Evaluación del estado de hidratación en deportistas de baloncesto, balonmano sala y balonmano playa de la Federación Deportiva de Santa Elena.

Tesis Materias > Alimentación
Materias > Educación física y el deporte
Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Cerrado Español La hidratación del deportista es importante para un rendimiento deportivo óptimo, un déficit mayor al 2% del peso corporal perjudica el rendimiento deportivo incrementa la posibilidad de lesiones como desgarre o ruptura de tejidos, taquicardias, calambres, mareos, golpes de calor, aumentando el riesgo de sufrir desmayos, cefaleas, contracturas, agotamiento, debido al bajo consumo de líquidos antes y durante la práctica deportiva. El objetivo general de este estudio fue evaluar el estado de hidratación a deportistas de 14 a 21 años de las disciplinas de baloncesto, balonmano sala y balonmano playa de Santa Elena, Ecuador, mediante la ingesta de líquido, pérdida de peso y tasa de sudoración para la implementación de protocolos de hidratación durante el periodo de marzo a junio del 2022. Se realizó un estudio cuantitativo, descriptivo de corte transversal sobre la ingesta de líquido, pérdida de peso y tasa de sudoración en una población de deportistas jóvenes de 14 a 21 años que practican deportes en equipos como baloncesto, balonmano playa y balonmano sala. Se valoró la ingesta de líquido, pérdida de peso, % agua corporal total, % deshidratación y tasa de sudoración. Los deportistas bebieron agua en sus respectivas botellas de 625 ml y se realizó una medición de orina recipiente milimetrado para muestra de orina.El equipo de baloncesto registró una media de 0,48% ± 0,31% en el porcentaje de peso perdido y de 7,76ml/min ± 2,70ml/min para la tasa de sudoración. Por otro lado, la media del %PP del equipo de balonmano sala fue de 0,77% ± 0,50% y 8,01ml/min ± 2,93ml/min en la TS. Mientras que en el equipo de balonmano playa se evidenció una media %PP de 0,62% ± 0,33 y 11,16mlmin ± 4,50 ml/min para la tasa de sudoración. La media de ingesta de líquido requerido fue de 930 ml para baloncesto, 961 ml para el equipo de balonmano sala y 1004 ml para balonmano playa. Mientras que la media de ingesta líquidos durante las prácticas fue de 895ml (96%), 894ml (93%) y 965ml (96%) respectivamente para cada deporte.El equipo de baloncesto en comparación con los otros equipos tiene una media en el consumo de agua, menor pérdida de peso y menor tasa de sudoración. Mientras que, balonmano sala bebe menos agua, tiene mayor pérdida de peso y un valor medio de sudoración. Para los jugadores de balonmano playa se resumen su estado de hidratación como elevada ingesta de agua, valor medio en pérdida de peso y sudoración alta. Palabras clave: Ingesta de líquidos; pérdida de peso; tasa de sudoración; deportistas; Santa Elena. metadata Angulo Holguin, Roxana Elizabeth mail roxananguloh_nutricionista@outlook.com (2022) Evaluación del estado de hidratación en deportistas de baloncesto, balonmano sala y balonmano playa de la Federación Deportiva de Santa Elena. Masters thesis, SIN ESPECIFICAR.

Texto completo no disponible.

Resumen

La hidratación del deportista es importante para un rendimiento deportivo óptimo, un déficit mayor al 2% del peso corporal perjudica el rendimiento deportivo incrementa la posibilidad de lesiones como desgarre o ruptura de tejidos, taquicardias, calambres, mareos, golpes de calor, aumentando el riesgo de sufrir desmayos, cefaleas, contracturas, agotamiento, debido al bajo consumo de líquidos antes y durante la práctica deportiva. El objetivo general de este estudio fue evaluar el estado de hidratación a deportistas de 14 a 21 años de las disciplinas de baloncesto, balonmano sala y balonmano playa de Santa Elena, Ecuador, mediante la ingesta de líquido, pérdida de peso y tasa de sudoración para la implementación de protocolos de hidratación durante el periodo de marzo a junio del 2022. Se realizó un estudio cuantitativo, descriptivo de corte transversal sobre la ingesta de líquido, pérdida de peso y tasa de sudoración en una población de deportistas jóvenes de 14 a 21 años que practican deportes en equipos como baloncesto, balonmano playa y balonmano sala. Se valoró la ingesta de líquido, pérdida de peso, % agua corporal total, % deshidratación y tasa de sudoración. Los deportistas bebieron agua en sus respectivas botellas de 625 ml y se realizó una medición de orina recipiente milimetrado para muestra de orina.El equipo de baloncesto registró una media de 0,48% ± 0,31% en el porcentaje de peso perdido y de 7,76ml/min ± 2,70ml/min para la tasa de sudoración. Por otro lado, la media del %PP del equipo de balonmano sala fue de 0,77% ± 0,50% y 8,01ml/min ± 2,93ml/min en la TS. Mientras que en el equipo de balonmano playa se evidenció una media %PP de 0,62% ± 0,33 y 11,16mlmin ± 4,50 ml/min para la tasa de sudoración. La media de ingesta de líquido requerido fue de 930 ml para baloncesto, 961 ml para el equipo de balonmano sala y 1004 ml para balonmano playa. Mientras que la media de ingesta líquidos durante las prácticas fue de 895ml (96%), 894ml (93%) y 965ml (96%) respectivamente para cada deporte.El equipo de baloncesto en comparación con los otros equipos tiene una media en el consumo de agua, menor pérdida de peso y menor tasa de sudoración. Mientras que, balonmano sala bebe menos agua, tiene mayor pérdida de peso y un valor medio de sudoración. Para los jugadores de balonmano playa se resumen su estado de hidratación como elevada ingesta de agua, valor medio en pérdida de peso y sudoración alta. Palabras clave: Ingesta de líquidos; pérdida de peso; tasa de sudoración; deportistas; Santa Elena.

