Evaluación de estilos de vida y estado nutricional en adolescentes de 13 a 15 años de edad de la Ciudad de Mendoza – Argentina.

Tesis Materias > Alimentación
Materias > Educación física y el deporte
Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Cerrado Español El sobrepeso y la obesidad en todas las edades es una epidemia en aumento a nivel mundial, con cifras alarmantes, constituyéndose en uno de los principales problemas de salud pública. El sobrepeso, la obesidad, y las enfermedades crónicas no transmisibles representan la principal causa de muerte y discapacidad en la Región de las Américas. Los determinantes sociales y estilos de vida tienen un rol fundamental, y estos asociados al sobrepeso y obesidad, tienen consecuencias graves para la salud, y las mismas se desarrollan cada vez más en etapas tempranas de la vida. Se afecta la salud psico-física actual, el nivel educativo que se puede alcanzar, y la calidad de vida; generando mayores probabilidades de continuar siendo personas obesas en la edad adulta y presentar mayor riesgo de padecer enfermedades no transmisibles. La globalización ha influido en los patrones alimentarios y en el cambio de hábitos de vida saludables. Una alimentación en la que predomina la comida rápida, la ingesta de ultra procesados, escasa actividad física, disminución de las horas de sueño, y la incorporación de las nuevas tecnologías que conllevan mayor exposición a pantallas, es parte de los escenarios en los que se encuentran inmersos infantes y adolescentes. La infancia y adolescencia constituyen períodos vulnerables y de cambios fisiológicos, psicológicos y conductuales, que condicionan el desarrollo de hábitos saludables; por eso resulta de interés evaluar los estilos de vida y la prevalencia de sobrepeso y obesidad en adolescentes. Para ello se aplicó un cuestionario de hábitos saludables y antropometría en 186 adolescentes de 12 a 15 años de edad, en un colegio en la provincia de Mendoza. Detectando que el 43% de la muestra presenta sobrepeso y obesidad por IMC, y un 32,3% riesgo de obesidad abdominal y obesidad abdominal por Circunferencia Abdominal. En relación a los hábitos evaluados en base al cuestionario aplicado, se observó que los participantes con exceso de peso demostraron tener hábitos poco saludables, mientras que las mayores diferencias se observaron en las dimensiones de actividad física y entorno. Se puede concluir que cerca de la mitad de los participantes presenta riesgo de desarrollar enfermedades crónicas no trasmisibles por el diagnóstico actual obtenido a partir de la antropometría y cuestionario, lo que determina la necesidad de generar acciones que permitan mejorar su salud, las cuales deben ser desarrolladas involucrándolos, como así también a la familia y el entorno escolar, siendo éste un lugar clave para intervenir y apoyar comportamientos saludables, entre los cuales se debe promover fuertemente la actividad física. metadata Zavaroni Gorri, Natalia Lorena mail nataliazavaroni@hotmail.com (2022) Evaluación de estilos de vida y estado nutricional en adolescentes de 13 a 15 años de edad de la Ciudad de Mendoza – Argentina. Masters thesis, SIN ESPECIFICAR.

Texto completo no disponible.

