) (m s−1) (oC) (%) (m s−1)

Cement plant sector p-value 1.88E−03 2.15E−03 2.99E−03 7.05E−04 3.74E−04 1.94E−02

CC Max 0.629 −0.627 −0.360 0.256 −0.268 −0.182

Lag Max 6 6 10 0 0 6

Lag Interval [2–10] [0–10] 10 [0–6] [0–9] [5–7]

Downtown sector p-value 8.59E−22 4.02E−23 7.73E−11 – 7.96E−03 –

CC max 0.673 −0.687 0.495 – −0.221 –

Lag max 6 6 0 – 5 –

Lag interval [2–9] [2–10] [0–2] – [3–5] –

Industrial sector p-value 9.63E−14 1.01E−13 1.70E−03 – – –

CC max 0.597 −0.597 −0.291 – – –

Lag max 3 3 10 – – –

Lag interval [0–6] [0–7] [7–11] – – –

Residential sector p-value 7.32E−11 4.25E−10 5.15E−02 – 2.31E−09 5.93E−04

CC max 0.566 −0.550 −0.197 – 0.478 0.281

Lag max 3 4 11 – 12 2

Lag interval [0–7] [0–7] 11 – [8–12] [0–5]

T, temperature; RH, relative humidity; WS, wind speed; CC: cross correlation

“–” no significant correlation was found (p-value\0.01)
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sector in the rainy season. However, two sectors showed
positive correlations in the rainy season. The relationships
between PM and WS were highly variable for all sectors
and seasons, having both positive and negative directions.
All correlations between the meteorological variables and
the PMi are observed between 0 and 12 h.

To measure the daily temporal influence of meteorolog-
ical parameters (T-24 h; WS-24 h; RH-24 h) on PMi-24 h,
the Pearson correlation was applied (see Tables6 and 7).
PM1-24 h has a moderate negative correlation with mini-
mum temperature and relative humidity and a positive
moderate linear correlation with wind speed. PM2.5-24 h
also has a moderate negative correlation with minimum
temperature and relative humidity.

The negative bivariate relationship between PMi-24 h
and T-24 h is opposite to that found in the hourly analysis,
but this is not uncommon in air quality analysis. Perez-
Martinez and Miranda (2015) [PM10-1 h] found positive
and statistically significant relationships between PM and
temperature using CCF. Wang and Ogawa (2015) [PM2.5-
monthly] [PM10-PM2.5-1 h] and Morantes et al. (2019)
[PM1-24 h] also reported positive relationships between
temperature and PM for different fractions applying corre-
lation techniques. The simplest and best model

recommended by Rybarczyk and Zalakeviciute (2018)
[PM2.5-imin] has a positive relationship between PM and
Temperature. Studies that apply MLR, such as Ul-Saufie
et al. (2012) [PM10-24 h], Rybarczyk and Zalakeviciute
(2018) [PM2.5-imin], Chelani (2019) [PM2.5-24 h] and
Zhao et al. (2018) [PM2.5-4 h], report both negative and
positive relationships between PM and T. They also report
that the change in the direction of the relationship may be
due to the type of variables included in the model, such as
changes in meteorological parameter conditions, modifica-
tion of the time scale, seasonality, and may also be due the
statistical technique applied and small sample sizes.

Zhao et al. (2022) [PM2.5-annual] and Alvarez et al.
(2022) [PM2.5-24 h] found positive correlations for tem-
perature and PM2.5, applying complex statistical tech-
niques. Reasons for the positive correlation are: more
energy consumption in cold temperatures (hence more
combustion emissions) and atmospheric stability on days of
lower surface temperature leading to higher PM2.5 con-
centrations. However, Zhang et al. (2022) [PM2.5-1 h],
Deng et al. (2022) [[[PM2.5-24 h], Wang et al. (2022b)
[PM2.5-24 h], Yu et al. (2022) [PM2.5-1 h], Li et al. (2022)
[PM2.5-24 h], Han et al. (2022) [PM2.5-1 h], Ambade et al.
(2021b) [BC—PM2.5 Month], Deng et al. (2022) [PM2.5-

Table6 Pearson correlations
between PM1-24 h and
meteorological parameters

[1] [2] [3] [4] [5] [6]

[1] T (oC) 1 −0.431** 0.194 0.657** 0.731** −0.256

[2] WS (m s−1) 1 −0.411** −0.071 −0.649** 0.362*

[3] RH (%) 1 0.065 0.464** −0.344*

[4] T.Max (oC) 1 0.353* −0.289

[5] T.min (oC) 1 −0.393**

[6] PM1-24 h (µg m−3) 1

T, temperature; WS, wind speed; RH, relative humidity; T.Max, maximum temperature; T.min, minimum
temperature