Tipo de Documento: Tesis (Masters)
Palabras Clave: Ingesta de líquidos, pérdida de peso, tasa de sudoración, deportistas, Santa Elena.
Clasificación temática: Materias > Alimentación
Materias > Educación física y el deporte
Divisiones: Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Depositado: 18 Abr 2024 23:30
Ultima Modificación: 18 Abr 2024 23:30
URI: https://repositorio.unini.edu.mx/id/eprint/2790

Acciones (logins necesarios)

Ver Objeto Ver Objeto

<a href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Influence of E-learning training on the acquisition of competences in basketball coaches in Cantabria

The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.

Producción Científica

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,

Alemany Iturriaga

<a class="ep_document_link" href="/12747/1/sensors-24-03754%20%281%29.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Ultra-Wide Band Radar Empowered Driver Drowsiness Detection with Convolutional Spatial Feature Engineering and Artificial Intelligence

Driving while drowsy poses significant risks, including reduced cognitive function and the potential for accidents, which can lead to severe consequences such as trauma, economic losses, injuries, or death. The use of artificial intelligence can enable effective detection of driver drowsiness, helping to prevent accidents and enhance driver performance. This research aims to address the crucial need for real-time and accurate drowsiness detection to mitigate the impact of fatigue-related accidents. Leveraging ultra-wideband radar data collected over five minutes, the dataset was segmented into one-minute chunks and transformed into grayscale images. Spatial features are retrieved from the images using a two-dimensional Convolutional Neural Network. Following that, these features were used to train and test multiple machine learning classifiers. The ensemble classifier RF-XGB-SVM, which combines Random Forest, XGBoost, and Support Vector Machine using a hard voting criterion, performed admirably with an accuracy of 96.6%. Additionally, the proposed approach was validated with a robust k-fold score of 97% and a standard deviation of 0.018, demonstrating significant results. The dataset is augmented using Generative Adversarial Networks, resulting in improved accuracies for all models. Among them, the RF-XGB-SVM model outperformed the rest with an accuracy score of 99.58%.

Producción Científica

Hafeez Ur Rehman Siddiqui mail , Ambreen Akmal mail , Muhammad Iqbal mail , Adil Ali Saleem mail , Muhammad Amjad Raza mail , Kainat Zafar mail , Aqsa Zaib mail , Sandra Dudley mail , Jon Arambarri mail jon.arambarri@uneatlantico.es, Ángel Gabriel Kuc Castilla mail , Furqan Rustam mail ,

Siddiqui

<a href="/12749/1/fnut-11-1083759.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

From by-products to new application opportunities: the enhancement of the leaves deriving from the fruit plants for new potential healthy products

In the last decades, the world population and demand for any kind of product have grown exponentially. The rhythm of production to satisfy the request of the population has become unsustainable and the concept of the linear economy, introduced after the Industrial Revolution, has been replaced by a new economic approach, the circular economy. In this new economic model, the concept of “the end of life” is substituted by the concept of restoration, providing a new life to many industrial wastes. Leaves are a by-product of several agricultural cultivations. In recent years, the scientific interest regarding leaf biochemical composition grew, recording that plant leaves may be considered an alternative source of bioactive substances. Plant leaves’ main bioactive compounds are similar to those in fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. Bioactive compounds can positively influence human health; in fact, it is no coincidence that the leaves were used by our ancestors as a natural remedy for various pathological conditions. Therefore, leaves can be exploited to manufacture many products in food (e.g., being incorporated in food formulations as natural antioxidants, or used to create edible coatings or films for food packaging), cosmetic and pharmaceutical industries (e.g., promising ingredients in anti-aging cosmetics such as oils, serums, dermatological creams, bath gels, and other products). This review focuses on the leaves’ main bioactive compounds and their beneficial health effects, indicating their applications until today to enhance them as a harvesting by-product and highlight their possible reuse for new potential healthy products.

