Aplicación de redes neuronales para tratamiento de efluentes derivados de la curtiduría

Tesis Materias > Ingeniería
Materias > Ciencias Sociales
Universidad Internacional Iberoamericana México > Investigación > Tesis Doctorales Cerrado Español El presente documento detalla el proceso de creación de la red neuronal artificial (RNA) para el tratamiento de efluentes mediante la determinación de la dosificación de ácido, coagulante y floculante. El proceso abarca desde el análisis de la información de las muestras de los efluentes, la creación del modelo de RNA y la predicción de dosificaciones. Este tipo de red, que se caracteriza por su organización en capas y conexiones estrictamente hacia delante, utiliza algoritmos de entrenamiento del tipo supervisado. El entrenamiento de las redes neuronales consiste en el ajuste de sus parámetros con el objetivo de generar el resultado deseado a la salida de la red. Antes de poder aplicar algún algoritmo de optimización debemos definir nuestra función de coste o pérdida. La función de pérdida es aquella expresión matemática que queremos minimizar o maximizar dependiendo del problema que estemos abordando. Una función de coste típica es la definida por la ecuación, donde se utiliza la media de la suma de los errores cuadráticos para evaluar el rendimiento de la red. Este proceso se realiza por cada ejemplo en el dataset de entrenamiento, siendo m el número de muestras. Fi = Salida de la red para el dato i. El descenso del gradiente es el método utilizado para la optimización de redes de neuronas. Esta técnica realiza actualizaciones de manera iterativa de cada parámetro de la red en aquella dirección que minimice más la función de coste. Para obtener esta dirección se calcula la derivada parcial de la función de coste con respecto a cada parámetro de manera individual. Antes de realizar el entrenamiento es necesario inicializar los parámetros de la red, siendo este un factor importante que puede determinar la convergencia o no. Fase de entrenamiento. Debido a que el objetivo final es poder determinar los niveles adecuados de dosificación para que el ph final en los efluentes cumplan con los estándares ambientales, el modelo de predicción puede adaptarse de forma que tome todas las variables, incluidas la dosificación de coagulante y floculante, y el objetivo sea la predicción del ph final. Dada un conjunto de condiciones iniciales, y un conjunto de dosificaciones el modelo será capaz de predecir el ph resultante. Este enfoque donde los niveles de dosificación de coagulante y floculante cumplen la función de variables independientes en vez de variables dependientes nos obliga a crear una matriz de valores predeterminados, donde cada una de estas configuraciones de dosificación sería evaluada por la red para obtener el valor de ph final. Mínima pre-configuración de parámetros antes de poner en marcha cada batch del proceso. Cuando se da esta señal de inicio, se activa la bomba centrífuga #3 y empieza a llenarse el tanque de ácido. Cuando eso ocurre, apaga la bomba de llenado y después de 10 segundos se activa el agitador del tanque de ácido a 15 Hz y 10 segundos después se dosifica la cantidad de peróxido seteada. Luego de 30 segundos más se dosifica el ácido según el valor seteado ya sea manualmente o mediante la red neuronal. Cuando el agua termina de caer al tanque de coagulante, luego de 10 segundos se activa el agitador del tanque de ácido a 18 Hz y 10 segundos después se dosifica la cantidad de coagulante seteada manualmente o por la red neuronal. metadata Mariños Legendre, Juan Carlos mail marinos285@gmail.com (2023) Aplicación de redes neuronales para tratamiento de efluentes derivados de la curtiduría. Doctoral thesis, SIN ESPECIFICAR.

Texto completo no disponible.