** The correlation is significant at the 0.01 level (bilateral)

* The correlation is significant at the 0.05 level (bilateral)

N=46

Table7 Pearson correlations
between PM2.5-24 h and
meteorological parameters

[1] [2] [3] [4] [5] [6]

[1] T (oC) 1 −0.317 0.107 0.542** 0.553** −0.207

[2] WS (m.s−1) 1 −0.724** 0.165 −0.620** 0.313

[3] RH (%) 1 −0.422** 0.660** −0.321*

[4] T.Max (oC) 1 −0.099 0.960

[5] T.min (oC) 1 −0.534**

[6] PM2.5-24 h (µg m−3) 1

T, temperature; WS, wind speed; RH, relative humidity; T.Max, maximum temperature; T.min, minimum
temperature

**The correlation is significant at the 0.01 level (bilateral)

* The correlation is significant at the 0.05 level (bilateral)

N=39
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24 h], Owoade et al. (2021) [PM2.5-24 h] all found negative
correlations for temperature and PM2.5 when applying
complex statistical techniques. The main explanation for
these correlations is attributed to temperature-related
atmospheric convections: an increase in the air temperature
increases the atmospheric turbulence (vertical diffusion
depends on an increase in ambient temperatures at the urban
boundary layer), which accelerates the dispersion, diffusion,
and dilution of pollutants.

Both negative and positive relationships between PM
and temperature are found for different sectors, particle
fraction sizes, and sampling periods (1 h, 4 h, 24 h), which
might indicate that the relationship between PM and T is
polynomial. This is was also identified by a review of the
effects of meteorological conditions on PM2.5 concentra-
tions, and showing that temperature had both positive and
negative influences of the contaminant (Chen et al. 2020).

The negative coefficient between RH and PMi-1 h-24 h
suggests that there is a process of particle scavenging from
the atmosphere. However, one positive correlation was
found for PM2.5-1 h-rainy with a lag of 12 h, suggesting that
the correlation between PM and RH could have both pos-
itive and negative directions. Ul-Saufie et al. (2011, 2012)
[PM10-24 h], Deng et al. (2022) [PM2.5-24 h], Owoade et al.
(2021) [PM2.5-24 h], Li et al. (2022) [PM2.5-24 h], Alvarez
et al. (2022) [PM2.5-24 h] reported positive relationships
between PM and RH performing MLR and other more
complex statistical approaches. The reason is that PM2.5

attaches to water vapour when the relative humidity is high
(hygroscopic growth of the particles) and so particulate
pollutants tend to cluster, and environmental quality wors-
ens. However, Wang et al. (2022a) [PM2.5-annual], Wang
et al. 2022b [PM2.5-24 h], Ambade et al. (2021b) [BC—
PM2.5 Month] reported negative correlations between PM
and RH. The direction of the relationship is attributed to the
diffusion and deposition of particulate matter occurring at
higher RH when particulate pollutants tend to gather mass
and fall to the ground on days with a high relative humidity.
Both positive and negative relationships between PM and
RH were found by Wang and Ogawa (2015) [PM2.5-
monthly] [PM10-PM2.5-1 h] and Zhao et al. (2018) [PM2.5-
4 h], Zhang et al. (2022) [PM2.5-1 h], Yu et al. (2022)
[PM2.5-1 h], Han et al. (2022) [PM2.5-1 h]. The main reason
for a change in the direction of the relationship between
these variables is that, with increasing relative humidity, the
bulk PM2.5 concentration rises at first and later declines.
Overall, it appears that the correlation between PM2.5 and
RH would represent a complex nonlinear relationship (Chen
et al. 2020). This is consistent with the findings of this
study.

When investigating the relationships between PMi-1 h-
24 h and wind speed, Zhao et al. (2022) [PM2.5-annual],
Zhang et al. (2022) [PM2.5-1 h], Wang et al. (2022a) [PM2.5-

