Prevalencia de la anemia ferropénica y factores asociados en niños menores de 3 años atendidos en el Centro de Salud Tipo B de Nobol en el año 2019.
Tesis
Materias > Biomedicina
Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Cerrado
Español
En el mundo la anemia avanza desmedidamente, según la organización mundial de la salud 1620 millones de personas en el mundo sufren de anemia ferropénica de este valor los niños en edad pre escolar tienen el 47,4%, de donde podemos observar que es prácticamente la mitad, es por esto que nuestro objetivo general es determinar la prevalencia de la anemia ferropénica y factores asociados en niños menores de tres años atendidos en el centro de salud de Nobol, con esto buscamos orientar los tratamientos y más que nada la prevención de esta patología ya que en el Ecuador esta enfermedad como en el mundo tiene un gran aumento y un crecimiento constante, ya que el origen de la anemia se lo considera multifactorial, no es menos cierto que dentro de esos factores la más frecuente es por la deficiencia de hierro, que puede ser el resultado de la disminución en la ingesta de la cantidad y más aun de la calidad del hierro en la dieta diaria, lo que es demostrable en la baja cantidad de hemoglobina, en nuestro Ecuador la prevalencia llego al 27,5% en niños menores de 5 años dentro de estos la etnia tiene mucho que ver ya que el grupo de niños indígenas mostro el 40,5% con esta enfermedad. Radicando aquí la importancia de nuestro tema de proyecto, pretendemos dar un mejor enfoque a la atención de la anemia ferropénica al saber y analizar sus valores de prevalencia y ver cuál es la nutrición de los infantes, como hemos dicho la nutrición tiene un valor fundamental en la adquisición de anemia ferropénica, pero es nuestro deber hacer más, que medicina curativa lo que debemos hacer es medicina preventiva siendo esta la única manera de vencer los niveles altos que se presentan en el Ecuador, teniendo una correcta nutrición basada en los gastos y necesidades del cuerpo, se aumentara o se producirá el hierro de una manera eficiente y habremos prevenido no solo la anemia ferropénica sino también todos las complicaciones que esta enfermedad provoca y haremos que la calidad de vida del niño mejore y no solo de él sino también la de su familia, nosotros nos encontramos con un bajo nivel nutricional en el cantón Nobol, siendo esto uno de los hallazgos más relevantes, de lo que concluimos que la nutrición es de suma importancia en el control de la anemia ferropénica, y más aún en su prevención.
metadata
Cerezo Carpio, Adriel Alexander
mail
md_cerezocarpio@hotmail.com
(2021)
Prevalencia de la anemia ferropénica y factores asociados en niños menores de 3 años atendidos en el Centro de Salud Tipo B de Nobol en el año 2019.
Masters thesis, SIN ESPECIFICAR.
Resumen
En el mundo la anemia avanza desmedidamente, según la organización mundial de la salud 1620 millones de personas en el mundo sufren de anemia ferropénica de este valor los niños en edad pre escolar tienen el 47,4%, de donde podemos observar que es prácticamente la mitad, es por esto que nuestro objetivo general es determinar la prevalencia de la anemia ferropénica y factores asociados en niños menores de tres años atendidos en el centro de salud de Nobol, con esto buscamos orientar los tratamientos y más que nada la prevención de esta patología ya que en el Ecuador esta enfermedad como en el mundo tiene un gran aumento y un crecimiento constante, ya que el origen de la anemia se lo considera multifactorial, no es menos cierto que dentro de esos factores la más frecuente es por la deficiencia de hierro, que puede ser el resultado de la disminución en la ingesta de la cantidad y más aun de la calidad del hierro en la dieta diaria, lo que es demostrable en la baja cantidad de hemoglobina, en nuestro Ecuador la prevalencia llego al 27,5% en niños menores de 5 años dentro de estos la etnia tiene mucho que ver ya que el grupo de niños indígenas mostro el 40,5% con esta enfermedad. Radicando aquí la importancia de nuestro tema de proyecto, pretendemos dar un mejor enfoque a la atención de la anemia ferropénica al saber y analizar sus valores de prevalencia y ver cuál es la nutrición de los infantes, como hemos dicho la nutrición tiene un valor fundamental en la adquisición de anemia ferropénica, pero es nuestro deber hacer más, que medicina curativa lo que debemos hacer es medicina preventiva siendo esta la única manera de vencer los niveles altos que se presentan en el Ecuador, teniendo una correcta nutrición basada en los gastos y necesidades del cuerpo, se aumentara o se producirá el hierro de una manera eficiente y habremos prevenido no solo la anemia ferropénica sino también todos las complicaciones que esta enfermedad provoca y haremos que la calidad de vida del niño mejore y no solo de él sino también la de su familia, nosotros nos encontramos con un bajo nivel nutricional en el cantón Nobol, siendo esto uno de los hallazgos más relevantes, de lo que concluimos que la nutrición es de suma importancia en el control de la anemia ferropénica, y más aún en su prevención.
