Modelo para la gestión del conocimiento en las PyME de desarrollo de software del eje troncal de Bolivia
Tesis Materias > Ingeniería Universidad Internacional Iberoamericana México > Investigación > Tesis Doctorales Cerrado Español Las pequeñas y medianas empresas (PyME) de desarrollo de software, generan la mayor fuerza laboral en el eje troncal de Bolivia. Sus características principales son que cuentan con recursos humanos y de capital reducido, no tienen un estándar de desarrollo implementado, por subsistir toman cualquier trabajo que se le presenta notándose la falta de especialización en un nicho determinado y haciendo que las estimaciones en tiempo y recursos sean irreales. Los estándares existentes de desarrollo de software no se enmarcan en esta realidad de las PyME, haciendo que su implementación sea nula. Hay modelos específicos para las PyME como la ISO/IEC 29110, IT-MARK, Modelo de Procesos para la Industria de Software (MoProSoft), Mejora de Proceso de Software Brasilero (MPS.BR) y Competisoft que tratan de estandarizar las PyME. Estos modelos tienen en común que la gestión del conocimiento es esencial en las PyME por el conocimiento tácito que se encuentra interiorizado en los miembros del grupo de desarrollo de software. La gestión del conocimiento es crucial en las PyME de desarrollo de software debido a su naturaleza extensiva de generación y consumo de conocimiento. Por otro lado, las redes de conocimiento son otro mecanismo importante donde los individuos pueden interactuar en temas específicos de un área determinada del conocimiento. Estas redes de conocimiento son importantes en el desarrollo de software, ya que es el mecanismo por el cual se puede transmitir el conocimiento tácito y el conocimiento explícito entre personas. En la actualidad no se han encontrado trabajos que relacionen la gestión del conocimiento y las redes de conocimiento como mecanismo de soporte para las PyME de desarrollo de software. Es por estos motivos que en este trabajo de investigación se propone un modelo de gestión del conocimiento para las PyME de desarrollo de software del eje troncal de Bolivia. metadata Suárez Urresti, David Ronald mail david.r.suarez@gmail.com (2022) Modelo para la gestión del conocimiento en las PyME de desarrollo de software del eje troncal de Bolivia. Doctoral thesis, Universidad Internacional Iberoamericana México.
Texto completo no disponible.Resumen
Las pequeñas y medianas empresas (PyME) de desarrollo de software, generan la mayor fuerza laboral en el eje troncal de Bolivia. Sus características principales son que cuentan con recursos humanos y de capital reducido, no tienen un estándar de desarrollo implementado, por subsistir toman cualquier trabajo que se le presenta notándose la falta de especialización en un nicho determinado y haciendo que las estimaciones en tiempo y recursos sean irreales. Los estándares existentes de desarrollo de software no se enmarcan en esta realidad de las PyME, haciendo que su implementación sea nula. Hay modelos específicos para las PyME como la ISO/IEC 29110, IT-MARK, Modelo de Procesos para la Industria de Software (MoProSoft), Mejora de Proceso de Software Brasilero (MPS.BR) y Competisoft que tratan de estandarizar las PyME. Estos modelos tienen en común que la gestión del conocimiento es esencial en las PyME por el conocimiento tácito que se encuentra interiorizado en los miembros del grupo de desarrollo de software. La gestión del conocimiento es crucial en las PyME de desarrollo de software debido a su naturaleza extensiva de generación y consumo de conocimiento. Por otro lado, las redes de conocimiento son otro mecanismo importante donde los individuos pueden interactuar en temas específicos de un área determinada del conocimiento. Estas redes de conocimiento son importantes en el desarrollo de software, ya que es el mecanismo por el cual se puede transmitir el conocimiento tácito y el conocimiento explícito entre personas. En la actualidad no se han encontrado trabajos que relacionen la gestión del conocimiento y las redes de conocimiento como mecanismo de soporte para las PyME de desarrollo de software. Es por estos motivos que en este trabajo de investigación se propone un modelo de gestión del conocimiento para las PyME de desarrollo de software del eje troncal de Bolivia.