annual], Wang et al. (2022b) [PM2.5-24 h], Li et al. (2022)
[PM2.5-24 h], Ambade et al. (2021b) [BC—PM2.5 Month],
Alvarez et al. (2022) [PM2.5-24 h] reported a negative
correlation between these parameters, explained by the
diffusion of PM2.5 due to higher wind, or inversely, slower
winds would be related to the increase in particulate matter
(PM10 and PM2.5) in the atmosphere (He et al. 2013;
González and Torres, 2015; and Taheri and Sodoudi, 2016).
Positive correlations between PM and WS have been found
by Ul-Saufie et al. (2011) [PM10-24 h]; Munir et al. (2017)
[PM10-PM2.5-1 h] and Rybarczyk & Zalakeviciute (2018)
[PM2.5-imin]. Wang and Ogawa (2015) and Munir et al.
(2017) concluded that if the wind speed is high enough, it
can transport large quantities of contaminants from neigh-
bouring regions, at the local, regional, and global scales. Ul-
Saufie et al. (2012) [PM10-24 h], Wang and Ogawa (2015)
[PM2.5-monthly], Nazif et al. (2016) [PM10-24 h], Giri et al.
(2008) [PM10-24 h]; Chelani (2019) [PM2.5-24 h] found
circumstances when the sign of the relationship changed for
the same sample. Deng et al. (2022) [PM2.5-24 h] and Han
et al. (2022) [PM2.5-1 h] reported that the impacts of the
wind speed on PM2.5 are nonlinear over time: when wind
speeds are low, air pollutants cannot be transmitted or dif-
fused, a moderate increase in wind speed is conducive to the
dispersion and dilution of pollutants, while high wind
speeds with a dry surface environment lead to the dust
events. You et al. (2017) caution that the sign of the PM-WS
relationship can change for the same location due to sea-
sonal effects, and this correlates with the outcomes of this
study. In addition, the authors point out that the sign change
is also due to the temporal scale or the geographic location.
This suggests that the PM-WS relationship is polynomial
(Chen et al. 2020).

All the above would serve to explain that, although there
are expected relationships between PM and meteorology
(local meteorology is an important driver for local air
quality), different relationships between meteorological
variables (T, RH and WS) and several fractions of PM
(PM2.5; PM10; TSP) measured for various averages (hourly,
daily, weekly and annual) are reported in the bibliography,
reflecting complex linear and nonlinear relationships
between all these parameters. Moreover, the temporal scale
of the measurement (i.e. hourly, daily—with and without
delays) also influences the relationships that could be found.
Furthermore, every study would have variables outside its
scope, resulting in relationships that are not always fully
explained.

4.2.2 Dichotomous variables

The dichotomous variables measured during the sampling
campaign are meteorological, geographic and event-related
parameters (Table1). The specific location, emissions

Stochastic Environmental Research and Risk Assessment

123



resulting from habitual industrial activities, common public
transport, unusual events (vegetation fires, significant vari-
ations in vehicular traffic) and the seasons are among
variables of interest when assessing the spatio-temporal
variations of PMi concentrations (Taheri and Sodoudi
2016).

Tables8 and 9 show a comparison between the dichoto-
mous variables and PMi-24 h concentrations using the
Student’s t-test for independent samples with α≤0.05.
Means that are statistically different from each other are
highlighted in bold.

Occurrences of unusual events that promote emissions of
PMi are related to higher PMi-24 h concentrations. The
season is also relevant, showing that in the dry season there
is an increase in PMi concentrations. Alvarez et al. (2022)
and Morantes et al. (2019) report similar trends by region
(Colombia and Venezuela, respectively), and by countries
with rainy and dry seasons as well. For PM1-24 h, this is
also related to the inverse relationship with daily precipi-
tation events. Results indicate that the increase in rainfall
can effectively reduce PMi pollution (Alvarez et al. 2022;
Carmona et al. 2020; Morantes et al. 2019; Deng et al.
2022; Li et al. 2022; Han et al. 2022; Ambade et al. 2021b;
Chen et al. 2020). The characteristic emissions of each
sector also influence the PM concentration; for example, the
industrial sector showed the highest PMi concentrations
where there are a large number of emission sources from the
chimneys of medium and small industries, and vehicular
traffic on fast roads that circumscribe it. It should be noted
that during the sampling approximately 87% of the unusual
events occurred there. On the other hand, the Student t-test
showed that the cement plant sector is associated with lower
PMi concentrations. This result seems to be independent of

the fact that high pollution events (atypical) were recorded.
However, in the rest of the sampling, comparatively low
concentrations were generally recorded, regardless of the
fraction size. Downtown is associated with higher PM
concentrations; however, the result is only significant for
PM2.5-24 h. The results above confirm that land-use plays a
significant role in pollutant concentrations (Owoade et al.
2021; Encalada-Malca et al. 2021; Chiquetto et al. 2020;
Zhou and Lin, 2019).

4.3 Multiple linear regression: PMi-24 h

A linear regression was performed with the variables that
were found to be significantly related to PMi-24 h in the bi-
variate analysis; the MLRs are reported in Tables10 and 11.
The model for PM1-24 h is able to explain 57% of the
variance (adjusted R2=0.537; p\0.000) from three IVs:
Rain, Unusual Events, and the Cement Plant. Model A
(Eq. 4) and model B (Eq. 5) are constructed from the
information in Table9:

Model A� PM1:standardised model½ � :
PM1 � 24h½ � ¼ �0:552 Rain½ � þ 0:438 Unusual Event½ �
�0:528 Cement Plant½ � þ¤