Resumen

El sobrepeso y la obesidad en todas las edades es una epidemia en aumento a nivel mundial, con cifras alarmantes, constituyéndose en uno de los principales problemas de salud pública. El sobrepeso, la obesidad, y las enfermedades crónicas no transmisibles representan la principal causa de muerte y discapacidad en la Región de las Américas. Los determinantes sociales y estilos de vida tienen un rol fundamental, y estos asociados al sobrepeso y obesidad, tienen consecuencias graves para la salud, y las mismas se desarrollan cada vez más en etapas tempranas de la vida. Se afecta la salud psico-física actual, el nivel educativo que se puede alcanzar, y la calidad de vida; generando mayores probabilidades de continuar siendo personas obesas en la edad adulta y presentar mayor riesgo de padecer enfermedades no transmisibles. La globalización ha influido en los patrones alimentarios y en el cambio de hábitos de vida saludables. Una alimentación en la que predomina la comida rápida, la ingesta de ultra procesados, escasa actividad física, disminución de las horas de sueño, y la incorporación de las nuevas tecnologías que conllevan mayor exposición a pantallas, es parte de los escenarios en los que se encuentran inmersos infantes y adolescentes. La infancia y adolescencia constituyen períodos vulnerables y de cambios fisiológicos, psicológicos y conductuales, que condicionan el desarrollo de hábitos saludables; por eso resulta de interés evaluar los estilos de vida y la prevalencia de sobrepeso y obesidad en adolescentes. Para ello se aplicó un cuestionario de hábitos saludables y antropometría en 186 adolescentes de 12 a 15 años de edad, en un colegio en la provincia de Mendoza. Detectando que el 43% de la muestra presenta sobrepeso y obesidad por IMC, y un 32,3% riesgo de obesidad abdominal y obesidad abdominal por Circunferencia Abdominal. En relación a los hábitos evaluados en base al cuestionario aplicado, se observó que los participantes con exceso de peso demostraron tener hábitos poco saludables, mientras que las mayores diferencias se observaron en las dimensiones de actividad física y entorno. Se puede concluir que cerca de la mitad de los participantes presenta riesgo de desarrollar enfermedades crónicas no trasmisibles por el diagnóstico actual obtenido a partir de la antropometría y cuestionario, lo que determina la necesidad de generar acciones que permitan mejorar su salud, las cuales deben ser desarrolladas involucrándolos, como así también a la familia y el entorno escolar, siendo éste un lugar clave para intervenir y apoyar comportamientos saludables, entre los cuales se debe promover fuertemente la actividad física.

Tipo de Documento: Tesis (Masters)
Palabras Clave: Sobrepeso, obesidad, hábitos, enfermedades crónicas no transmisibles, adolescentes.
Clasificación temática: Materias > Alimentación
Materias > Educación física y el deporte
Divisiones: Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Depositado: 14 Mar 2024 23:30
Ultima Modificación: 14 Mar 2024 23:30
URI: https://repositorio.unini.edu.mx/id/eprint/2532

Acciones (logins necesarios)

Ver Objeto Ver Objeto

<a class="ep_document_link" href="/15983/1/Food%20Science%20%20%20Nutrition%20-%202025%20-%20Tanveer%20-%20Novel%20Transfer%20Learning%20Approach%20for%20Detecting%20Infected%20and%20Healthy%20Maize%20Crop.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Novel Transfer Learning Approach for Detecting Infected and Healthy Maize Crop Using Leaf Images

Maize is a staple crop worldwide, essential for food security, livestock feed, and industrial uses. Its health directly impacts agricultural productivity and economic stability. Effective detection of maize crop health is crucial for preventing disease spread and ensuring high yields. This study presents VG-GNBNet, an innovative transfer learning model that accurately detects healthy and infected maize crops through a two-step feature extraction process. The proposed model begins by leveraging the visual geometry group (VGG-16) network to extract initial pixel-based spatial features from the crop images. These features are then further refined using the Gaussian Naive Bayes (GNB) model and feature decomposition-based matrix factorization mechanism, which generates more informative features for classification purposes. This study incorporates machine learning models to ensure a comprehensive evaluation. By comparing VG-GNBNet's performance against these models, we validate its robustness and accuracy. Integrating deep learning and machine learning techniques allows VG-GNBNet to capitalize on the strengths of both approaches, leading to superior performance. Extensive experiments demonstrate that the proposed VG-GNBNet+GNB model significantly outperforms other models, achieving an impressive accuracy score of 99.85%. This high accuracy highlights the model's potential for practical application in the agricultural sector, where the precise detection of crop health is crucial for effective disease management and yield optimization.

Producción Científica

Muhammad Usama Tanveer mail , Kashif Munir mail , Ali Raza mail , Laith Abualigah mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Imran Ashraf mail ,

Tanveer

<a href="/16270/1/s12880-024-01546-4.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Novel transfer learning based bone fracture detection using radiographic images

A bone fracture is a medical condition characterized by a partial or complete break in the continuity of the bone. Fractures are primarily caused by injuries and accidents, affecting millions of people worldwide. The healing process for a fracture can take anywhere from one month to one year, leading to significant economic and psychological challenges for patients. The detection of bone fractures is crucial, and radiographic images are often relied on for accurate assessment. An efficient neural network method is essential for the early detection and timely treatment of fractures. In this study, we propose a novel transfer learning-based approach called MobLG-Net for feature engineering purposes. Initially, the spatial features are extracted from bone X-ray images using a transfer model, MobileNet, and then input into a tree-based light gradient boosting machine (LGBM) model for the generation of class probability features. Several machine learning (ML) techniques are applied to the subsets of newly generated transfer features to compare the results. K-nearest neighbor (KNN), LGBM, logistic regression (LR), and random forest (RF) are implemented using the novel features with optimized hyperparameters. The LGBM and LR models trained on proposed MobLG-Net (MobileNet-LGBM) based features outperformed others, achieving an accuracy of 99% in predicting bone fractures. A cross-validation mechanism is used to evaluate the performance of each model. The proposed study can improve the detection of bone fractures using X-ray images.

