Enhancing Cricket Performance Analysis with Human Pose Estimation and Machine Learning

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Cricket has a massive global following and is ranked as the second most popular sport globally, with an estimated 2.5 billion fans. Batting requires quick decisions based on ball speed, trajectory, fielder positions, etc. Recently, computer vision and machine learning techniques have gained attention as potential tools to predict cricket strokes played by batters. This study presents a cutting-edge approach to predicting batsman strokes using computer vision and machine learning. The study analyzes eight strokes: pull, cut, cover drive, straight drive, backfoot punch, on drive, flick, and sweep. The study uses the MediaPipe library to extract features from videos and several machine learning and deep learning algorithms, including random forest (RF), support vector machine, k-nearest neighbors, decision tree, linear regression, and long short-term memory to predict the strokes. The study achieves an outstanding accuracy of 99.77% using the RF algorithm, outperforming the other algorithms used in the study. The k-fold validation of the RF model is 95.0% with a standard deviation of 0.07, highlighting the potential of computer vision and machine learning techniques for predicting batsman strokes in cricket. The study’s results could help improve coaching techniques and enhance batsmen’s performance in cricket, ultimately improving the game’s overall quality. metadata Siddiqui, Hafeez Ur Rehman and Younas, Faizan and Rustam, Furqan and Soriano Flores, Emmanuel and Brito Ballester, Julién and Diez, Isabel de la Torre and Dudley, Sandra and Ashraf, Imran mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, emmanuel.soriano@uneatlantico.es, julien.brito@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED (2023) Enhancing Cricket Performance Analysis with Human Pose Estimation and Machine Learning. Sensors, 23 (15). p. 6839. ISSN 1424-8220

[img] Text
sensors-23-06839-v2.pdf
Available under License Creative Commons Attribution.

Download (23MB)

Abstract

Cricket has a massive global following and is ranked as the second most popular sport globally, with an estimated 2.5 billion fans. Batting requires quick decisions based on ball speed, trajectory, fielder positions, etc. Recently, computer vision and machine learning techniques have gained attention as potential tools to predict cricket strokes played by batters. This study presents a cutting-edge approach to predicting batsman strokes using computer vision and machine learning. The study analyzes eight strokes: pull, cut, cover drive, straight drive, backfoot punch, on drive, flick, and sweep. The study uses the MediaPipe library to extract features from videos and several machine learning and deep learning algorithms, including random forest (RF), support vector machine, k-nearest neighbors, decision tree, linear regression, and long short-term memory to predict the strokes. The study achieves an outstanding accuracy of 99.77% using the RF algorithm, outperforming the other algorithms used in the study. The k-fold validation of the RF model is 95.0% with a standard deviation of 0.07, highlighting the potential of computer vision and machine learning techniques for predicting batsman strokes in cricket. The study’s results could help improve coaching techniques and enhance batsmen’s performance in cricket, ultimately improving the game’s overall quality.

Item Type: Article
Uncontrolled Keywords: batsman stroke prediction; computer vision; machine learning; random forest
Subjects: Subjects > Engineering
Divisions: Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Date Deposited: 05 Sep 2023 23:30
Last Modified: 05 Sep 2023 23:30
URI: https://repositorio.unini.edu.mx/id/eprint/8653

Actions (login required)

View Item View Item

<a class="ep_document_link" href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Influence of E-learning training on the acquisition of competences in basketball coaches in Cantabria

The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.

Producción Científica

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,

Alemany Iturriaga

<a class="ep_document_link" href="/14206/1/mnm_2024_17-3_mnm-17-3-mnm240038_mnm-17-mnm240038.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Exploring body composition and somatotype profiles among youth professional soccer players

OBJECTIVE: This study aimed to analyze the body composition and somatotype of professional soccer players, investigating variations across categories and playing positions. METHODS: An observational, cross-sectional, and analytical study was conducted with 51 male professional soccer players in the U-19 and U-20 categories. Data about sex, age, height, and weight were collected between March and May 2023. Body composition analysis utilized the ISAK protocol for the restricted profile, while somatotype categorization employed the Heath and Carter formula. Statistical analysis was performed using IBM SPSS Statistics V.26, which involved the application of Mann-Whitney and Kruskal-Wallis tests to discern differences in body composition variables and proportionality based on categories and playing positions. The Dunn test further identified specific positions exhibiting significant differences. RESULTS: The study encompassed 51 players, highlighting meaningful differences in body composition. The average body mass in kg was 75.8 (±6.9) for U-20 players and 70.5 (±6.1) for U-19 players. The somatotype values were 2.6-4.6-2.3 for U-20 players and 2.5-4.3-2.8 for U-19 players, with a predominance of muscle mass in all categories, characterizing them as balanced mesomorphs. CONCLUSIONS: Body composition and somatotype findings underscore distinctions in body mass across categories and playing positions, with notably higher body mass and muscle mass predominance in elevated categories. However, the prevailing skeletal muscle development establishes a significant semblance with the recognized somatotype standard for soccer.