ð4Þ
Model B� PM1 : predictive model½ � :
PM1 � 24h½ � ¼ 15:193� 4:558 Rain½ �
þ 3:177 Unusual Event½ � � 4:635 Cement Plant½ �

ð5Þ

The model shows that the independent variable with the
highest weight when predicting PM1 concentrations is the
occurrence of a rain event on the sampling day (see β in

Table8 Student’s t-test for the influence of dichotomous variables on
PM1-24 h

Independent variables (IVs) Dependent variable (PV)
(PM1-24 h µg m−3)

Mean SD Mean
(IV=1)

Mean
(IV=0)

Rain 14.654 3.664 12.488 15.418

Unusual Event 16.075 13.104

Dry season 16.041 13.140

Industrial 17.869 13.519

Residential 14.704 14.635

Downtown 13.477 15.069

Cement Plan 12.146 15.350

SD, standard deviation

Bold: means that prove to be statistically different from each other

N=46

Table9 Student’s t-test for the influence of dichotomous variables on
PM2.5-24 h

Independent variables (IVs) Dependent variable (PV)

(PM2.5-24 h µg m−3)

Mean SD Mean Mean
(IV=1) (IV=0)

Rain 17.159 12.713 13.975 16.289

Unusual Event 17.419 13.989

Dry season 17.159 12.713

Industrial 19.431 13.567

Residential 16.512 14.887

Downtown 12.917 16.244

Cement Plan 11.596 16.156

SD, standard deviation

Bold: means that prove to be statistically different from each other

N=39
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Table10). It also indicates that, when anthropogenic events
occur, PM1 concentration increases, which agrees the results
of the bi-variate analysis. The cement plant sector produces
a reduction of 0.528 units, possibly due to comparatively
low PM concentrations measured in this sector. Overall, it
was found that the sectors (sector-specific emission sources)
together with emissions from unusual events combined with
local meteorological parameters influenced the PM1-24 h
concentrations.

Model B indicates that if all independent variables are
held constant, except for a single selected variable, a one-
unit increase in the selected variable gives an increase in
PM1-24 h equivalent to the variable’s attached Bcoefficient.
For Unusual Events, an increase in its value by one unit
implies an increase of 3.177 units of PM1-24 h (in µg m−3).
A similar analysis is applied for the other variables.

The model for PM2.5-24 h can explain 73% of the vari-
ance (adjusted R2=0.691; p\0.000) from three IVs: Dry
season, and the Industrial and Cement Plant sectors. Model
A (Eq. 6) and model B (Eq. 7) are constructed from the
information in Table9:

ModelA� PM2:5 : standardisedmodel½ � :
PM2:5 � 24h½ � ¼ 0:559 Dryseason½ �
þ 0:557 Industrial½ � � 0:247 CementPlant½ � þ ¤

ð6Þ

ModelB� PM2:5 : predictivemodel½ � :
PM2:5 � 24h½ � ¼ 11:158þ 5:328 Dryseason½ �
þ 5:851 Industrial½ � � 2:892 CementPlant½ �

ð7Þ

The most influential variable when predicting PM2.5

concentration is the dry season, since in Guayaquil it rarely
rains during this climatic season. The association between
the industrial sector and PM2.5-24 h indicates that emissions
in this sector add a value of 0.557 units to the value of PM,

possibly due to the concentration of medium and small
industries, and most traffic events occurred in the sur-
rounding area. The Cement Plant sector is associated with
lower PM concentrations. Overall, the sectors (sector-
specific emission sources) and long-term local meteoro-
logical parameters influenced the PM2.5-24 h concentra-
tions. The relationships described herein for the Model B
PM2.5 also explain those for Model B PM1.

Performance indicators (Tables10 and 11) were used to
measure accuracy and errors in the MLR models. Accura-
cies were measured by PA, R2 and IA indicators, and errors
by RMSE, MAE and NAE. Although there is no consensus
on the acceptability of the magnitude of the PIs, but accu-
racies tending to 1 and errors tending to 0 are desirable. The
values for PA, R2 and IA were higher than 0.5, which
indicates good accuracy of the MLR models, the PM2.5

model having a slightly higher accuracy. The values of
RMSE, MAE and NAE were low and close to zero, indi-
cating that the models had low errors, with the PM1 model
reporting lower errors. Our values are within those pre-
sented by UI-Saufie et al. (2012) for other MLR studies.

4.4 Exceedance’s analysis

4.4.1 Bivariate analysis

Tables12 and 13 show the results of applying the Student’s
t-test between EPMi-24 h and continuous IVs. The results
indicate that the maximum and minimum temperatures
influence the exceedances of the PM1 threshold (Table12).
The minimum and average temperatures, and the lower
wind speeds influence PM2.5 exceedances (Table13).