Tipo de Documento: | Tesis (Masters) |
---|---|
Palabras Clave: | Anemia, salud, niños, hierro, nutrición |
Clasificación temática: | Materias > Biomedicina |
Divisiones: | Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster |
Depositado: | 02 Nov 2023 23:30 |
Ultima Modificación: | 02 Nov 2023 23:30 |
URI: | https://repositorio.unini.edu.mx/id/eprint/1488 |
Acciones (logins necesarios)
Ver Objeto |
<a href="/15983/1/Food%20Science%20%20%20Nutrition%20-%202025%20-%20Tanveer%20-%20Novel%20Transfer%20Learning%20Approach%20for%20Detecting%20Infected%20and%20Healthy%20Maize%20Crop.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Novel Transfer Learning Approach for Detecting Infected and Healthy Maize Crop Using Leaf Images
Maize is a staple crop worldwide, essential for food security, livestock feed, and industrial uses. Its health directly impacts agricultural productivity and economic stability. Effective detection of maize crop health is crucial for preventing disease spread and ensuring high yields. This study presents VG-GNBNet, an innovative transfer learning model that accurately detects healthy and infected maize crops through a two-step feature extraction process. The proposed model begins by leveraging the visual geometry group (VGG-16) network to extract initial pixel-based spatial features from the crop images. These features are then further refined using the Gaussian Naive Bayes (GNB) model and feature decomposition-based matrix factorization mechanism, which generates more informative features for classification purposes. This study incorporates machine learning models to ensure a comprehensive evaluation. By comparing VG-GNBNet's performance against these models, we validate its robustness and accuracy. Integrating deep learning and machine learning techniques allows VG-GNBNet to capitalize on the strengths of both approaches, leading to superior performance. Extensive experiments demonstrate that the proposed VG-GNBNet+GNB model significantly outperforms other models, achieving an impressive accuracy score of 99.85%. This high accuracy highlights the model's potential for practical application in the agricultural sector, where the precise detection of crop health is crucial for effective disease management and yield optimization.
Muhammad Usama Tanveer mail , Kashif Munir mail , Ali Raza mail , Laith Abualigah mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Imran Ashraf mail ,
Tanveer
<a href="/16270/1/s12880-024-01546-4.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Novel transfer learning based bone fracture detection using radiographic images
A bone fracture is a medical condition characterized by a partial or complete break in the continuity of the bone. Fractures are primarily caused by injuries and accidents, affecting millions of people worldwide. The healing process for a fracture can take anywhere from one month to one year, leading to significant economic and psychological challenges for patients. The detection of bone fractures is crucial, and radiographic images are often relied on for accurate assessment. An efficient neural network method is essential for the early detection and timely treatment of fractures. In this study, we propose a novel transfer learning-based approach called MobLG-Net for feature engineering purposes. Initially, the spatial features are extracted from bone X-ray images using a transfer model, MobileNet, and then input into a tree-based light gradient boosting machine (LGBM) model for the generation of class probability features. Several machine learning (ML) techniques are applied to the subsets of newly generated transfer features to compare the results. K-nearest neighbor (KNN), LGBM, logistic regression (LR), and random forest (RF) are implemented using the novel features with optimized hyperparameters. The LGBM and LR models trained on proposed MobLG-Net (MobileNet-LGBM) based features outperformed others, achieving an accuracy of 99% in predicting bone fractures. A cross-validation mechanism is used to evaluate the performance of each model. The proposed study can improve the detection of bone fractures using X-ray images.
