Deep Learning-Based Real Time Defect Detection for Optimization of Aircraft Manufacturing and Control Performance

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Monitoring tool conditions and sub-assemblies before final integration is essential to reducing processing failures and improving production quality for manufacturing setups. This research study proposes a real-time deep learning-based framework for identifying faulty components due to malfunctioning at different manufacturing stages in the aerospace industry. It uses a convolutional neural network (CNN) to recognize and classify intermediate abnormal states in a single manufacturing process. The manufacturing process for aircraft factory products comprises different phases; analyzing the components after the integration is labor-intensive and time-consuming, which often puts the company’s stake at high risk. To overcome these challenges, the proposed AI-based system can perform inspection and defect detection and alleviate the probability of components’ needing to be re-manufacturing after being assembled. In addition, it analyses the impact value, i.e., rework delays and costs, of manufacturing processes using a statistical process control tool on real-time data for various manufactured components. Defects are detected and classified using the CNN and teachable machine in the single manufacturing process during the initial stage prior to assembling the components. The results show the significance of the proposed approach in improving operational cost management and reducing rework-induced delays. Ground tests are conducted to calculate the impact value followed by the air tests of the final assembled aircraft. The statistical results indicate a 52.88% and 34.32% reduction in time delays and total cost, respectively. metadata Shafi, Imran and Mazhar, Muhammad Fawad and Fatima, Anum and Álvarez, Roberto Marcelo and Miró Vera, Yini Airet and Martínez Espinosa, Julio César and Ashraf, Imran mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, roberto.alvarez@uneatlantico.es, yini.miro@uneatlantico.es, ulio.martinez@unini.edu.mx, UNSPECIFIED (2023) Deep Learning-Based Real Time Defect Detection for Optimization of Aircraft Manufacturing and Control Performance. Drones, 7 (1). p. 31. ISSN 2504-446X

[img] Text
drones-07-00031-v4.pdf
Available under License Creative Commons Attribution.

Download (3MB)

Abstract

Monitoring tool conditions and sub-assemblies before final integration is essential to reducing processing failures and improving production quality for manufacturing setups. This research study proposes a real-time deep learning-based framework for identifying faulty components due to malfunctioning at different manufacturing stages in the aerospace industry. It uses a convolutional neural network (CNN) to recognize and classify intermediate abnormal states in a single manufacturing process. The manufacturing process for aircraft factory products comprises different phases; analyzing the components after the integration is labor-intensive and time-consuming, which often puts the company’s stake at high risk. To overcome these challenges, the proposed AI-based system can perform inspection and defect detection and alleviate the probability of components’ needing to be re-manufacturing after being assembled. In addition, it analyses the impact value, i.e., rework delays and costs, of manufacturing processes using a statistical process control tool on real-time data for various manufactured components. Defects are detected and classified using the CNN and teachable machine in the single manufacturing process during the initial stage prior to assembling the components. The results show the significance of the proposed approach in improving operational cost management and reducing rework-induced delays. Ground tests are conducted to calculate the impact value followed by the air tests of the final assembled aircraft. The statistical results indicate a 52.88% and 34.32% reduction in time delays and total cost, respectively.

Item Type: Article
Uncontrolled Keywords: manufacturing process optimization; aircraft control optimization; statistical process control; teachable machine; process optimization; real-time defect detection
Subjects: Subjects > Engineering
Divisions: Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Date Deposited: 12 Jan 2023 23:30
Last Modified: 12 Jan 2023 23:30
URI: https://repositorio.unini.edu.mx/id/eprint/5397

Actions (login required)

View Item View Item

<a class="ep_document_link" href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Influence of E-learning training on the acquisition of competences in basketball coaches in Cantabria

The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.

Producción Científica

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,

Alemany Iturriaga

<a class="ep_document_link" href="/10845/1/pharmaceuticals-17-00236.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Isoflavones Effects on Vascular and Endothelial Outcomes: How Is the Gut Microbiota Involved?