Tables14 and 15 show the results of applying the Pearson
correlation between EPMi-24 h and dichotomous IVs. The
Industrial sector is associated with exceeding the PM1

threshold. For PM2.5, the Industrial sector and the dry

Table10 Summary of the multivariate model for PM1

Independen variables B β t p-value

Constant value 15.193 24.169 0.000

Rainfall −4.558 −0.552 −5.158 0.000

Unusual Event 3.177 0.438 4.305 0.000

Cement Plant sector −4.635 −0.528 −4.939 0.000

Performance indicators

RMSE MAE NAE PA IA

3.887 0.742 0.051 0.909 0.479

Dependent variable=PM1-24 h; N=46 data; R2=0.568; R2adjusted=
0.537; F=18.391;

p-value\0.000

Assumptions checked: multicollinearity [VIF\10 and tolerance[0.2],
Q-Q plot and histogram showed normally distributed errors; residuals
plot had no tendencies

Table11 Summary of the multivariate model for PM2.5

Independen variables B β t p-value

Constant value 11.158 13.082 0.000

Dry Season 5.328 0.559 5.691 0.000

Industrial sector 5.851 0.557 5.387 0.000

Cement Plant sector −2.892 −0.247 −2.408 0.000

Performance indicators

RMSE MAE NAE PA IA

4.619 1.472 0.098 0.674 0.590

Dependent variable=PM2.5-24 h; N=39 data; R2=0.725; R2adjusted=
0.691; F=21.707; p\0.000

Assumptions checked: multicollinearity [VIF\10 and tolerance[0.2],
Q-Q plot and histogram showed normally distributed errors; residuals
plot had no tendencies
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season are associated with exceeding the threshold. For both
size fractions, the Cement Plant sector is linked to not
exceeding the threshold. The reasoning for this relationship
is explained by the single influencing factor analysis on PMi

concentrations (see Sect. 4.2).

4.4.2 Logistic regressions (RLog)

Table16 shows the classification tablefor the dependent
variable without the IVs for PM1-24 h. There is a 50%
probability of success when it is assumed that the PM1-24 h
threshold is always exceeded.

The LOGIT model (Table17) was developed with the IVs
that were shown to be significantly related to the PV by the
bivariate analysis. The positive sign of the coefficient Bat-
tached to the unusual event variable indicates that the
occurrence of anthropogenic events increases the probabil-
ity of exceeding the PM1-24 h threshold. This most likely to
be because of the emissions of fine PM associated with
them. Registering an episode of rain on the sampling day,
and sampling in the Cement plant sector, are associated with
maintaining PM1 concentrations below the threshold. The
results of the RLog were aligned with the relationships
obtained by the MLR: local short-term meteorology and the
sampling sector influenced PM1 concentrations. The math-
ematical expression of the LOGIT model is defined by
Eq. (6) with the values given by Table17.

The mathematical expression of the LOGIT model is as
follows:

pi ¼ 1

1þ e�0:540�2:932�Rainfallþ2:438�Unusual:event�23:427�Cement:Plantð Þ
ð8Þ

pi: Probability that PM1-24 h exceeds the threshold when
the values of each of the independent variables are equal to
their average value.

Table18 presents the classification tableof the LOGIT
model. It shows the observed group (rows) and the depen-
dent group (columns) with a sensitivity of 96% and a
specificity of 61%. These values show the model adequately
classifies positive responses slightly better than negative

responses. Validation using the indicators of false positives
and false negatives, shows 29% of false positives and 7% of
false negatives, which indicates a tendency to overestimate
results. Overall, the model presents a holistic success rate of
78%.

For PM2.5-24 h, Table19 shows there is a 69% proba-
bility of always exceeding the threshold. The LOGIT model
for exceeding the PM2.5 (Table20) threshold indicates that
the dry season and the Industrial sector are associated with
exceeding the PM2.5 threshold and the Cement Plant sector
is associated with concentrations below the threshold.
Overall, it can be said that long-term meteorological vari-
ables and the sampling sector influenced PM2.5 concentra-
tions during the sampling campaign. This model has an
82% holistic success rate and 1/5th of false predictions
(Table21). The mathematical expression of the EPM2.5-
24 h-LOGIT model is defined as follows:

pi ¼ 1

1þ e� �1:207ð Þþ2:915�dry:seasonþ1:993�industrial�3:143�Cement:Plantð Þ
ð9Þ

pi: Probability that PM2.5-24 h exceeds the threshold
when the values of each of the independent variables are
equal to their average value.

