Desafíos de la regulación de la Inteligencia Artificial y sus aplicaciones desde la perspectiva del Derecho

Tesis Materias > Ciencias Sociales Universidad Internacional Iberoamericana México > Investigación > Tesis Doctorales Cerrado Español El presente estudio se propone describir los factores a considerar en el marco normativo de la regulación de la IA en Colombia, relacionados con los actos jurídicos en los que esta podría ser parte; es así, que el presente estudio se hará por medio de una investigación cualitativa fundamentada en el análisis documental y el derecho comparado desde su perspectiva metodológica. Para ello, se partirá por hacer una recopilación histórica de la evolución de la IA en la esfera jurídica y cómo ello dio lugar a la transformación digital del derecho, partiendo desde la IA en la computación, las aplicaciones de servicios legales, el Machine Learning, el Blockchain y el Token para la construcción del registro de propiedad segura, los Smart Contracts, la innovación para el acceso a la justicia, los métodos de resolución alternativa de conflictos, los métodos digitales en las cortes públicas, el design thinking y la transformación en un abogado digital. Luego, se describirán las ramas de las IA denominadas redes neuronales, robótica y sistemas jurídicos expertos, esta última, integrada por los modelos de reglas de producción y positivista explícito subyacente, los modelos constructivista, conexionista, de razonamiento jurídico de casos y los sistemas de expertos basado en reglas y en redes neuronales; para luego, pasar al análisis de la nueva rama del derecho denominada cibernética jurídica y su objeto de estudio, para lo cual, se describirán las características y elementos de sus disciplinas auxiliares como lo son la jurimetría, la informática jurídica y la modelística jurídica. De esta forma, se podrá presentar una tesis acerca del estatus jurídico especial de la IA, los atributos de su personalidad desde la perspectiva de los derechos civiles, el proceso cognitivo de generación de identidad propia, la facultad de autodeterminación, la extinción de su personalidad y las implicaciones éticas. metadata Zabala Leal, Tatiana Dulima mail penguin1596@hotmail.com (2024) Desafíos de la regulación de la Inteligencia Artificial y sus aplicaciones desde la perspectiva del Derecho. Doctoral thesis, SIN ESPECIFICAR.

Texto completo no disponible.

Resumen

El presente estudio se propone describir los factores a considerar en el marco normativo de la regulación de la IA en Colombia, relacionados con los actos jurídicos en los que esta podría ser parte; es así, que el presente estudio se hará por medio de una investigación cualitativa fundamentada en el análisis documental y el derecho comparado desde su perspectiva metodológica. Para ello, se partirá por hacer una recopilación histórica de la evolución de la IA en la esfera jurídica y cómo ello dio lugar a la transformación digital del derecho, partiendo desde la IA en la computación, las aplicaciones de servicios legales, el Machine Learning, el Blockchain y el Token para la construcción del registro de propiedad segura, los Smart Contracts, la innovación para el acceso a la justicia, los métodos de resolución alternativa de conflictos, los métodos digitales en las cortes públicas, el design thinking y la transformación en un abogado digital. Luego, se describirán las ramas de las IA denominadas redes neuronales, robótica y sistemas jurídicos expertos, esta última, integrada por los modelos de reglas de producción y positivista explícito subyacente, los modelos constructivista, conexionista, de razonamiento jurídico de casos y los sistemas de expertos basado en reglas y en redes neuronales; para luego, pasar al análisis de la nueva rama del derecho denominada cibernética jurídica y su objeto de estudio, para lo cual, se describirán las características y elementos de sus disciplinas auxiliares como lo son la jurimetría, la informática jurídica y la modelística jurídica. De esta forma, se podrá presentar una tesis acerca del estatus jurídico especial de la IA, los atributos de su personalidad desde la perspectiva de los derechos civiles, el proceso cognitivo de generación de identidad propia, la facultad de autodeterminación, la extinción de su personalidad y las implicaciones éticas.

