Programa de Ergonomía para prevenir lesiones músculo-esqueléticas en el personal en Metalúrgica Met-Mex Peñoles S.A. de C.V., Unidad Bermejillo en Bermejillo, Durango, México

Tesis Materias > Ingeniería Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster Cerrado Español La accidentabilidad derivada de las actividades que requieren la intervención manual de los trabajadores, las condiciones de las instalaciones y la falta de una atención apropiada por parte de la Gerencia de operaciones de Metalúrgica Met-Mex Peñoles S.A. de C.V., Unidad Bermejillo requieren una atención desde una perspectiva diferente. Aunado a los esfuerzos de reducir la accidentabilidad por medio de metodologías o herramientas, tales como STOP (Seguridad en el Trabajo mediante la Observación Preventiva), Disciplina Operativa, Reglas de seguridad de cero tolerancia, entre otras, es necesario verificar desde la fuente posible de generación de los accidentes. No basta con buscar la conducta de los trabajadores, no basta con buscar medidas disciplinarias al no cumplir los procedimientos y reglas operativas. La fatiga generada por los movimientos repetitivos, sobreesfuerzos y posturas incómodas propician la pérdida de control y precisión de los movimientos al realizar as actividades. Aunado a esta pérdida de control, los equipos inadecuados, las herramientas y el peso de estas pueden desencadenar en golpes, heridas, pérdida del equilibrio, contacto con temperaturas extremas, bordes, filos, etc. La ergonomía en el ámbito laboral industrial es la propuesta de análisis para la determinación de las condiciones de la estación de trabajo, las posturas incómodas y los sobreesfuerzos y establecer un programa de ergonomía para prevenir accidentes, lesiones y enfermedades profesionales. Iniciar mediante un diagnóstico, desarrollar los estudios, determinar el nivel de riesgo ergonómico mediante la evaluación de extremidades superiores y la realización de propuestas de mejora de la estación de trabajo ayudó a establecer condiciones laborales aceptables de tal manera que el riesgo ergonómico se situó en niveles aceptables. metadata Córdova Méndez, Mario mail mario_cordova@penoles.com.mx (2022) Programa de Ergonomía para prevenir lesiones músculo-esqueléticas en el personal en Metalúrgica Met-Mex Peñoles S.A. de C.V., Unidad Bermejillo en Bermejillo, Durango, México. Masters thesis, Universidad Internacional Iberoamericana México.

Texto completo no disponible.

Resumen

La accidentabilidad derivada de las actividades que requieren la intervención manual de los trabajadores, las condiciones de las instalaciones y la falta de una atención apropiada por parte de la Gerencia de operaciones de Metalúrgica Met-Mex Peñoles S.A. de C.V., Unidad Bermejillo requieren una atención desde una perspectiva diferente. Aunado a los esfuerzos de reducir la accidentabilidad por medio de metodologías o herramientas, tales como STOP (Seguridad en el Trabajo mediante la Observación Preventiva), Disciplina Operativa, Reglas de seguridad de cero tolerancia, entre otras, es necesario verificar desde la fuente posible de generación de los accidentes. No basta con buscar la conducta de los trabajadores, no basta con buscar medidas disciplinarias al no cumplir los procedimientos y reglas operativas. La fatiga generada por los movimientos repetitivos, sobreesfuerzos y posturas incómodas propician la pérdida de control y precisión de los movimientos al realizar as actividades. Aunado a esta pérdida de control, los equipos inadecuados, las herramientas y el peso de estas pueden desencadenar en golpes, heridas, pérdida del equilibrio, contacto con temperaturas extremas, bordes, filos, etc. La ergonomía en el ámbito laboral industrial es la propuesta de análisis para la determinación de las condiciones de la estación de trabajo, las posturas incómodas y los sobreesfuerzos y establecer un programa de ergonomía para prevenir accidentes, lesiones y enfermedades profesionales. Iniciar mediante un diagnóstico, desarrollar los estudios, determinar el nivel de riesgo ergonómico mediante la evaluación de extremidades superiores y la realización de propuestas de mejora de la estación de trabajo ayudó a establecer condiciones laborales aceptables de tal manera que el riesgo ergonómico se situó en niveles aceptables.