4.5 Air quality assessment, main findings
andenvision forfuture work.

To argue what constitutes good or bad air quality is a
complex task because many indicators can be used when
trying to define it. Some common indicators include or rely
on peoples’ perception of air quality, physiological-acute
responses (i.e. sensory irritation or odour) and visual/tan-
gible aspects of the air (i.e. SMOG). However, the most
common approach is one that is based on thresholds where
a contaminant’s concentrations are compared to corre-
sponding guidelines or referenced standards. The major
weaknesses of a threshold-based approaches when defining
air quality are, (i)that they provide insufficient information
to infer population health because being above or below a
threshold is the only criteria and, (ii) there is a lack of

Table12 Comparison of means
of the Student’s t-test between
dichotomous predicted variable
(PM1) and continuous
independent variables

Independent variables (IVs) Mean for IV when EPM1 Mean for IV when EPM1

Name Mean DS 1 0

T (oC) 26.3193 4.1499 25.2513 27.4359

T.Max (oC) 34.4941 3.2401 33.2005 35.7314

T.min (oC) 22.2626 4.7241 20.4215 24.0239

WS (m.s−1) 0.4821 0.3350 0.5663 0.4303

RH (%) 67.1972 13.5176 65.9217 68.5306

Significant mean differences in bold, p\0.05
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consensus on the magnitude of the threshold values among
recognized health agencies and governments. On the other
hand, the biggest strength of threshold-based approaches is
their usefulness for identifying the tendencies of contami-
nant concentrations, which is the reason why it is the most
commonly used approach by stakeholders in the decision

making process for assessing air quality. Moreover, efforts
have been made into defining the constituents of accept-
ability of air quality (Persily, 2015) and, although this is
proposed in an indoor environment context, the overall
message is easily applicable to other air quality contexts, as
acceptableair quality is air in which there are not likely to be

Table13 Comparison of means
of the Student’s t-test between
dichotomous predicted variable
(PM2.5) and continuous
independent variables

Independent variables (IVs) Mean for IV when EPM12.5 Mean for IV when EPM2.5

Name Mean DS 1 0

T (oC) 27.077 1.137 26.685 27.584

T.Max (oC) 0.604 0.467 0.738 0.438

T.min (oC) 69.810 11.437 67.609 72.844

WS (m.s−1) 34.890 2.839 34.738 35.074

RH (%) 22.892 1.300 22.304 23.653

Significant mean differences in bold, p\0.05

Table14 Pearson correlations
for EPM1-24 h – Rlog

[1] [2] [3] [4] [5] [6] [7] [8]

[1] Rain 1.00 0.073 −0.621** −0.127 0.098 0.324* −.313* −0.198

[2] Unusual Event 1.00 −0.045 0.470** −0.125 −0.323* −0.023 0.261

[3] Dry season 1.00 −0.026 −0.026 −0.026 0.083 0.087

[4] Industrial sector 1.00 −0.353* −0.353* −0.313* 0.495**

[5] Residential sector 1.00 −0.353* −0.313* 0.000

[6] Downtown sector 1.00 −0.313* 0.000

[7] Cement Plant sector 1.00 −0.527**

[8] PM1.24 h-ex15 1.00

** The correlation is significant at the 0.01 level (bilateral)

* The correlation is significant at the 0.05 level (bilateral)

Table15 Pearson correlations
for EPM2.5-24 h – Rlog

[1] [2] [3] [4] [5] [6] [7] [8]

[1] Rain 1.00 −0.157 −.638** 0.106 −0.216 −0.060 0.167 −0.223

[2] Unusual Event 1.00 0.227 0.125 0.282 −0.267 −0.115 0.227

[3] Dry season 1.00 −0.138 0.190 −0.086 0.062 0.374*

[4] Industrial sector 1.00 −0.318* −0.418** −0.318* 0.321*

[5] Residential sector 1.00 −0.339* −0.258 0.190

[6] Downtown sector 1.00 −0.339* −0.086

[7] Cement Plant sector 1.00 0−.450**

[8] PM2.5.24 h-ex15 1.00

** The correlation is significant at the 0.01 level (bilateral)

* The correlation is significant at the 0.05 level (bilateral)

Table16 Classification tablefor
predicted variable without
independent variables for PM1-
24 h

Observed [PM1.24 h-ex15] Predicted [PM1.24 h-ex15] Overall percentage

1 0

1 23 0 50%

0 23 0
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contaminants at concentrations that are known to pose a
health risk.

Given these arguments, and considering the PM2.5-24 h
concentrations exceeded the WHO thresholds (WHO 2021)
on 48% of days, we argue that the air quality in Guayaquil
should be classified as unacceptablebecause there are likely
to be contaminants at concentrations that are known to pose
a health risk. Currently, the national air quality standard of
Ecuador for ambient PM2.5-24 h is 50 ug.m−3 and so the
PM2.5-24 h concentrations found her are below this mag-
nitude. However, this threshold could be unacceptableusing
Persily’s definition of acceptableair quality. Guayaquil is not
currently described as one of the most polluted cities in
Latin America and this study aims to provide cautionary
tale that may help the city to avoid its PM pollution levels
reaching those of cities in neighbouring countries.