Tipo de Documento: Tesis (Doctoral)
Palabras Clave: Inteligencia Artificial, Robot, Ciborg, Abogado digital, Smart contracts, heurística, algoritmo y transhumanismo
Clasificación temática: Materias > Ciencias Sociales
Divisiones: Universidad Internacional Iberoamericana México > Investigación > Tesis Doctorales
Depositado: 20 Sep 2024 23:30
Ultima Modificación: 20 Sep 2024 23:30
URI: https://repositorio.unini.edu.mx/id/eprint/10987

Acciones (logins necesarios)

Ver Objeto Ver Objeto

<a href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Influence of E-learning training on the acquisition of competences in basketball coaches in Cantabria

The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.

Producción Científica

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,

Alemany Iturriaga

<a href="/15198/1/nutrients-16-03859.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Carotenoids Intake and Cardiovascular Prevention: A Systematic Review

Background: Cardiovascular diseases (CVDs) encompass a variety of conditions that affect the heart and blood vessels. Carotenoids, a group of fat-soluble organic pigments synthesized by plants, fungi, algae, and some bacteria, may have a beneficial effect in reducing cardiovascular disease (CVD) risk. This study aims to examine and synthesize current research on the relationship between carotenoids and CVDs. Methods: A systematic review was conducted using MEDLINE and the Cochrane Library to identify relevant studies on the efficacy of carotenoid supplementation for CVD prevention. Interventional analytical studies (randomized and non-randomized clinical trials) published in English from January 2011 to February 2024 were included. Results: A total of 38 studies were included in the qualitative analysis. Of these, 17 epidemiological studies assessed the relationship between carotenoids and CVDs, 9 examined the effect of carotenoid supplementation, and 12 evaluated dietary interventions. Conclusions: Elevated serum carotenoid levels are associated with reduced CVD risk factors and inflammatory markers. Increasing the consumption of carotenoid-rich foods appears to be more effective than supplementation, though the specific effects of individual carotenoids on CVD risk remain uncertain.

Producción Científica

Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Thomas Prola mail thomas.prola@uneatlantico.es, Raquel Martínez Díaz mail raquel.martinez@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,

Sumalla Cano

<a class="ep_document_link" href="/14584/1/s41598-024-73664-6.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Performance of the 4C and SEIMC scoring systems in predicting mortality from onset to current COVID-19 pandemic in emergency departments

The evolution of the COVID-19 pandemic has been associated with variations in clinical presentation and severity. Similarly, prediction scores may suffer changes in their diagnostic accuracy. The aim of this study was to test the 30-day mortality predictive validity of the 4C and SEIMC scores during the sixth wave of the pandemic and to compare them with those of validation studies. This was a longitudinal retrospective observational study. COVID-19 patients who were admitted to the Emergency Department of a Spanish hospital from December 15, 2021, to January 31, 2022, were selected. A side-by-side comparison with the pivotal validation studies was subsequently performed. The main measures were 30-day mortality and the 4C and SEIMC scores. A total of 27,614 patients were considered in the study, including 22,361 from the 4C, 4,627 from the SEIMC and 626 from our hospital. The 30-day mortality rate was significantly lower than that reported in the validation studies. The AUCs were 0.931 (95% CI: 0.90–0.95) for 4C and 0.903 (95% CI: 086–0.93) for SEIMC, which were significantly greater than those obtained in the first wave. Despite the changes that have occurred during the coronavirus disease 2019 (COVID-19) pandemic, with a reduction in lethality, scorecard systems are currently still useful tools for detecting patients with poor disease risk, with better prognostic capacity.