Tipo de Documento: | Tesis (Doctoral) |
---|---|
Palabras Clave: | PyME, gestión del conocimiento, redes de conocimiento, desarrollo de software, conocimiento tácito |
Clasificación temática: | Materias > Ingeniería |
Divisiones: | Universidad Internacional Iberoamericana México > Investigación > Tesis Doctorales |
Depositado: | 26 Sep 2023 23:30 |
Ultima Modificación: | 26 Sep 2023 23:30 |
URI: | https://repositorio.unini.edu.mx/id/eprint/1937 |
Acciones (logins necesarios)
Ver Objeto |
<a class="ep_document_link" href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.
Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,
Alemany Iturriaga
<a class="ep_document_link" href="/15198/1/nutrients-16-03859.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Carotenoids Intake and Cardiovascular Prevention: A Systematic Review
Background: Cardiovascular diseases (CVDs) encompass a variety of conditions that affect the heart and blood vessels. Carotenoids, a group of fat-soluble organic pigments synthesized by plants, fungi, algae, and some bacteria, may have a beneficial effect in reducing cardiovascular disease (CVD) risk. This study aims to examine and synthesize current research on the relationship between carotenoids and CVDs. Methods: A systematic review was conducted using MEDLINE and the Cochrane Library to identify relevant studies on the efficacy of carotenoid supplementation for CVD prevention. Interventional analytical studies (randomized and non-randomized clinical trials) published in English from January 2011 to February 2024 were included. Results: A total of 38 studies were included in the qualitative analysis. Of these, 17 epidemiological studies assessed the relationship between carotenoids and CVDs, 9 examined the effect of carotenoid supplementation, and 12 evaluated dietary interventions. Conclusions: Elevated serum carotenoid levels are associated with reduced CVD risk factors and inflammatory markers. Increasing the consumption of carotenoid-rich foods appears to be more effective than supplementation, though the specific effects of individual carotenoids on CVD risk remain uncertain.
Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Thomas Prola mail thomas.prola@uneatlantico.es, Raquel Martínez Díaz mail raquel.martinez@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,
Sumalla Cano
<a class="ep_document_link" href="/14584/1/s41598-024-73664-6.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
The evolution of the COVID-19 pandemic has been associated with variations in clinical presentation and severity. Similarly, prediction scores may suffer changes in their diagnostic accuracy. The aim of this study was to test the 30-day mortality predictive validity of the 4C and SEIMC scores during the sixth wave of the pandemic and to compare them with those of validation studies. This was a longitudinal retrospective observational study. COVID-19 patients who were admitted to the Emergency Department of a Spanish hospital from December 15, 2021, to January 31, 2022, were selected. A side-by-side comparison with the pivotal validation studies was subsequently performed. The main measures were 30-day mortality and the 4C and SEIMC scores. A total of 27,614 patients were considered in the study, including 22,361 from the 4C, 4,627 from the SEIMC and 626 from our hospital. The 30-day mortality rate was significantly lower than that reported in the validation studies. The AUCs were 0.931 (95% CI: 0.90–0.95) for 4C and 0.903 (95% CI: 086–0.93) for SEIMC, which were significantly greater than those obtained in the first wave. Despite the changes that have occurred during the coronavirus disease 2019 (COVID-19) pandemic, with a reduction in lethality, scorecard systems are currently still useful tools for detecting patients with poor disease risk, with better prognostic capacity.