Producción Científica

Aneeza Alam mail , Ahmad Sami Al-Shamayleh mail , Nisrean Thalji mail , Ali Raza mail , Edgar Aníbal Morales Barajas mail , Ernesto Bautista Thompson mail ernesto.bautista@unini.edu.mx, Isabel de la Torre Diez mail , Imran Ashraf mail ,

Alam

<a href="/16273/1/v16p0506.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Hybrid Model with Wavelet Decomposition and EfficientNet for Accurate Skin Cancer Classification

Faced with anomalies in medical images, Deep learning is facing major challenges in detecting, diagnosing, and classifying the various pathologies that can be treated via medical imaging. The main challenges encountered are mainly due to the imbalance and variability of the data, as well as its complexity. The detection and classification of skin diseases is one such challenge that researchers are trying to overcome, as these anomalies present great variability in terms of appearance, texture, color, and localization, which sometimes makes them difficult to identify accurately and quickly, particularly by doctors, or by the various Deep Learning techniques on offer. In this study, an innovative and robust hybrid architecture is unveiled, underscoring the symbiotic potential of wavelet decomposition in conjunction with EfficientNet models. This approach integrates wavelet transformations with an EfficientNet backbone and incorporates advanced data augmentation, loss function, and optimization strategies. The model tested on the publicly accessible HAM10000 and ISIC2017 datasets has achieved an accuracy rate of 94.7%, and 92.2% respectively.

Producción Científica

Amina Aboulmira mail , Hamid Hrimech mail , Mohamed Lachgar mail , Mohamed Hanine mail , Carlos Manuel Osorio García mail carlos.osorio@uneatlantico.es, Gerardo Méndez Mezquita mail , Imran Ashraf mail ,

Aboulmira

<a href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Influence of E-learning training on the acquisition of competences in basketball coaches in Cantabria

The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.

Producción Científica

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,

Alemany Iturriaga

<a href="/15625/1/s41598-024-74127-8.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Smart agriculture: utilizing machine learning and deep learning for drought stress identification in crops

Plant stress reduction research has advanced significantly with the use of Artificial Intelligence (AI) techniques, such as machine learning and deep learning. This is a significant step toward sustainable agriculture. Innovative insights into the physiological responses of plants mostly crops to drought stress have been revealed through the use of complex algorithms like gradient boosting, support vector machines (SVM), recurrent neural network (RNN), and long short-term memory (LSTM), combined with a thorough examination of the TYRKC and RBR-E3 domains in stress-associated signaling proteins across a range of crop species. Modern resources were used in this study, including the UniProt protein database for crop physiochemical properties associated with specific signaling domains and the SMART database for signaling protein domains. These insights were then applied to deep learning and machine learning techniques after careful data processing. The rigorous metric evaluations and ablation analysis that typified the study’s approach highlighted the algorithms’ effectiveness and dependability in recognizing and classifying stress events. Notably, the accuracy of SVM was 82%, while gradient boosting and RNN showed 96%, and 94%, respectively and LSTM obtained an astounding 97% accuracy. The study observed these successes but also highlights the ongoing obstacles to AI adoption in agriculture, emphasizing the need for creative thinking and interdisciplinary cooperation. In addition to its scholarly value, the collected data has significant implications for improving resource efficiency, directing precision agricultural methods, and supporting global food security programs. Notably, the gradient boosting and LSTM algorithm outperformed the others with an exceptional accuracy of 96% and 97%, demonstrating their potential for accurate stress categorization. This work highlights the revolutionary potential of AI to completely disrupt the agricultural industry while simultaneously advancing our understanding of plant stress responses.

Producción Científica

Tariq Ali mail , Saif Ur Rehman mail , Shamshair Ali mail , Khalid Mahmood mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Tahir Khurshaid mail , Imran Ashraf mail ,

Ali