Adherence to the pyramid of the Mediterranean diet (2010), non-communicable diseases and lifestyle in online postgraduate Spanish students in the food area
Article
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Cerrado
Inglés
BACKGROUND:In Spain, there are several studies published on the relationship between eating habits and lifestyle among university students; but only a few of them are focused on online postgraduate students. OBJECTIVE:Herein we aimed to evaluate the degree of adherence to the Mediterranean diet pyramid (2010 edition), non-communicable diseases (NCDs), and lifestyle in online postgraduate students aged 20–65 years belonging to the food area of the Fundación Universitaria Iberoamericana (FUNIBER). METHODS:We performed a descriptive cross-sectional study including 100 online post-graduate students aged 20–65 years who were recruited by an accidental non-probabilistic sampling method consisting of a questionnaire on their sociodemographic characteristics, NCDs, lifestyle, and a 3-day food intake record (3-d). RESULTS:The profile of the students was 74% women, with a mean age of 36.6 (±10.5) years and body mass index (BMI) of 22.6 kg / m2 (±3.3). 71% of the volunteers presented normal weight, while 20% were overweight. Indeed, only a low percentage of the volunteers presented hypertension (1%), cardiovascular disease (0%), diabetes mellitus 1 (2%), diabetes mellitus 2 (3%), hypercholesterolemia (9%), and hyperuricemia (2%). Concerning lifestyle, (77%) of students were non-smokers, (78%) consumed beverages with caffeine, (51%) did not consume alcoholic beverages, and nearly all of them (84%) frequently (3 times /week) practiced physical activity. 68% of the recruited students exhibited adherence to “Medium diet quality diet (4–7)” followed by (26%) with a “Poor diet quality (<3)” and “Optimal diet quality” (6%). CONCLUSIONS:Spanish postgraduate students of the nutritional area, have good health and a healthy lifestyle but are moving away from the MD model, should be established campaigns for the improvement of eating habits of the postgraduate university population.
metadata
Elío Pascual, Iñaki and Jarrin, Sandra and Elexpuru Zabaleta, Maria and Crespo-Álvarez, Jorge and Dominguez Azpíroz, Irma and Tutusaus, Kilian and Ruiz Salces, Roberto and Calderón Iglesias, Rubén and Sumalla Cano, Sandra
mail
inaki.elio@uneatlantico.es, sandra.jarrin@uneatlantico.es, maria.elexpuru@uneatlantico.es, jorge.crespo@uneatlantico.es, irma.dominguez@uneatlantico.es, kilian.tutusaus@uneatlantico.es, roberto.ruiz@uneatlantico.es, ruben.calderon@uneatlantico.es, sandra.sumalla@uneatlantico.es
(2021)
Adherence to the pyramid of the Mediterranean diet (2010), non-communicable diseases and lifestyle in online postgraduate Spanish students in the food area.
Mediterranean Journal of Nutrition and Metabolism, 14 (2).
pp. 191-205.
ISSN 1973798X
Abstract
BACKGROUND:In Spain, there are several studies published on the relationship between eating habits and lifestyle among university students; but only a few of them are focused on online postgraduate students. OBJECTIVE:Herein we aimed to evaluate the degree of adherence to the Mediterranean diet pyramid (2010 edition), non-communicable diseases (NCDs), and lifestyle in online postgraduate students aged 20–65 years belonging to the food area of the Fundación Universitaria Iberoamericana (FUNIBER). METHODS:We performed a descriptive cross-sectional study including 100 online post-graduate students aged 20–65 years who were recruited by an accidental non-probabilistic sampling method consisting of a questionnaire on their sociodemographic characteristics, NCDs, lifestyle, and a 3-day food intake record (3-d). RESULTS:The profile of the students was 74% women, with a mean age of 36.6 (±10.5) years and body mass index (BMI) of 22.6 kg / m2 (±3.3). 