Aneeza Alam mail , Ahmad Sami Al-Shamayleh mail , Nisrean Thalji mail , Ali Raza mail , Edgar Aníbal Morales Barajas mail , Ernesto Bautista Thompson mail ernesto.bautista@unini.edu.mx, Isabel de la Torre Diez mail , Imran Ashraf mail ,
Alam
<a href="/16273/1/v16p0506.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Hybrid Model with Wavelet Decomposition and EfficientNet for Accurate Skin Cancer Classification
Faced with anomalies in medical images, Deep learning is facing major challenges in detecting, diagnosing, and classifying the various pathologies that can be treated via medical imaging. The main challenges encountered are mainly due to the imbalance and variability of the data, as well as its complexity. The detection and classification of skin diseases is one such challenge that researchers are trying to overcome, as these anomalies present great variability in terms of appearance, texture, color, and localization, which sometimes makes them difficult to identify accurately and quickly, particularly by doctors, or by the various Deep Learning techniques on offer. In this study, an innovative and robust hybrid architecture is unveiled, underscoring the symbiotic potential of wavelet decomposition in conjunction with EfficientNet models. This approach integrates wavelet transformations with an EfficientNet backbone and incorporates advanced data augmentation, loss function, and optimization strategies. The model tested on the publicly accessible HAM10000 and ISIC2017 datasets has achieved an accuracy rate of 94.7%, and 92.2% respectively.
Amina Aboulmira mail , Hamid Hrimech mail , Mohamed Lachgar mail , Mohamed Hanine mail , Carlos Manuel Osorio García mail carlos.osorio@uneatlantico.es, Gerardo Méndez Mezquita mail , Imran Ashraf mail ,
Aboulmira
<a href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.
Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,
Alemany Iturriaga
<a class="ep_document_link" href="/15625/1/s41598-024-74127-8.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Plant stress reduction research has advanced significantly with the use of Artificial Intelligence (AI) techniques, such as machine learning and deep learning. This is a significant step toward sustainable agriculture. Innovative insights into the physiological responses of plants mostly crops to drought stress have been revealed through the use of complex algorithms like gradient boosting, support vector machines (SVM), recurrent neural network (RNN), and long short-term memory (LSTM), combined with a thorough examination of the TYRKC and RBR-E3 domains in stress-associated signaling proteins across a range of crop species. Modern resources were used in this study, including the UniProt protein database for crop physiochemical properties associated with specific signaling domains and the SMART database for signaling protein domains. These insights were then applied to deep learning and machine learning techniques after careful data processing. The rigorous metric evaluations and ablation analysis that typified the study’s approach highlighted the algorithms’ effectiveness and dependability in recognizing and classifying stress events. Notably, the accuracy of SVM was 82%, while gradient boosting and RNN showed 96%, and 94%, respectively and LSTM obtained an astounding 97% accuracy. The study observed these successes but also highlights the ongoing obstacles to AI adoption in agriculture, emphasizing the need for creative thinking and interdisciplinary cooperation. In addition to its scholarly value, the collected data has significant implications for improving resource efficiency, directing precision agricultural methods, and supporting global food security programs. Notably, the gradient boosting and LSTM algorithm outperformed the others with an exceptional accuracy of 96% and 97%, demonstrating their potential for accurate stress categorization. This work highlights the revolutionary potential of AI to completely disrupt the agricultural industry while simultaneously advancing our understanding of plant stress responses.
Tariq Ali mail , Saif Ur Rehman mail , Shamshair Ali mail , Khalid Mahmood mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Tahir Khurshaid mail , Imran Ashraf mail ,
Ali