Isoflavones are a group of (poly)phenols, also defined as phytoestrogens, with chemical structures comparable with estrogen, that exert weak estrogenic effects. These phytochemical compounds have been targeted for their proven antioxidant and protective effects. Recognizing the increasing prevalence of cardiovascular diseases (CVD), there is a growing interest in understanding the potential cardiovascular benefits associated with these phytochemical compounds. Gut microbiota may play a key role in mediating the effects of isoflavones on vascular and endothelial functions, as it is directly implicated in isoflavones metabolism. The findings from randomized clinical trials indicate that isoflavone supplementation may exert putative effects on vascular biomarkers among healthy individuals, but not among patients affected by cardiometabolic disorders. These results might be explained by the enzymatic transformation to which isoflavones are subjected by the gut microbiota, suggesting that a diverse composition of the microbiota may determine the diverse bioavailability of these compounds. Specifically, the conversion of isoflavones in equol—a microbiota-derived metabolite—seems to differ between individuals. Further studies are needed to clarify the intricate molecular mechanisms behind these contrasting results.

Producción Científica

Samuele Laudani mail , Justyna Godos mail , Giovanni Luca Romano mail , Lucia Gozzo mail , Federica Martina Di Domenico mail , Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Raquel Martínez Díaz mail raquel.martinez@uneatlantico.es, Francesca Giampieri mail francesca.giampieri@uneatlantico.es, José L. Quiles mail jose.quiles@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Filippo Drago mail , Fabio Galvano mail , Giuseppe Grosso mail ,

Laudani

en

close

Synthesis and characterizations of super adsorbent hydrogel based on biopolymer, Guar Gum-grafted-Poly (hydroxyethyl methacrylate) (Gg-g-Poly (HEMA)) for the removal of Bismarck brown Y dye from aqueous solution

Chemical modification of guar gum was done by graft copolymerization of monomer hydroxyethyl methacrylate (HEMA) using azobisisobutyronitrile (AIBN) as initiator. Optimal reaction parameters were settled by varying one reaction condition and keeping the other constant. The optimum reaction conditions worked out were solvent system: binary, [H2O] = 15.00 mL, [acetone] = 5.00 mL, [HEMA] = 82.217× 10−2 mol/L, [AIBN] = 3.333 × 10−2 mol/L, reaction time = 3 h, reaction temperature = 60 °C on to 1.00 g guar gum with Pg = 1694.6 and %GE = 68,704.152. Pure guar gum polymer and grafts were analyzed by several physicochemical investigation techniques like FTIR, SEM, XRD, EDX, and swelling studies. Percent swelling of the guar gum polymer and grafts was investigated at pH 2.2, 7.0, 7.4 and 9.4 concerning time. The finest yield of Ps was recorded at pH 9.4 with time 24 h for graft copolymer. Guar gum and grafted samples were explored for the sorption of toxic dye Bismarck brown Y from the aqueous solution with respect to variable contact time, pH, temperature and dye concentration so as to investigate the stimuli responsive sorption behaviour. Graft copolymers showed better results than guar gum with percent dye uptake (Du) of 97.588 % in 24 h contact time, 35 °C temperature, 9.4 pH at 150.00 ppm dye feed concentration as compared to Guar gum which only showed 85.260 % dye uptake at alike dye fed concentration. The kinetic behaviour of the polymeric samples was evaluated by applying many adsorption isotherms and kinetic models. The value of 1/n was between 0 → 1 showing that there was physisorption of the BB dye that took place on the surface of the polymers. Thermodynamics of BB Y adsorption onto hydrogels was investigated concerning the Van't Hoff equation. -∆G° values obtained from the curve proved the spontanity of the process. Within the context of adsorption efficiency, an investigation was conducted to examine the process of sorption of Bismarck brown Y dye from aqueous solutions. The graft copolymers demonstrated remarkable adsorption abilities, achieving a dye uptake (Du) of 97.588 % over a 24-h period at a temperature of 35 °C, pH level of 9.4, and a dye concentration of 150.00 ppm. The raised adsorption capacity was additionally corroborated by the application of several adsorption isotherms and kinetic models, which indicated that physisorption is the prevailing process/mechanism. Additionally, the thermodynamic research, utilising the Van't Hoff equation, validated the spontaneity of the adsorption phenomenon, as evidenced by the presence of a negative ∆G° values. The thermodynamic analysis revealed herein establishes a strong scientific foundation for the effectiveness of adsorbent composed of graft copolymers based on guar gum. The research conclude the efficiency of the guar gum based grafted copolymers for the water remediation as efficient adsorbents. The captured dye can be re-utilised and the hydrogels can be used for the same purpose in number of cycles.