Pedro Ángel de Santos Castro mail , Carlos del Pozo Vegas mail , Leyre Teresa Pinilla Arribas mail , Daniel Zalama Sánchez mail , Ancor Sanz-García mail , Tony Giancarlo Vásquez del Águila mail , Pablo González Izquierdo mail , Sara de Santos Sánchez mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,
de Santos Castro
<a class="ep_document_link" href="/14915/1/s41598-024-74357-w.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Diabetes is a persistent health condition led by insufficient use or inappropriate use of insulin in the body. If left undetected, it can lead to further complications involving organ damage such as heart, lungs, and eyes. Timely detection of diabetes helps obtain the right medication, diet, and exercise plan to lead a healthy life. ML approach has been utilized to obtain rapid and reliable diabetes detection, however, existing approaches suffer from the use of limited datasets, lack of generalizability, and lower accuracy. This study proposes a novel feature extraction approach to overcome these limitations by using an ensemble of convolutional neural network (CNN) and long short-term memory (LSTM) models. Multiple datasets are combined to make a larger dataset for experiments and multiple features are utilized for investigating the efficacy of the proposed approach. Features from the extra tree classifier, CNN, and LSTM are also considered for comparison. Experimental results reveal the superb performance of CNN-LSTM-based features with random forest model obtaining a 0.99 accuracy score. This performance is further validated by comparison with existing approaches and k-fold cross-validation which shows the proposed approach provides robust results.
Furqan Rustam mail , Ahmad Sami Al-Shamayleh mail , Rahman Shafique mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, J. Pablo Miramontes Gonzalez mail , Imran Ashraf mail ,
Rustam
<a class="ep_document_link" href="/14916/1/s41598-024-75833-z.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Assessment of side effects associated with COVID-19 vaccination is required to monitor safety issues and acceptance of vaccines in the long term. We found a significant knowledge gap in the safety profile of COVID-19 vaccines in Bangladesh. We enrolled 1805 vaccine recipients from May 5, 2021, to April 4, 2023. Kruskal-Wallis test and χ2 test were performed. Multivariable logistic regression was also performed. First, second and third doses were administered among 1805, 1341, and 923 participants, respectively. Oxford–AstraZeneca (2946 doses) was the highest administered followed by Sinopharm BIBP (551 doses), Sinovac (214 doses), Pfizer-BioNTech (198 doses), and Moderna (160 doses), respectively. Pain at the injection site (80-90%, 3200–3600), swelling (85%, 3458), redness (78%, 3168), and heaviness in hand (65%, 2645) were the most common local effects, and fever (85%, 3458), headache (82%, 3336), myalgia (70%, 2848), chills (67%, 2726), muscle pain (60%, 2441) were the most prevalent systemic side effects reported within 48 h of vaccination. Thrombosis was only reported among the Oxford–AstraZeneca recipients (3.5-5.7%). Both local and systemic effects were significantly associated with the Oxford–AstraZeneca (p-value < 0.05), Pfizer–BioNTech (p-value < 0.05), and Moderna (p-value < 0.05) vaccination. Chronic urticaria and psoriasis were reported by 55-60% of the recipients after six months or later. The highest percentage of local and systemic effects after 2nd and 3rd dose were found among recipients of Moderna followed by Pfizer-BioNTech and Oxford–AstraZeneca. Homogenous doses of Oxford–AstraZeneca and heterogenous doses of Moderna and Pfizer-BioNTech were significantly associated with elevated adverse effects. Females, aged above 60 years with preexisting health conditions had higher risks. Vaccination with Pfizer-BioNTech (OR 4.34, 95% CI 3.95–4.58) had the highest odds of severe and long-term effects followed by Moderna (OR 4.15, 95% CI 3.92–4.69) and Oxford–AstraZeneca (OR 3.89, 95% CI 3.45–4.06), respectively. This study will provide an integrated insight into the safety profile of COVID-19 vaccines.
Nadim Sharif mail , Rubayet Rayhan Opu mail , Tama Saha mail , Afsana Khan mail , Abrar Aljohani mail , Meshari A. Alsuwat mail , Carlos O. García mail , Annia A. Vázquez mail annia.almeyda@uneatlantico.es, Khalid J. Alzahrani mail , J. Pablo Miramontes-González mail , Shuvra Kanti Dey mail ,
Sharif