71% of the volunteers presented normal weight, while 20% were overweight. Indeed, only a low percentage of the volunteers presented hypertension (1%), cardiovascular disease (0%), diabetes mellitus 1 (2%), diabetes mellitus 2 (3%), hypercholesterolemia (9%), and hyperuricemia (2%). Concerning lifestyle, (77%) of students were non-smokers, (78%) consumed beverages with caffeine, (51%) did not consume alcoholic beverages, and nearly all of them (84%) frequently (3 times /week) practiced physical activity. 68% of the recruited students exhibited adherence to “Medium diet quality diet (4–7)” followed by (26%) with a “Poor diet quality (<3)” and “Optimal diet quality” (6%). CONCLUSIONS:Spanish postgraduate students of the nutritional area, have good health and a healthy lifestyle but are moving away from the MD model, should be established campaigns for the improvement of eating habits of the postgraduate university population.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Mediterranean diet, university students, 3-day food intake record, dietary patterns |
Subjects: | Subjects > Nutrition |
Divisions: | Europe University of Atlantic > Research > Scientific Production Ibero-american International University > Research > Scientific Production |
Date Deposited: | 13 Apr 2022 23:55 |
Last Modified: | 04 Jul 2023 23:30 |
URI: | https://repositorio.unini.edu.mx/id/eprint/615 |
Actions (login required)
![]() |
View Item |
en
close
Manuka honey, which is rich in pinocembrin, quercetin, naringenin, salicylic, p-coumaric, ferulic, syringic and 3,4-dihydroxybenzoic acids, has been shown to have pleiotropic effects against colon cancer cells. In this study, potential chemosensitizing effects of Manuka honey against 5-Fluorouracil were investigated in colonspheres enriched with cancer stem cells (CSCs), which are responsible for chemoresistance. Results showed that 5-Fluorouracil increased when it was combined with Manuka honey by downregulating the gene expression of both ATP-binding cassette sub-family G member 2, an efflux pump and thymidylate synthase, the main target of 5-Fluorouracil which regulates the ex novo DNA synthesis. Manuka honey was associated with decreased self-renewal ability by CSCs, regulating expression of several genes in Wnt/β-catenin, Hedgehog and Notch pathways. This preliminary study opens new areas of research into the effects of natural compounds in combination with pharmaceuticals and, potentially, increase efficacy or reduce adverse effects.
Danila Cianciosi mail , Yasmany Armas Diaz mail , José M. Alvarez-Suarez mail , Xiumin Chen mail , Di Zhang mail , Nohora Milena Martínez López mail nohora.martinez@uneatlantico.es, Mercedes Briones Urbano mail mercedes.briones@uneatlantico.es, José L. Quiles mail jose.quiles@uneatlantico.es, Adolfo Amici mail , Maurizio Battino mail maurizio.battino@uneatlantico.es, Francesca Giampieri mail francesca.giampieri@uneatlantico.es,
Cianciosi
<a class="ep_document_link" href="/8725/1/diagnostics-13-02871.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
This study sought to investigate how different brain regions are affected by Alzheimer’s disease (AD) at various phases of the disease, using independent component analysis (ICA). The study examines six regions in the mild cognitive impairment (MCI) stage, four in the early stage of Alzheimer’s disease (AD), six in the moderate stage, and six in the severe stage. The precuneus, cuneus, middle frontal gyri, calcarine cortex, superior medial frontal gyri, and superior frontal gyri were the areas impacted at all phases. A general linear model (GLM) is used to extract the voxels of the previously mentioned regions. The resting fMRI data for 18 AD patients who had advanced from MCI to stage 3 of the disease were obtained from the ADNI public source database. The subjects include eight women and ten men. The voxel dataset is used to train and test ten machine learning algorithms to categorize the MCI, mild, moderate, and severe stages of Alzheimer’s disease. The accuracy, recall, precision, and F1 score were used as conventional scoring measures to evaluate the classification outcomes. AdaBoost fared better than the other algorithms and obtained a phenomenal accuracy of 98.61%, precision of 99.00%, and recall and F1 scores of 98.00% each.
