Aplicabilidad de tratamientos biológicos en suelos contaminados con hidrocarburos pesados, como alternativa a la incineración, en la industria petrolera Argentina
Tesis Materias > Ingeniería Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster Cerrado Español En la industria Petrolera de la República Argentina, los suelos que resultan del producto de la limpieza de tanques o saneamiento de derrames de petróleos pesados, generan un problema de gran impacto en materia ambiental y de productividad. Desde el punto de vista ambiental, durante la limpieza de estos eventos se generan grandes volúmenes de residuos que se acopian transitoriamente en piletas “a cielo abierto”. En cuanto al aspecto productivo, la presencia de estos sedimentos en los tanques resta capacidad de almacenar y producir petróleo. El presente proyecto constó de varias etapas: las cuales se pueden enmarcar en estudios preliminares, de tratamiento propiamente dicho y posterior análisis de viabilidad económica. El primer paso constó de un análisis del caso de estudio, para el cual se seleccionó un volumen de suelos con hidrocarburos acopiados en sitios destinados para acopios transitorios y su posterior tratamiento. El trabajo fue diseñado tomando una porción de 800 m3 de suelos afectados por hidrocarburos, los cuales fueron muestreados con fines de realizar el estudio de viabilidad técnica realizando un ensayo de biodegradabilidad. El mismo demandó 15 días de ensayos en laboratorios dando por resultado que el suelo seleccionado es tratable bajo la metodología de Biorremediación bajo la técnica de biopilas aireadas mecánicamente. Estos ensayos se realizaron con los laboratorios de la Facultad de Ingeniería de la Universidad Nacional de Cuyo. Posteriormente procedimos al acondicionamiento del suelo y al armado de la biopila, el acondicionamiento constó del agregado de nutrientes de forma que alcanzara para una biodegradación mensual del 35 al 30%, luego se realizó la humectación del suelo alcanzando la humedad deseada para este tipo de tratamientos. Posteriormente se realizó armado de la biopila para dar inicio al tratamiento propiamente dicho. En cuanto a las concentraciones de hidrocarburos en suelo iniciaron con una concentración que rondó el 10% (100.000 ppm), esta concentración llegó hasta el 12%. A partir de esta concentración la curva de los hidrocarburos fue decayendo hasta llegar al objetivo de limpieza que es el 1% o 10.000 ppm. Este proceso demandó 18 meses de trabajo, pero se cumplió con la meta de limpieza. Posteriormente se realizó la evaluación económica del trabajo final, el cual se basó en comparar los tiempos de tratamiento del mismo volumen de suelo bajo la técnica de biorremediación con la técnica de incineración de residuos. El resultado final de este estudio indica que transportar e incinerar este volumen de suelo demandaría unos 12 meses vs los 18 meses de tratamiento bajo la metodología del proyecto. Luego se procedió a realizar el análisis de los costos de ambas tecnologías el cual por lógica la incineración es 10 veces más costosa que la biorremediación de suelos. En conclusión, se puede decir que la biorremediación de suelos mediante la técnica de biopilas aireadas mecánicamente es aplicable para resolución los suelos afectados por hidrocarburos de alto peso molecular. metadata Tettamanti, Guillermo Adrian mail guilleat@gmail.com (2022) Aplicabilidad de tratamientos biológicos en suelos contaminados con hidrocarburos pesados, como alternativa a la incineración, en la industria petrolera Argentina. Masters thesis, SIN ESPECIFICAR.
Texto completo no disponible.Resumen
En la industria Petrolera de la República Argentina, los suelos que resultan del producto de la limpieza de tanques o saneamiento de derrames de petróleos pesados, generan un problema de gran impacto en materia ambiental y de productividad. Desde el punto de vista ambiental, durante la limpieza de estos eventos se generan grandes volúmenes de residuos que se acopian transitoriamente en piletas “a cielo abierto”. En cuanto al aspecto productivo, la presencia de estos sedimentos en los tanques resta capacidad de almacenar y producir petróleo. El presente proyecto constó de varias etapas: las cuales se pueden enmarcar en estudios preliminares, de tratamiento propiamente dicho y posterior análisis de viabilidad económica. El primer paso constó de un análisis del caso de estudio, para el cual se seleccionó un volumen de suelos con hidrocarburos acopiados en sitios destinados para acopios transitorios y su posterior tratamiento. El trabajo fue diseñado tomando una porción de 800 m3 de suelos afectados por hidrocarburos, los cuales fueron muestreados con fines de realizar el estudio de viabilidad técnica realizando un ensayo de biodegradabilidad. El mismo demandó 15 días de ensayos en laboratorios dando por resultado que el suelo seleccionado es tratable bajo la metodología de Biorremediación bajo la técnica de biopilas aireadas mecánicamente. Estos ensayos se realizaron con los laboratorios de la Facultad de Ingeniería de la Universidad Nacional de Cuyo. Posteriormente procedimos al acondicionamiento del suelo y al armado de la biopila, el acondicionamiento constó del agregado de nutrientes de forma que alcanzara para una biodegradación mensual del 35 al 30%, luego se realizó la humectación del suelo alcanzando la humedad deseada para este tipo de tratamientos. Posteriormente se realizó armado de la biopila para dar inicio al tratamiento propiamente dicho. En cuanto a las concentraciones de hidrocarburos en suelo iniciaron con una concentración que rondó el 10% (100.000 ppm), esta concentración llegó hasta el 12%. A partir de esta concentración la curva de los hidrocarburos fue decayendo hasta llegar al objetivo de limpieza que es el 1% o 10.000 ppm. Este proceso demandó 18 meses de trabajo, pero se cumplió con la meta de limpieza. Posteriormente se realizó la evaluación económica del trabajo final, el cual se basó en comparar los tiempos de tratamiento del mismo volumen de suelo bajo la técnica de biorremediación con la técnica de incineración de residuos. El resultado final de este estudio indica que transportar e incinerar este volumen de suelo demandaría unos 12 meses vs los 18 meses de tratamiento bajo la metodología del proyecto. Luego se procedió a realizar el análisis de los costos de ambas tecnologías el cual por lógica la incineración es 10 veces más costosa que la biorremediación de suelos. En conclusión, se puede decir que la biorremediación de suelos mediante la técnica de biopilas aireadas mecánicamente es aplicable para resolución los suelos afectados por hidrocarburos de alto peso molecular.