Tipo de Documento: Tesis (Masters)
Palabras Clave: Evaluación ergonómica, Reducción de accidentes, manipulación de cargas, lumbalgias, México
Clasificación temática: Materias > Ingeniería
Divisiones: Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Depositado: 31 Oct 2023 23:30
Ultima Modificación: 31 Oct 2023 23:30
URI: https://repositorio.unini.edu.mx/id/eprint/1400

Acciones (logins necesarios)

Ver Objeto Ver Objeto

<a class="ep_document_link" href="/17849/1/1-s2.0-S2590005625001043-main.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Ultra Wideband radar-based gait analysis for gender classification using artificial intelligence

Gender classification plays a vital role in various applications, particularly in security and healthcare. While several biometric methods such as facial recognition, voice analysis, activity monitoring, and gait recognition are commonly used, their accuracy and reliability often suffer due to challenges like body part occlusion, high computational costs, and recognition errors. This study investigates gender classification using gait data captured by Ultra-Wideband radar, offering a non-intrusive and occlusion-resilient alternative to traditional biometric methods. A dataset comprising 163 participants was collected, and the radar signals underwent preprocessing, including clutter suppression and peak detection, to isolate meaningful gait cycles. Spectral features extracted from these cycles were transformed using a novel integration of Feedforward Artificial Neural Networks and Random Forests , enhancing discriminative power. Among the models evaluated, the Random Forest classifier demonstrated superior performance, achieving 94.68% accuracy and a cross-validation score of 0.93. The study highlights the effectiveness of Ultra-wideband radar and the proposed transformation framework in advancing robust gender classification.

Producción Científica

Adil Ali Saleem mail , Hafeez Ur Rehman Siddiqui mail , Muhammad Amjad Raza mail , Sandra Dudley mail , Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Isabel de la Torre Díez mail ,

Saleem

<a href="/17856/1/fpubh-13-1654645.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Children's and adolescents' lifestyle factors associated with physical activity in five Mediterranean countries: the DELICIOUS project

Background: Physical activity in children and adolescents represents one of the most important lifestyle factors to determine current and future health. Aim: The aim of the study is to assess the lifestyle and dietary factors linked to physical activity in younger populations across five countries in the Mediterranean region. Design: A total of 2,011 parents of children and adolescents (age range 6–17 years) participating to a preliminary survey of the DELICIOUS project were investigated to determine children's adequate physical activity level (identified using the short form of the international physical activity questionnaire) as well as diet quality parameters [measured as Youth-Healthy Eating Index (Y-HEI)] and eating and lifestyle factors (i.e., meal habits, sleep duration, screen time, etc.). Logistic regression analyses were performed to assess the odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between variables of interest. Results: Younger children of younger parents currently working had higher rates and probability to have adequate physical activity. Multivariate analysis showed that children and adolescents who had breakfast (OR = 1.88, 95% CI: 1.38, 2.56) and often ate with their family (OR = 1.80, 95% CI: 0.90, 3.61) were more likely to have an adequate level of physical activity. Children and adolescents who reported a sleep duration (8–10 h) closest to the recommended one were significantly more likely to achieve adequate levels of physical activity (OR = 1.88, 95% CI: 1.38, 2.56). Conversely, those with more than 4 h of daily screen time were less likely to engage in adequate physical activity (OR = 0.77, 95% CI: 0.54, 1.10). Furthermore, children and adolescents in the highest tertile of YEHI scores showed a 60% greater likelihood of engaging in adequate physical activity (OR = 1.60, 95% CI: 1.27, 2.01). Conclusion: These results emphasize the importance of promoting healthy diet and lifestyle habits, including structured and high quality shared meals, sufficient sleep, and screen time moderation, as key strategies to support active behaviors in younger populations. Future interventions should focus on reinforcing these behaviors through parental guidance and community-based initiatives to foster lifelong healthy habits.

Producción Científica

Alice Rosi mail , Francesca Scazzina mail , Maria Antonieta Touriz Bonifaz mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Achraf Ammar mail , Khaled Trabelsi mail , Osama Abdelkarim mail , Mohamed Aly mail , Evelyn Frias-Toral mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Lorenzo Monasta mail , Nunzia Decembrino mail , Ana Mata mail , Adrián Chacón mail , Pablo Busó mail , Giuseppe Grosso mail ,

Rosi

<a href="/17844/1/frai-1-1572645.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

A systematic review of deep learning methods for community detection in social networks

Introduction: The rapid expansion of generated data through social networks has introduced significant challenges, which underscores the need for advanced methods to analyze and interpret these complex systems. Deep learning has emerged as an effective approach, offering robust capabilities to process large datasets, and uncover intricate relationships and patterns. Methods: In this systematic literature review, we explore research conducted over the past decade, focusing on the use of deep learning techniques for community detection in social networks. A total of 19 studies were carefully selected from reputable databases, including the ACM Library, Springer Link, Scopus, Science Direct, and IEEE Xplore. This review investigates the employed methodologies, evaluates their effectiveness, and discusses the challenges identified in these works. Results: Our review shows that models like graph neural networks (GNNs), autoencoders, and convolutional neural networks (CNNs) are some of the most commonly used approaches for community detection. It also examines the variety of social networks, datasets, evaluation metrics, and employed frameworks in these studies. Discussion: However, the analysis highlights several challenges, such as scalability, understanding how the models work (interpretability), and the need for solutions that can adapt to different types of networks. These issues stand out as important areas that need further attention and deeper research. This review provides meaningful insights for researchers working in social network analysis. It offers a detailed summary of recent developments, showcases the most impactful deep learning methods, and identifies key challenges that remain to be explored.