Samra Shahzadi mail , Naveed Anwer Butt mail , Muhammad Usman Sana mail , Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Mercedes Briones Urbano mail mercedes.briones@uneatlantico.es, Isabel de la Torre Díez mail , Imran Ashraf mail ,
Shahzadi
<a class="ep_document_link" href="/8726/1/sensors-23-07710-v2.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Adaptive equalization is crucial in mitigating distortions and compensating for frequency response variations in communication systems. It aims to enhance signal quality by adjusting the characteristics of the received signal. Particle swarm optimization (PSO) algorithms have shown promise in optimizing the tap weights of the equalizer. However, there is a need to enhance the optimization capabilities of PSO further to improve the equalization performance. This paper provides a comprehensive study of the issues and challenges of adaptive filtering by comparing different variants of PSO and analyzing the performance by combining PSO with other optimization algorithms to achieve better convergence, accuracy, and adaptability. Traditional PSO algorithms often suffer from high computational complexity and slow convergence rates, limiting their effectiveness in solving complex optimization problems. To address these limitations, this paper proposes a set of techniques aimed at reducing the complexity and accelerating the convergence of PSO.
Arooj Khan mail , Imran Shafi mail , Sajid Gul Khawaja mail , Isabel de la Torre Díez mail , Miguel Ángel López Flores mail miguelangel.lopez@uneatlantico.es, Juan Castanedo Galán mail juan.castanedo@uneatlantico.es, Imran Ashraf mail ,
Khan
<a href="/8760/1/diagnostics-13-02881.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Empowering Lower Limb Disorder Identification through PoseNet and Artificial Intelligence
A novel approach is presented in this study for the classification of lower limb disorders, with a specific emphasis on the knee, hip, and ankle. The research employs gait analysis and the extraction of PoseNet features from video data in order to effectively identify and categorize these disorders. The PoseNet algorithm facilitates the extraction of key body joint movements and positions from videos in a non-invasive and user-friendly manner, thereby offering a comprehensive representation of lower limb movements. The features that are extracted are subsequently standardized and employed as inputs for a range of machine learning algorithms, such as Random Forest, Extra Tree Classifier, Multilayer Perceptron, Artificial Neural Networks, and Convolutional Neural Networks. The models undergo training and testing processes using a dataset consisting of 174 real patients and normal individuals collected at the Tehsil Headquarter Hospital Sadiq Abad. The evaluation of their performance is conducted through the utilization of K-fold cross-validation. The findings exhibit a notable level of accuracy and precision in the classification of various lower limb disorders. Notably, the Artificial Neural Networks model achieves the highest accuracy rate of 98.84%. The proposed methodology exhibits potential in enhancing the diagnosis and treatment planning of lower limb disorders. It presents a non-invasive and efficient method of analyzing gait patterns and identifying particular conditions.
Hafeez Ur Rehman Siddiqui mail , Adil Ali Saleem mail , Muhammad Amjad Raza mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Dzul Lopez mail luis.dzul@unini.edu.mx, Isabel de la Torre Diez mail , Furqan Rustam mail , Sandra Dudley mail ,
Siddiqui
<a href="/8800/1/Real_Word_Spelling_Error_Detection_and_Correction_for_Urdu_Language.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Real Word Spelling Error Detection and Correction for Urdu Language
Non-word and real-word errors are generally two types of spelling errors. Non-word errors are misspelled words that are nonexistent in the lexicon while real-word errors are misspelled words that exist in the lexicon but are used out of context in a sentence. Lexicon-based lookup approach is widely used for non-word errors but it is incapable of handling real-word errors as they require contextual information. Contrary to the English language, real-word error detection and correction for low-resourced languages like Urdu is an unexplored area. This paper presents a real-word spelling error detection and correction approach for the Urdu language. We develop an extensive lexicon of 593,738 words and use this lexicon to develop a dataset for real-word errors comprising 125562 sentences and 2,552,735 words. Based on the developed lexicon and dataset, we then develop a contextual spell checker that detects and corrects real-word errors. For the real-word error detection phase, word-gram features are used along with five machine learning classifiers, achieving a precision, recall, and F1-score of 0.84,0.79, and 0.81 respectively. We also test the proposed approach with a 40% error density. For real-word error correction, the Damerau-Levenshtein distance is used along with the n-gram model for further ranking of the suggested candidate words, achieving an accuracy of up to 83.67%.
Romila Aziz mail , Muhammad Waqas Anwar mail , Muhammad Hasan Jamal mail , Usama Ijaz Bajwa mail , Ángel Gabriel Kuc Castilla mail , Carlos Uc-Rios mail carlos.uc@unini.edu.mx, Ernesto Bautista Thompson mail ernesto.bautista@unini.edu.mx, Imran Ashraf mail ,
Aziz