| Tipo de Documento: | Tesis (Masters) |
|---|---|
| Palabras Clave: | Biopilas Aireadas mecánicamente, Biorremediación; Hidrocarburos de alto peso molecular; incineración; volteos, aireación, Tiempo de tratamiento, Costos |
| Clasificación temática: | Materias > Ingeniería |
| Divisiones: | Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster |
| Depositado: | 18 Oct 2023 23:30 |
| Ultima Modificación: | 18 Oct 2023 23:30 |
| URI: | https://repositorio.unini.edu.mx/id/eprint/744 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
en
close
Single-cell omics for nutrition research: an emerging opportunity for human-centric investigations
Understanding how dietary compounds affect human health is challenged by their molecular complexity and cell-type–specific effects. Conventional multi-cell type (bulk) analyses obscure cellular heterogeneity, while animal and standard in vitro models often fail to replicate human physiology. Single-cell omics technologies—such as single-cell RNA sequencing, as well as single-cell–resolved proteomic and metabolomic approaches—enable high-resolution investigation of nutrient–cell interactions and reveal mechanisms at a single-cell resolution. When combined with advanced human-derived in vitro systems like organoids and organ-on-chip platforms, they support mechanistic studies in physiologically relevant contexts. This review outlines emerging applications of single-cell omics in nutrition research, emphasizing their potential to uncover cell-specific dietary responses, identify nutrient-sensitive pathways, and capture interindividual variability. It also discusses key challenges—including technical limitations, model selection, and institutional biases—and identifies strategic directions to facilitate broader adoption in the field. Collectively, single-cell omics offer a transformative framework to advance human-centric nutrition research.
Manuela Cassotta mail manucassotta@gmail.com, Yasmany Armas Diaz mail , Danila Cianciosi mail , Bei Yang mail , Zexiu Qi mail , Ge Chen mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Giuseppe Grosso mail , José L. Quiles mail , Jianbo Xiao mail , Maurizio Battino mail maurizio.battino@uneatlantico.es, Francesca Giampieri mail francesca.giampieri@uneatlantico.es,
Cassotta
<a class="ep_document_link" href="/17862/1/sensors-25-06419.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Edge-Based Autonomous Fire and Smoke Detection Using MobileNetV2
Forest fires pose significant threats to ecosystems, human life, and the global climate, necessitating rapid and reliable detection systems. Traditional fire detection approaches, including sensor networks, satellite monitoring, and centralized image analysis, often suffer from delayed response, high false positives, and limited deployment in remote areas. Recent deep learning-based methods offer high classification accuracy but are typically computationally intensive and unsuitable for low-power, real-time edge devices. This study presents an autonomous, edge-based forest fire and smoke detection system using a lightweight MobileNetV2 convolutional neural network. The model is trained on a balanced dataset of fire, smoke, and non-fire images and optimized for deployment on resource-constrained edge devices. The system performs near real-time inference, achieving a test accuracy of 97.98% with an average end-to-end prediction latency of 0.77 s per frame (approximately 1.3 FPS) on the Raspberry Pi 5 edge device. Predictions include the class label, confidence score, and timestamp, all generated locally without reliance on cloud connectivity, thereby enhancing security and robustness against potential cyber threats. Experimental results demonstrate that the proposed solution maintains high predictive performance comparable to state-of-the-art methods while providing efficient, offline operation suitable for real-world environmental monitoring and early wildfire mitigation. This approach enables cost-effective, scalable deployment in remote forest regions, combining accuracy, speed, and autonomous edge processing for timely fire and smoke detection.