Producción Científica

Pedro Ángel de Santos Castro mail , Carlos del Pozo Vegas mail , Leyre Teresa Pinilla Arribas mail , Daniel Zalama Sánchez mail , Ancor Sanz-García mail , Tony Giancarlo Vásquez del Águila mail , Pablo González Izquierdo mail , Sara de Santos Sánchez mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,

de Santos Castro

<a href="/14915/1/s41598-024-74357-w.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Enhanced detection of diabetes mellitus using novel ensemble feature engineering approach and machine learning model

Diabetes is a persistent health condition led by insufficient use or inappropriate use of insulin in the body. If left undetected, it can lead to further complications involving organ damage such as heart, lungs, and eyes. Timely detection of diabetes helps obtain the right medication, diet, and exercise plan to lead a healthy life. ML approach has been utilized to obtain rapid and reliable diabetes detection, however, existing approaches suffer from the use of limited datasets, lack of generalizability, and lower accuracy. This study proposes a novel feature extraction approach to overcome these limitations by using an ensemble of convolutional neural network (CNN) and long short-term memory (LSTM) models. Multiple datasets are combined to make a larger dataset for experiments and multiple features are utilized for investigating the efficacy of the proposed approach. Features from the extra tree classifier, CNN, and LSTM are also considered for comparison. Experimental results reveal the superb performance of CNN-LSTM-based features with random forest model obtaining a 0.99 accuracy score. This performance is further validated by comparison with existing approaches and k-fold cross-validation which shows the proposed approach provides robust results.

Producción Científica

Furqan Rustam mail , Ahmad Sami Al-Shamayleh mail , Rahman Shafique mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, J. Pablo Miramontes Gonzalez mail , Imran Ashraf mail ,

Rustam

<a class="ep_document_link" href="/14916/1/s41598-024-75833-z.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Side effects associated with homogenous and heterogenous doses of Oxford–AstraZeneca vaccine among adults in Bangladesh: an observational study

Assessment of side effects associated with COVID-19 vaccination is required to monitor safety issues and acceptance of vaccines in the long term. We found a significant knowledge gap in the safety profile of COVID-19 vaccines in Bangladesh. We enrolled 1805 vaccine recipients from May 5, 2021, to April 4, 2023. Kruskal-Wallis test and χ2 test were performed. Multivariable logistic regression was also performed. First, second and third doses were administered among 1805, 1341, and 923 participants, respectively. Oxford–AstraZeneca (2946 doses) was the highest administered followed by Sinopharm BIBP (551 doses), Sinovac (214 doses), Pfizer-BioNTech (198 doses), and Moderna (160 doses), respectively. Pain at the injection site (80-90%, 3200–3600), swelling (85%, 3458), redness (78%, 3168), and heaviness in hand (65%, 2645) were the most common local effects, and fever (85%, 3458), headache (82%, 3336), myalgia (70%, 2848), chills (67%, 2726), muscle pain (60%, 2441) were the most prevalent systemic side effects reported within 48 h of vaccination. Thrombosis was only reported among the Oxford–AstraZeneca recipients (3.5-5.7%). Both local and systemic effects were significantly associated with the Oxford–AstraZeneca (p-value < 0.05), Pfizer–BioNTech (p-value < 0.05), and Moderna (p-value < 0.05) vaccination. Chronic urticaria and psoriasis were reported by 55-60% of the recipients after six months or later. The highest percentage of local and systemic effects after 2nd and 3rd dose were found among recipients of Moderna followed by Pfizer-BioNTech and Oxford–AstraZeneca. Homogenous doses of Oxford–AstraZeneca and heterogenous doses of Moderna and Pfizer-BioNTech were significantly associated with elevated adverse effects. Females, aged above 60 years with preexisting health conditions had higher risks. Vaccination with Pfizer-BioNTech (OR 4.34, 95% CI 3.95–4.58) had the highest odds of severe and long-term effects followed by Moderna (OR 4.15, 95% CI 3.92–4.69) and Oxford–AstraZeneca (OR 3.89, 95% CI 3.45–4.06), respectively. This study will provide an integrated insight into the safety profile of COVID-19 vaccines.

Producción Científica

Nadim Sharif mail , Rubayet Rayhan Opu mail , Tama Saha mail , Afsana Khan mail , Abrar Aljohani mail , Meshari A. Alsuwat mail , Carlos O. García mail , Annia A. Vázquez mail annia.almeyda@uneatlantico.es, Khalid J. Alzahrani mail , J. Pablo Miramontes-González mail , Shuvra Kanti Dey mail ,

Sharif