Producción Científica

Lucia Regolo mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Yasmany Armas Diaz mail , Bruno Mezzetti mail , Maria Elexpuru Zabaleta mail maria.elexpuru@uneatlantico.es, Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Kilian Tutusaus mail kilian.tutusaus@uneatlantico.es, Luca Mazzoni mail ,

Regolo

<a class="ep_document_link" href="/12750/1/s41598-024-63831-0.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Efficient deep learning-based approach for malaria detection using red blood cell smears

Malaria is an extremely malignant disease and is caused by the bites of infected female mosquitoes. This disease is not only infectious among humans, but among animals as well. Malaria causes mild symptoms like fever, headache, sweating and vomiting, and muscle discomfort; severe symptoms include coma, seizures, and kidney failure. The timely identification of malaria parasites is a challenging and chaotic endeavor for health staff. An expert technician examines the schematic blood smears of infected red blood cells through a microscope. The conventional methods for identifying malaria are not efficient. Machine learning approaches are effective for simple classification challenges but not for complex tasks. Furthermore, machine learning involves rigorous feature engineering to train the model and detect patterns in the features. On the other hand, deep learning works well with complex tasks and automatically extracts low and high-level features from the images to detect disease. In this paper, EfficientNet, a deep learning-based approach for detecting Malaria, is proposed that uses red blood cell images. Experiments are carried out and performance comparison is made with pre-trained deep learning models. In addition, k-fold cross-validation is also used to substantiate the results of the proposed approach. Experiments show that the proposed approach is 97.57% accurate in detecting Malaria from red blood cell images and can be beneficial practically for medical healthcare staff.

Producción Científica

Muhammad Mujahid mail , Furqan Rustam mail , Rahman Shafique mail , Elizabeth Caro Montero mail elizabeth.caro@uneatlantico.es, Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Isabel de la Torre Diez mail , Imran Ashraf mail ,

Mujahid

<a href="/12751/1/s12874-024-02249-8.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Feature group partitioning: an approach for depression severity prediction with class balancing using machine learning algorithms

In contemporary society, depression has emerged as a prominent mental disorder that exhibits exponential growth and exerts a substantial influence on premature mortality. Although numerous research applied machine learning methods to forecast signs of depression. Nevertheless, only a limited number of research have taken into account the severity level as a multiclass variable. Besides, maintaining the equality of data distribution among all the classes rarely happens in practical communities. So, the inevitable class imbalance for multiple variables is considered a substantial challenge in this domain. Furthermore, this research emphasizes the significance of addressing class imbalance issues in the context of multiple classes. We introduced a new approach Feature group partitioning (FGP) in the data preprocessing phase which effectively reduces the dimensionality of features to a minimum. This study utilized synthetic oversampling techniques, specifically Synthetic Minority Over-sampling Technique (SMOTE) and Adaptive Synthetic (ADASYN), for class balancing. The dataset used in this research was collected from university students by administering the Burn Depression Checklist (BDC). For methodological modifications, we implemented heterogeneous ensemble learning stacking, homogeneous ensemble bagging, and five distinct supervised machine learning algorithms. The issue of overfitting was mitigated by evaluating the accuracy of the training, validation, and testing datasets. To justify the effectiveness of the prediction models, balanced accuracy, sensitivity, specificity, precision, and f1-score indices are used. Overall, comprehensive analysis demonstrates the discrimination between the Conventional Depression Screening (CDS) and FGP approach. In summary, the results show that the stacking classifier for FGP with SMOTE approach yields the highest balanced accuracy, with a rate of 92.81%. The empirical evidence has demonstrated that the FGP approach, when combined with the SMOTE, able to produce better performance in predicting the severity of depression. Most importantly the optimization of the training time of the FGP approach for all of the classifiers is a significant achievement of this research.

Producción Científica

Tumpa Rani Shaha mail , Momotaz Begum mail , Jia Uddin mail , Vanessa Yélamos Torres mail vanessa.yelamos@funiber.org, Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Imran Ashraf mail , Md. Abdus Samad mail ,

Shaha