Dilshod Sharobiddinov mail , Hafeez Ur Rehman Siddiqui mail , Adil Ali Saleem mail , Gerardo Méndez Mezquita mail , Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx, Isabel de la Torre Díez mail ,
Sharobiddinov
<a class="ep_document_link" href="/17863/1/v16p4316.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Breast cancer is a lethal carcinoma impacting a considerable number of women across the globe. While preventive measures are limited, early detection remains the most effective strategy. Accurate classification of breast tumors into benign and malignant categories is important which may help physicians in diagnosing the disease faster. This survey investigates the emerging inclination and approaches in the area of machine learning (ML) for the diagnosis of breast cancer, pointing out the classification techniques based on both segmentation and feature selection. Certain datasets such as the Wisconsin Diagnostic Breast Cancer Dataset (WDBC), Wisconsin Breast Cancer Dataset Original (WBCD), Wisconsin Prognostic Breast Cancer Dataset (WPBC), BreakHis, and others are being evaluated in this study for the demonstration of their influence on the performance of the diagnostic tools and the accuracy of the models such as Support vector machine, Convolutional Neural Networks (CNNs) and ensemble approaches. The main shortcomings or research gaps such as prejudice of datasets, scarcity of generalizability, and interpretation challenges are highlighted. This research emphasizes the importance of the hybrid methodologies, cross-dataset validation, and the engineering of explainable AI to narrow these gaps and enhance the overall clinical acceptance of ML-based detection tools.
Alveena Saleem mail , Muhammad Umair mail , Muhammad Tahir Naseem mail , Muhammad Zubair mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Shoaib Hassan mail , Imran Ashraf mail ,
Saleem
<a class="ep_document_link" href="/17849/1/1-s2.0-S2590005625001043-main.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Ultra Wideband radar-based gait analysis for gender classification using artificial intelligence
Gender classification plays a vital role in various applications, particularly in security and healthcare. While several biometric methods such as facial recognition, voice analysis, activity monitoring, and gait recognition are commonly used, their accuracy and reliability often suffer due to challenges like body part occlusion, high computational costs, and recognition errors. This study investigates gender classification using gait data captured by Ultra-Wideband radar, offering a non-intrusive and occlusion-resilient alternative to traditional biometric methods. A dataset comprising 163 participants was collected, and the radar signals underwent preprocessing, including clutter suppression and peak detection, to isolate meaningful gait cycles. Spectral features extracted from these cycles were transformed using a novel integration of Feedforward Artificial Neural Networks and Random Forests , enhancing discriminative power. Among the models evaluated, the Random Forest classifier demonstrated superior performance, achieving 94.68% accuracy and a cross-validation score of 0.93. The study highlights the effectiveness of Ultra-wideband radar and the proposed transformation framework in advancing robust gender classification.
Adil Ali Saleem mail , Hafeez Ur Rehman Siddiqui mail , Muhammad Amjad Raza mail , Sandra Dudley mail , Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Isabel de la Torre Díez mail ,
Saleem
<a class="ep_document_link" href="/17856/1/fpubh-13-1654645.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background: Physical activity in children and adolescents represents one of the most important lifestyle factors to determine current and future health. Aim: The aim of the study is to assess the lifestyle and dietary factors linked to physical activity in younger populations across five countries in the Mediterranean region. Design: A total of 2,011 parents of children and adolescents (age range 6–17 years) participating to a preliminary survey of the DELICIOUS project were investigated to determine children's adequate physical activity level (identified using the short form of the international physical activity questionnaire) as well as diet quality parameters [measured as Youth-Healthy Eating Index (Y-HEI)] and eating and lifestyle factors (i.e., meal habits, sleep duration, screen time, etc.). Logistic regression analyses were performed to assess the odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between variables of interest. Results: Younger children of younger parents currently working had higher rates and probability to have adequate physical activity. Multivariate analysis showed that children and adolescents who had breakfast (OR = 1.88, 95% CI: 1.38, 2.56) and often ate with their family (OR = 1.80, 95% CI: 0.90, 3.61) were more likely to have an adequate level of physical activity. Children and adolescents who reported a sleep duration (8–10 h) closest to the recommended one were significantly more likely to achieve adequate levels of physical activity (OR = 1.88, 95% CI: 1.38, 2.56). Conversely, those with more than 4 h of daily screen time were less likely to engage in adequate physical activity (OR = 0.77, 95% CI: 0.54, 1.10). Furthermore, children and adolescents in the highest tertile of YEHI scores showed a 60% greater likelihood of engaging in adequate physical activity (OR = 1.60, 95% CI: 1.27, 2.01). Conclusion: These results emphasize the importance of promoting healthy diet and lifestyle habits, including structured and high quality shared meals, sufficient sleep, and screen time moderation, as key strategies to support active behaviors in younger populations. Future interventions should focus on reinforcing these behaviors through parental guidance and community-based initiatives to foster lifelong healthy habits.
Alice Rosi mail , Francesca Scazzina mail , Maria Antonieta Touriz Bonifaz mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Achraf Ammar mail , Khaled Trabelsi mail , Osama Abdelkarim mail , Mohamed Aly mail , Evelyn Frias-Toral mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Lorenzo Monasta mail , Nunzia Decembrino mail , Ana Mata mail , Adrián Chacón mail , Pablo Busó mail , Giuseppe Grosso mail ,
Rosi