The results of the single factor analysis showed that
ambient air temperature, relative humidity, and wind speed
influence the PMi-1 h-24 h concentration at both temporal
scales. Overall, the influence of meteorological parameters

on PMi includes a positive correlation with hourly temper-
ature (atmospheric stability at hours of lower surface tem-
perature lead to higher PMi concentrations, throughout the
day), a negative correlation with 24 h average temperature
(daily temperature increase atmospheric turbulence accel-
erating the dispersion of pollutants) and relative humidity
(high RH promotes the process of particle scavenging from
the atmosphere) and both positive and negative correlations
with hourly and 24 h wind speed (when wind speeds are
low, PMi is not dispersed, moderate increase in wind speed
is conducive to the dispersion and dilution of the contami-
nants, and high wind speeds could leading to the transport
of PM from areas surrounding the city). The spatiotemporal
variations and connections of single meteorological factors
on PMi concentrations agreed with the work of others that
applied more complex statistical techniques. Nevertheless, a
limitation is that the techniques used in this study could
only identify one directional relationships showing only one
part of the picture, because in cases of polynomial rela-
tionships only the strongest relation was identified.

Table17 LOGIT model for PM1-24 h

Variables B Wald Test p-value expB

Constant value 0.540 0.782 0.350 1.713

Rainfall −2.932 6.511 0.011 0.053

Unusual Event 2.438 4.615 0.032 11.450

Cement Plant sector −23.427 0.000 0.998 0

Predicted Variable [EPM1.24 h]; N=46; ROA Chi-square statistical
efficiency: 30.745; gl 3; p\0.000; -2 Log Likelihood: 33.024; R2 of
Nagelkerke: 0.650

Table18 LOGIT model
Validation for EPM1-24 h

Observed [EPM1-24 h] Predicted [EPM1-24 h] Correct classification

1 0

1 22 1 96%

0 9 14 61%

Total 31 15

Holistic success rate 78%

False positives 9 of 31 21.28%

False negatives 1 of 15 23.68%

The cutoff value was 0.500

Holistic success rate=[22+14] / [46]=78%

Table19 Classification tablefor
predicted variable without
independent variables for PM2.5-
24 h

Observed [EPM2.5-24 h] Predicted [EPM2.5-24 h] Overall percentage

1 0

1 12 0 69%

0 27 0

Table20 LOGIT model for EPM2.5-24 h

Variables B Wald Test p-value expB

Constantvalue −1.207 2.259 0.133 0.299

Dry.season 2.915 7.532 0.006 18.449

Industrial sector 1.993 3.139 0.076 7.338

Cement.Plant sector −3.143 5.573 0.018 0.043

Predicted Variable [EPM2.5-24 h]; N=39; ROA Chi-square statistical
efficiency: 20.602; gl 3;

p\0.000; -2 Log Likelihood: 32.820; R2 of Nagelkerke: 0.550
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The linear regression model and the exceedance model
for PM1 show the variables that are most influential on this
contaminant are anthropogenic events (emissions from
traffic jams and vegetation/forest fires), and rainfall events
(due to their cleaning effect). For PM2.5, the most influential
variables are emissions from the industrial sector (land use
related factor) and the dry season (associated with the lack
of rain). All the models identified the Cement Plant sector
with a negative sign (land use related factor), possibly
associated with the sector’s flat orography and the winds
that disperse contaminants. The models indicate that pre-
cipitation has a cleaning effect on both size fractions;
however, we found that the precipitation effect is significant
for PM1 on a daily scale, whereas it is influential at the
seasonal scale for PM2.5. The exceedance models were
designed in agreement with the WHO (2021) monitoring air
quality guidelines and to be used for making policy deci-
sions. The models show that adequate air quality (below
WHO thresholds) is highly dependent on sector emissions
(land use) and precipitation patterns.

The models presented here provide information on air
quality that is not given by local government monitoring,
and also plays a fundamental role in defining the potential
factors that contribute to PM pollution, and the current air
quality acceptability. It presents a much needed update to
information on Guayaquil's air quality.

One limitation in our study is that the sampling of PM2.5

and PM1 was not simultaneous, because of equipment
availability. This limits our understanding of the behaviour
of each fraction related to the other. Another limitation is
the relatively short sampling periods that resulted in a low
number of samples taken in each of the four locations.
However, the sampling times and periods include different
seasonal variations and show weekday to weekend varia-
tions. Moreover, the results indicate that, even for this rel-
atively low number of samples, different emission sources
of PM were accounted for. Nevertheless, it is recommended
to monitor PM throughout the year, at least in these four
sectors of the city.