Producción Científica

Raynier Zambrano-Villacres mail , Evelyn Frias-Toral mail , Emily Maldonado-Ponce mail , Carlos Poveda-Loor mail , Paola Leal mail , Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Alice Leonardi mail , Bruno Trovato mail , Federico Roggio mail , Alessandro Castorina mail , Xu Wenxin mail , Giuseppe Musumeci mail ,

Zambrano-Villacres

<a href="/14205/1/applsci-14-06502-v2.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Can the Functional Physical Fitness of Older People with Overweight or Obesity Be Improved through a Multicomponent Physical Exercise Program? A Chilean Population Study

The aim of the present study was to understand the effect of a multicomponent physical exercise program on the functional physical fitness of older people with overweight or obesity in Chile, and whether these effects were similar in women and men. For this purpose, a quasi-experimental study was designed with a control group to evaluate the functional physical fitness through the Senior Fitness Test battery for older people [SFT; aerobic endurance (AE), lower body strength (LBS), upper body strength (UBS), upper body flexibility (UBF), lower body flexibility (LBF), dynamic balance (DB), and hand pressure strength right (HPSR) and left (HPSL)]. Seventy older people with overweight or obesity aged between 60 and 86 years participated (M = 73.15; SD = 5.94), and were randomized into a control group (CG, n = 35) and an experimental group (EG, n = 35). The results after the intervention between the CG and EG indicated that there were statistically significant differences in the AE (p = 0.036), in the LBS (p = 0.031), and in the LBF (p = 0.017), which did not exist before the intervention (p > 0.050), except in the HPSR (0.029). Regarding the results of the EG (pre vs. post-intervention), statistically significant differences were found in all of the variables studied: AE (p < 0.001), LBS (p < 0.001), UBS (p < 0.001), LBF (p = 0.017), UBF (p < 0.001), DB (p = 0.002), HPSR (p < 0.001), and HPSL (p = 0.012) in both men and women. These improvements did not exist in any of the CG variables (p > 0.05). Based on the results obtained, we can say that a multicomponent physical exercise program applied for 6 months in older people with overweight or obesity produces improvements in functional physical fitness regardless of sex, except in lower body flexibility and left-hand dynamometry.

Producción Científica

Yazmina Pleticosic-Ramírez mail yazmina.pleticosic@doctorado.unini.edu.mx, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Marcos Mecías-Calvo mail marcos.mecias@uneatlantico.es, Rubén Navarro-Patón mail ,

Pleticosic-Ramírez

<a class="ep_document_link" href="/12747/1/sensors-24-03754%20%281%29.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Ultra-Wide Band Radar Empowered Driver Drowsiness Detection with Convolutional Spatial Feature Engineering and Artificial Intelligence

Driving while drowsy poses significant risks, including reduced cognitive function and the potential for accidents, which can lead to severe consequences such as trauma, economic losses, injuries, or death. The use of artificial intelligence can enable effective detection of driver drowsiness, helping to prevent accidents and enhance driver performance. This research aims to address the crucial need for real-time and accurate drowsiness detection to mitigate the impact of fatigue-related accidents. Leveraging ultra-wideband radar data collected over five minutes, the dataset was segmented into one-minute chunks and transformed into grayscale images. Spatial features are retrieved from the images using a two-dimensional Convolutional Neural Network. Following that, these features were used to train and test multiple machine learning classifiers. The ensemble classifier RF-XGB-SVM, which combines Random Forest, XGBoost, and Support Vector Machine using a hard voting criterion, performed admirably with an accuracy of 96.6%. Additionally, the proposed approach was validated with a robust k-fold score of 97% and a standard deviation of 0.018, demonstrating significant results. The dataset is augmented using Generative Adversarial Networks, resulting in improved accuracies for all models. Among them, the RF-XGB-SVM model outperformed the rest with an accuracy score of 99.58%.

Producción Científica

Hafeez Ur Rehman Siddiqui mail , Ambreen Akmal mail , Muhammad Iqbal mail , Adil Ali Saleem mail , Muhammad Amjad Raza mail , Kainat Zafar mail , Aqsa Zaib mail , Sandra Dudley mail , Jon Arambarri mail jon.arambarri@uneatlantico.es, Ángel Gabriel Kuc Castilla mail , Furqan Rustam mail ,

Siddiqui

<a class="ep_document_link" href="/12749/1/fnut-11-1083759.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

From by-products to new application opportunities: the enhancement of the leaves deriving from the fruit plants for new potential healthy products

In the last decades, the world population and demand for any kind of product have grown exponentially. The rhythm of production to satisfy the request of the population has become unsustainable and the concept of the linear economy, introduced after the Industrial Revolution, has been replaced by a new economic approach, the circular economy. In this new economic model, the concept of “the end of life” is substituted by the concept of restoration, providing a new life to many industrial wastes. Leaves are a by-product of several agricultural cultivations. In recent years, the scientific interest regarding leaf biochemical composition grew, recording that plant leaves may be considered an alternative source of bioactive substances. Plant leaves’ main bioactive compounds are similar to those in fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. Bioactive compounds can positively influence human health; in fact, it is no coincidence that the leaves were used by our ancestors as a natural remedy for various pathological conditions. Therefore, leaves can be exploited to manufacture many products in food (e.g., being incorporated in food formulations as natural antioxidants, or used to create edible coatings or films for food packaging), cosmetic and pharmaceutical industries (e.g., promising ingredients in anti-aging cosmetics such as oils, serums, dermatological creams, bath gels, and other products). This review focuses on the leaves’ main bioactive compounds and their beneficial health effects, indicating their applications until today to enhance them as a harvesting by-product and highlight their possible reuse for new potential healthy products.

Producción Científica

Lucia Regolo mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Yasmany Armas Diaz mail , Bruno Mezzetti mail , Maria Elexpuru Zabaleta mail maria.elexpuru@uneatlantico.es, Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Kilian Tutusaus mail kilian.tutusaus@uneatlantico.es, Luca Mazzoni mail ,

Regolo