Resumen

El presente documento detalla el proceso de creación de la red neuronal artificial (RNA) para el tratamiento de efluentes mediante la determinación de la dosificación de ácido, coagulante y floculante. El proceso abarca desde el análisis de la información de las muestras de los efluentes, la creación del modelo de RNA y la predicción de dosificaciones. Este tipo de red, que se caracteriza por su organización en capas y conexiones estrictamente hacia delante, utiliza algoritmos de entrenamiento del tipo supervisado. El entrenamiento de las redes neuronales consiste en el ajuste de sus parámetros con el objetivo de generar el resultado deseado a la salida de la red. Antes de poder aplicar algún algoritmo de optimización debemos definir nuestra función de coste o pérdida. La función de pérdida es aquella expresión matemática que queremos minimizar o maximizar dependiendo del problema que estemos abordando. Una función de coste típica es la definida por la ecuación, donde se utiliza la media de la suma de los errores cuadráticos para evaluar el rendimiento de la red. Este proceso se realiza por cada ejemplo en el dataset de entrenamiento, siendo m el número de muestras. Fi = Salida de la red para el dato i. El descenso del gradiente es el método utilizado para la optimización de redes de neuronas. Esta técnica realiza actualizaciones de manera iterativa de cada parámetro de la red en aquella dirección que minimice más la función de coste. Para obtener esta dirección se calcula la derivada parcial de la función de coste con respecto a cada parámetro de manera individual. Antes de realizar el entrenamiento es necesario inicializar los parámetros de la red, siendo este un factor importante que puede determinar la convergencia o no. Fase de entrenamiento. Debido a que el objetivo final es poder determinar los niveles adecuados de dosificación para que el ph final en los efluentes cumplan con los estándares ambientales, el modelo de predicción puede adaptarse de forma que tome todas las variables, incluidas la dosificación de coagulante y floculante, y el objetivo sea la predicción del ph final. Dada un conjunto de condiciones iniciales, y un conjunto de dosificaciones el modelo será capaz de predecir el ph resultante. Este enfoque donde los niveles de dosificación de coagulante y floculante cumplen la función de variables independientes en vez de variables dependientes nos obliga a crear una matriz de valores predeterminados, donde cada una de estas configuraciones de dosificación sería evaluada por la red para obtener el valor de ph final. Mínima pre-configuración de parámetros antes de poner en marcha cada batch del proceso. Cuando se da esta señal de inicio, se activa la bomba centrífuga #3 y empieza a llenarse el tanque de ácido. Cuando eso ocurre, apaga la bomba de llenado y después de 10 segundos se activa el agitador del tanque de ácido a 15 Hz y 10 segundos después se dosifica la cantidad de peróxido seteada. Luego de 30 segundos más se dosifica el ácido según el valor seteado ya sea manualmente o mediante la red neuronal. Cuando el agua termina de caer al tanque de coagulante, luego de 10 segundos se activa el agitador del tanque de ácido a 18 Hz y 10 segundos después se dosifica la cantidad de coagulante seteada manualmente o por la red neuronal.

Tipo de Documento: Tesis (Doctoral)
Palabras Clave: entrenamientos, red neuronal, innovación, curtiduría, medio ambiente, efluentes
Clasificación temática: Materias > Ingeniería
Materias > Ciencias Sociales
Divisiones: Universidad Internacional Iberoamericana México > Investigación > Tesis Doctorales
Depositado: 26 Sep 2023 23:30
Ultima Modificación: 26 Sep 2023 23:30
URI: https://repositorio.unini.edu.mx/id/eprint/8475

Acciones (logins necesarios)

Ver Objeto Ver Objeto

<a href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Influence of E-learning training on the acquisition of competences in basketball coaches in Cantabria

The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.

Producción Científica

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,

Alemany Iturriaga

<a href="/15198/1/nutrients-16-03859.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Carotenoids Intake and Cardiovascular Prevention: A Systematic Review

Background: Cardiovascular diseases (CVDs) encompass a variety of conditions that affect the heart and blood vessels. Carotenoids, a group of fat-soluble organic pigments synthesized by plants, fungi, algae, and some bacteria, may have a beneficial effect in reducing cardiovascular disease (CVD) risk. This study aims to examine and synthesize current research on the relationship between carotenoids and CVDs. Methods: A systematic review was conducted using MEDLINE and the Cochrane Library to identify relevant studies on the efficacy of carotenoid supplementation for CVD prevention. Interventional analytical studies (randomized and non-randomized clinical trials) published in English from January 2011 to February 2024 were included. Results: A total of 38 studies were included in the qualitative analysis. Of these, 17 epidemiological studies assessed the relationship between carotenoids and CVDs, 9 examined the effect of carotenoid supplementation, and 12 evaluated dietary interventions. Conclusions: Elevated serum carotenoid levels are associated with reduced CVD risk factors and inflammatory markers. Increasing the consumption of carotenoid-rich foods appears to be more effective than supplementation, though the specific effects of individual carotenoids on CVD risk remain uncertain.

Producción Científica

Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Thomas Prola mail thomas.prola@uneatlantico.es, Raquel Martínez Díaz mail raquel.martinez@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,

Sumalla Cano

<a href="/14584/1/s41598-024-73664-6.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Performance of the 4C and SEIMC scoring systems in predicting mortality from onset to current COVID-19 pandemic in emergency departments

The evolution of the COVID-19 pandemic has been associated with variations in clinical presentation and severity. Similarly, prediction scores may suffer changes in their diagnostic accuracy. The aim of this study was to test the 30-day mortality predictive validity of the 4C and SEIMC scores during the sixth wave of the pandemic and to compare them with those of validation studies. This was a longitudinal retrospective observational study. COVID-19 patients who were admitted to the Emergency Department of a Spanish hospital from December 15, 2021, to January 31, 2022, were selected. A side-by-side comparison with the pivotal validation studies was subsequently performed. The main measures were 30-day mortality and the 4C and SEIMC scores. A total of 27,614 patients were considered in the study, including 22,361 from the 4C, 4,627 from the SEIMC and 626 from our hospital. The 30-day mortality rate was significantly lower than that reported in the validation studies. The AUCs were 0.931 (95% CI: 0.90–0.95) for 4C and 0.903 (95% CI: 086–0.93) for SEIMC, which were significantly greater than those obtained in the first wave. Despite the changes that have occurred during the coronavirus disease 2019 (COVID-19) pandemic, with a reduction in lethality, scorecard systems are currently still useful tools for detecting patients with poor disease risk, with better prognostic capacity.