The current work results could be used for: (i)designing
an adequate and complete monitoring system; (ii) improv-
ing local regulations with more appropriate thresholds for
acceptablePMi concentrations that meet a definition of
acceptability; (iii) focus on mitigation by sector (location)
by setting targets for decreasing emissions; (iv) developing
adequate adaptation policies; and (v)designing an effective
early warning system (EWS) to cope with this environ-
mental hazard.

5 Conclusions

We applied bi-variate correlation techniques and performed
multiple linear and logistic regression models to extend the
study on the spatio-temporal evolution of PM1 and PM2.5
concentrations in Guayaquil city, Ecuador. The results are
equivalent to similar studies made in other regions that
using more complex statistical techniques.

The results of the spatio-temporal study question the air
quality in the city because the exceedances of the PM2.5-
24 h of World Health Organisation thresholds occurred on
48% of measured days. The industrial sector is the most
compromised, by its own industrial activity, and because it
is surrounded by fast roads where unusual anthropogenic
events tend to happen.

The multiple linear regression model for PM1-24 h
showed that rain (due to its cleaning effects) and the being
located in the cement plant sector (due to its flat orography)
are factors that improve air quality (βPM1-rainfall=−0.552, p\
0.00; βPM1-cement_plant=−0.528, p\0.00, respectively) while
unusual events (emissions from traffic jams and vegeta-
tion/forest fires) deteriorate air quality (βPM1-unusual_events=
0.438, p\0.00). Conversely, a multiple linear regression
model for PM2.5-24 h shows that the dry season (because of
the lack of rain) and the industrial sector (due to its strong
industrial activities) deteriorate air quality (βPM2.5-dry_season

=0.559, p\0.00; βPM2.5-industial=−0.557, p\0.00, respec-
tively) while the cement plant sector promotes lower PM

Table21 LOGIT model
Validation for EPM2.5-24 h

Observed [EPM2.5-24 h] Predicted [EPM2.5-24 h] Correct classification

1 0

1 19 3 86%

0 4 13 76%

Total 23 16

Holistic success rate 82%

False positives 17% 17%

False negatives 19% 19%

The cutoff value was 0.500

Holistic success rate=[19+13] / [39]=82%
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concentrations (βPM2.5-cement_plant=−0.247, p\0.00). The
logistic regression models reflect the same results as the
linear regression models, indicating that those are the same
variables that help to maintain concentrations below the
WHO’s daily thresholds or to promote its exceedance (PMi-
24 h[15 µg m−3).

The influence of meteorological variables on hourly
concentrations was evidenced through a bivariate cross-
correlation function analysis. This analysis showed that in
general, a higher hourly temperature (Lag=4 h, CC[TPM1]-1 h

Max=0.680, p\0.00) and lower relative humidity (Lag=
5 h, CC[RHPM1]-1 h Max=−0.693, p\0.00) were associated
with higher PM1-1 h concentrations, while the effect of
hourly wind speed is variable, both promoting higher PM
(Lag=6 h, CC[WSPM1]-1 h Max=0.254 p\0.00) and lower
PM (Lag=10 h, CC[WSPM1]-1 h Max=−0.269, p\0.00).
Similarly, higher hourly temperature (Lag=6 h, CC[TPM2.5]-

1 h Max=0.673, p\0.00) and lower relative humidity (Lag
=6 h, CC[RHPM2.5]-1 h Max=−0.687, p\0.00) were associ-
ated with higher PM2.5-1 h concentrations, while the effect
of hourly wind speed is variable, both promoting higher PM
(Lag=0 h, CC[WSPM2.5]-1 h Max=0.495 p\0.00) and lower
PM (Lag=10 h, CC[WSPM2.5]-1 h Max=−0.360, p\0.00).
The influence of meteorological variables on daily con-
centrations was evidenced through a bivariate Pearson
correlation analysis. It was observed that higher PM1-24 h
and PM2.5-24 h are associated with lower temperature (rT-
PM1=−0.393, p=0.01; rTPM2.5=−0.534, p=0.01, respec-
tively) and lower relative humidity (rRHPM1=−0.344, p=
0.05; rRHPM2.5=−0.321, p=0.05, respectively), while higher
wind speeds appear to increase PM2.5-24 h (rWSPM2.5=
−0.362, p=0.05). Overall, the bi-variate analysis showed
that temperature, relative humidity, and wind speed are
significantly linked to PM1 and PM2.5 concentrations. Our
results show that hourly and daily air temperatures, relative
humidity, and wind speed have a complex nonlinear rela-
tionship with PM concentrations in the city of Guayaquil.

The results shows the need to improve the air quality
monitoring system in Guayaquil because there is currently a
scarcity of updated information and no particulate matter
monitoring. Public policies and interventions should be
aimed at regulating land use together with the constant
monitoring of emission sources, both those that are regular
and unusual.
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