Producción Científica

Lalita Chopra mail , Anika Sharma mail , Jasgurpreet Singh Chohan mail , Viyat Varun Upadhyay mail , Rajesh Singh mail , Shubham Sharma mail , Shashi Prakash Dwivedi mail , Abhinav Kumar mail , Elsayed M. Tag-Eldin mail ,

Chopra

<a class="ep_document_link" href="/10556/1/peerj-cs-1697.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Analyzing patients satisfaction level for medical services using twitter data

Public concern regarding health systems has experienced a rapid surge during the last two years due to the COVID-19 outbreak. Accordingly, medical professionals and health-related institutions reach out to patients and seek feedback to analyze, monitor, and uplift medical services. Such views and perceptions are often shared on social media platforms like Facebook, Instagram, Twitter, etc. Twitter is the most popular and commonly used by the researcher as an online platform for instant access to real-time news, opinions, and discussion. Its trending hashtags (#) and viral content make it an ideal hub for monitoring public opinion on a variety of topics. The tweets are extracted using three hashtags #healthcare, #healthcare services, and #medical facilities. Also, location and tweet sentiment analysis are considered in this study. Several recent studies deployed Twitter datasets using ML and DL models, but the results show lower accuracy. In addition, the studies did not perform extensive comparative analysis and lack validation. This study addresses two research questions: first, what are the sentiments of people toward medical services worldwide? and second, how effective are the machine learning and deep learning approaches for the classification of sentiment on healthcare tweets? Experiments are performed using several well-known machine learning models including support vector machine, logistic regression, Gaussian naive Bayes, extra tree classifier, k nearest neighbor, random forest, decision tree, and AdaBoost. In addition, this study proposes a transfer learning-based LSTM-ETC model that effectively predicts the customer’s satisfaction level from the healthcare dataset. Results indicate that despite the best performance by the ETC model with an 0.88 accuracy score, the proposed model outperforms with a 0.95 accuracy score. Predominantly, the people are happy about the provided medical services as the ratio of the positive sentiments is substantially higher than the negative sentiments. The sentiments, either positive or negative, play a crucial role in making important decisions through customer feedback and enhancing quality.

Producción Científica

Muhammad Usman mail , Muhammad Mujahid mail , Furqan Rustam mail , Emmanuel Soriano Flores mail emmanuel.soriano@uneatlantico.es, Juan Luis Vidal Mazón mail juanluis.vidal@uneatlantico.es, Isabel de la Torre Díez mail , Imran Ashraf mail ,

Usman

<a class="ep_document_link" href="/10840/1/nutrients-16-00282-v2.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Mediterranean Diet and Sleep Features: A Systematic Review of Current Evidence

The prevalence of sleep disorders, characterized by issues with quality, timing, and sleep duration is increasing globally. Among modifiable risk factors, diet quality has been suggested to influence sleep features. The Mediterranean diet is considered a landmark dietary pattern in terms of quality and effects on human health. However, dietary habits characterized by this cultural heritage should also be considered in the context of overall lifestyle behaviors, including sleep habits. This study aimed to systematically revise the literature relating to adherence to the Mediterranean diet and sleep features in observational studies. The systematic review comprised 23 reports describing the relation between adherence to the Mediterranean diet and different sleep features, including sleep quality, sleep duration, daytime sleepiness, and insomnia symptoms. The majority of the included studies were conducted in the Mediterranean basin and reported a significant association between a higher adherence to the Mediterranean diet and a lower likelihood of having poor sleep quality, inadequate sleep duration, excessive daytime sleepiness or symptoms of insomnia. Interestingly, additional studies conducted outside the Mediterranean basin showed a relationship between the adoption of a Mediterranean-type diet and sleep quality, suggesting that biological mechanisms sustaining such an association may exist. In conclusion, current evidence suggests a relationship between adhering to the Mediterranean diet and overall sleep quality and different sleep parameters. The plausible bidirectional association should be further investigated to understand whether the promotion of a healthy diet could be used as a tool to improve sleep quality.

Producción Científica

Justyna Godos mail , Raffaele Ferri mail , Giuseppe Lanza mail , Filippo Caraci mail , Angel Olider Rojas Vistorte mail angel.rojas@uneatlantico.es, Vanessa Yélamos Torres mail vanessa.yelamos@funiber.org, Giuseppe Grosso mail , Sabrina Castellano mail ,

Godos