Producción Científica

Mohamed El-Moussaoui mail , Mohamed Hanine mail , Ali Kartit mail , Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Helena Garay mail helena.garay@uneatlantico.es, Isabel de la Torre Díez mail ,

El-Moussaoui

<a href="/17853/1/fmed-12-1600855.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Transformer-based ECG classification for early detection of cardiac arrhythmias

Electrocardiogram (ECG) classification plays a critical role in early detection and trocardiogram (ECG) classification plays a critical role in early detection and monitoring cardiovascular diseases. This study presents a Transformer-based deep learning framework for automated ECG classification, integrating advanced preprocessing, feature selection, and dimensionality reduction techniques to improve model performance. The pipeline begins with signal preprocessing, where raw ECG data are denoised, normalized, and relabeled for compatibility with attention-based architectures. Principal component analysis (PCA), correlation analysis, and feature engineering is applied to retain the most informative features. To assess the discriminative quality of the selected features, t-distributed stochastic neighbor embedding (t-SNE) is used for visualization, revealing clear class separability in the transformed feature space. The refined dataset is then input to a Transformer- based model trained with optimized loss functions, regularization strategies, and hyperparameter tuning. The proposed model demonstrates strong performance on the MIT-BIH benchmark dataset, showing results consistent with or exceeding prior studies. However, due to differences in datasets and evaluation protocols, these comparisons are indicative rather than conclusive. The model effectively classifies ECG signals into categories such as Normal, atrial premature contraction (APC), ventricular premature contraction (VPC), and Fusion beats. These results underscore the effectiveness of Transformer-based models in biomedical signal processing and suggest potential for scalable, automated ECG diagnostics. However, deployment in real-time or resource-constrained settings will require further optimization and validation.

Artículos y libros

Sunnia Ikram mail , Amna Ikram mail , Harvinder Singh mail , Malik Daler Ali Awan mail , Sajid Naveed mail , Isabel De la Torre Díez mail , Henry Fabian Gongora mail henry.gongora@uneatlantico.es, Thania Chio Montero mail ,

Ikram

<a class="ep_document_link" href="/17831/1/s43856-025-01020-4.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Association between blood cortisol levels and numerical rating scale in prehospital pain assessment

Background Nowadays, there is no correlation between levels of cortisol and pain in the prehospital setting. The aim of this work was to determine the ability of prehospital cortisol levels to correlate to pain. Cortisol levels were compared with those of the numerical rating scale (NRS). Methods This is a prospective observational study looking at adult patients with acute disease managed by Emergency Medical Services (EMS) and transferred to the emergency department of two tertiary care hospitals. Epidemiological variables, vital signs, and prehospital blood analysis data were collected. A total of 1516 patients were included, the median age was 67 years (IQR: 51–79; range: 18–103) with 42.7% of females. The primary outcome was pain evaluation by NRS, which was categorized as pain-free (0 points), mild (1–3), moderate (4–6), or severe (≥7). Analysis of variance, correlation, and classification capacity in the form area under the curve of the receiver operating characteristic (AUC) curve were used to prospectively evaluate the association of cortisol with NRS. Results The median NRS and cortisol level are 1 point (IQR: 0–4) and 282 nmol/L (IQR: 143–433). There are 584 pain-free patients (38.5%), 525 mild (34.6%), 244 moderate (16.1%), and 163 severe pain (10.8%). Cortisol levels in each NRS category result in p < 0.001. The correlation coefficient between the cortisol level and NRS is 0.87 (p < 0.001). The AUC of cortisol to classify patients into each NRS category is 0.882 (95% CI: 0.853–0.910), 0.496 (95% CI: 0.446–0.545), 0.837 (95% CI: 0.803–0.872), and 0.981 (95% CI: 0.970–0.991) for the pain-free, mild, moderate, and severe categories, respectively. Conclusions Cortisol levels show similar pain evaluation as NRS, with high-correlation for NRS pain categories, except for mild-pain. Therefore, cortisol evaluation via the EMS could provide information regarding pain status.

Producción Científica

Raúl López-Izquierdo mail , Elisa A. Ingelmo-Astorga mail , Carlos del Pozo Vegas mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Ancor Sanz-García mail , Francisco Martín-Rodríguez mail ,

López-Izquierdo