Producción Científica

Pedro Ángel de Santos Castro mail , Carlos del Pozo Vegas mail , Leyre Teresa Pinilla Arribas mail , Daniel Zalama Sánchez mail , Ancor Sanz-García mail , Tony Giancarlo Vásquez del Águila mail , Pablo González Izquierdo mail , Sara de Santos Sánchez mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,

de Santos Castro

<a class="ep_document_link" href="/14915/1/s41598-024-74357-w.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Enhanced detection of diabetes mellitus using novel ensemble feature engineering approach and machine learning model

Diabetes is a persistent health condition led by insufficient use or inappropriate use of insulin in the body. If left undetected, it can lead to further complications involving organ damage such as heart, lungs, and eyes. Timely detection of diabetes helps obtain the right medication, diet, and exercise plan to lead a healthy life. ML approach has been utilized to obtain rapid and reliable diabetes detection, however, existing approaches suffer from the use of limited datasets, lack of generalizability, and lower accuracy. This study proposes a novel feature extraction approach to overcome these limitations by using an ensemble of convolutional neural network (CNN) and long short-term memory (LSTM) models. Multiple datasets are combined to make a larger dataset for experiments and multiple features are utilized for investigating the efficacy of the proposed approach. Features from the extra tree classifier, CNN, and LSTM are also considered for comparison. Experimental results reveal the superb performance of CNN-LSTM-based features with random forest model obtaining a 0.99 accuracy score. This performance is further validated by comparison with existing approaches and k-fold cross-validation which shows the proposed approach provides robust results.

Producción Científica

Furqan Rustam mail , Ahmad Sami Al-Shamayleh mail , Rahman Shafique mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, J. Pablo Miramontes Gonzalez mail , Imran Ashraf mail ,

Rustam

<a class="ep_document_link" href="/14916/1/s41598-024-75833-z.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Side effects associated with homogenous and heterogenous doses of Oxford–AstraZeneca vaccine among adults in Bangladesh: an observational study

Assessment of side effects associated with COVID-19 vaccination is required to monitor safety issues and acceptance of vaccines in the long term. We found a significant knowledge gap in the safety profile of COVID-19 vaccines in Bangladesh. We enrolled 1805 vaccine recipients from May 5, 2021, to April 4, 2023. Kruskal-Wallis test and χ2 test were performed. Multivariable logistic regression was also performed. First, second and third doses were administered among 1805, 1341, and 923 participants, respectively. Oxford–AstraZeneca (2946 doses) was the highest administered followed by Sinopharm BIBP (551 doses), Sinovac (214 doses), Pfizer-BioNTech (198 doses), and Moderna (160 doses), respectively. Pain at the injection site (80-90%, 3200–3600), swelling (85%, 3458), redness (78%, 3168), and heaviness in hand (65%, 2645) were the most common local effects, and fever (85%, 3458), headache (82%, 3336), myalgia (70%, 2848), chills (67%, 2726), muscle pain (60%, 2441) were the most prevalent systemic side effects reported within 48 h of vaccination. Thrombosis was only reported among the Oxford–AstraZeneca recipients (3.5-5.7%). Both local and systemic effects were significantly associated with the Oxford–AstraZeneca (p-value < 0.05), Pfizer–BioNTech (p-value < 0.05), and Moderna (p-value < 0.05) vaccination. Chronic urticaria and psoriasis were reported by 55-60% of the recipients after six months or later. The highest percentage of local and systemic effects after 2nd and 3rd dose were found among recipients of Moderna followed by Pfizer-BioNTech and Oxford–AstraZeneca. Homogenous doses of Oxford–AstraZeneca and heterogenous doses of Moderna and Pfizer-BioNTech were significantly associated with elevated adverse effects. Females, aged above 60 years with preexisting health conditions had higher risks. Vaccination with Pfizer-BioNTech (OR 4.34, 95% CI 3.95–4.58) had the highest odds of severe and long-term effects followed by Moderna (OR 4.15, 95% CI 3.92–4.69) and Oxford–AstraZeneca (OR 3.89, 95% CI 3.45–4.06), respectively. This study will provide an integrated insight into the safety profile of COVID-19 vaccines.

Producción Científica

Nadim Sharif mail , Rubayet Rayhan Opu mail , Tama Saha mail , Afsana Khan mail , Abrar Aljohani mail , Meshari A. Alsuwat mail , Carlos O. García mail , Annia A. Vázquez mail annia.almeyda@uneatlantico.es, Khalid J. Alzahrani mail , J. Pablo Miramontes-González mail , Shuvra Kanti Dey mail ,

Sharif