Propuesta de actualización sobre comunicación interna y la gestión del conflicto organizacional para personal directivo y administrativo de la reciente Sede Regional del Sur, de la Universidad de Costa Rica.
<a href="/17849/1/1-s2.0-S2590005625001043-main.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Ultra Wideband radar-based gait analysis for gender classification using artificial intelligence
Gender classification plays a vital role in various applications, particularly in security and healthcare. While several biometric methods such as facial recognition, voice analysis, activity monitoring, and gait recognition are commonly used, their accuracy and reliability often suffer due to challenges like body part occlusion, high computational costs, and recognition errors. This study investigates gender classification using gait data captured by Ultra-Wideband radar, offering a non-intrusive and occlusion-resilient alternative to traditional biometric methods. A dataset comprising 163 participants was collected, and the radar signals underwent preprocessing, including clutter suppression and peak detection, to isolate meaningful gait cycles. Spectral features extracted from these cycles were transformed using a novel integration of Feedforward Artificial Neural Networks and Random Forests , enhancing discriminative power. Among the models evaluated, the Random Forest classifier demonstrated superior performance, achieving 94.68% accuracy and a cross-validation score of 0.93. The study highlights the effectiveness of Ultra-wideband radar and the proposed transformation framework in advancing robust gender classification.
Adil Ali Saleem mail , Hafeez Ur Rehman Siddiqui mail , Muhammad Amjad Raza mail , Sandra Dudley mail , Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Isabel de la Torre Díez mail ,
Saleem
<a href="/17844/1/frai-1-1572645.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
A systematic review of deep learning methods for community detection in social networks
Introduction: The rapid expansion of generated data through social networks has introduced significant challenges, which underscores the need for advanced methods to analyze and interpret these complex systems. Deep learning has emerged as an effective approach, offering robust capabilities to process large datasets, and uncover intricate relationships and patterns. Methods: In this systematic literature review, we explore research conducted over the past decade, focusing on the use of deep learning techniques for community detection in social networks. A total of 19 studies were carefully selected from reputable databases, including the ACM Library, Springer Link, Scopus, Science Direct, and IEEE Xplore. This review investigates the employed methodologies, evaluates their effectiveness, and discusses the challenges identified in these works. Results: Our review shows that models like graph neural networks (GNNs), autoencoders, and convolutional neural networks (CNNs) are some of the most commonly used approaches for community detection. It also examines the variety of social networks, datasets, evaluation metrics, and employed frameworks in these studies. Discussion: However, the analysis highlights several challenges, such as scalability, understanding how the models work (interpretability), and the need for solutions that can adapt to different types of networks. These issues stand out as important areas that need further attention and deeper research. This review provides meaningful insights for researchers working in social network analysis. It offers a detailed summary of recent developments, showcases the most impactful deep learning methods, and identifies key challenges that remain to be explored.
Mohamed El-Moussaoui mail , Mohamed Hanine mail , Ali Kartit mail , Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Helena Garay mail helena.garay@uneatlantico.es, Isabel de la Torre Díez mail ,
El-Moussaoui
<a href="/17831/1/s43856-025-01020-4.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Association between blood cortisol levels and numerical rating scale in prehospital pain assessment
Background Nowadays, there is no correlation between levels of cortisol and pain in the prehospital setting. The aim of this work was to determine the ability of prehospital cortisol levels to correlate to pain. Cortisol levels were compared with those of the numerical rating scale (NRS). Methods This is a prospective observational study looking at adult patients with acute disease managed by Emergency Medical Services (EMS) and transferred to the emergency department of two tertiary care hospitals. Epidemiological variables, vital signs, and prehospital blood analysis data were collected. A total of 1516 patients were included, the median age was 67 years (IQR: 51–79; range: 18–103) with 42.7% of females. The primary outcome was pain evaluation by NRS, which was categorized as pain-free (0 points), mild (1–3), moderate (4–6), or severe (≥7). Analysis of variance, correlation, and classification capacity in the form area under the curve of the receiver operating characteristic (AUC) curve were used to prospectively evaluate the association of cortisol with NRS. Results The median NRS and cortisol level are 1 point (IQR: 0–4) and 282 nmol/L (IQR: 143–433). There are 584 pain-free patients (38.5%), 525 mild (34.6%), 244 moderate (16.1%), and 163 severe pain (10.8%). Cortisol levels in each NRS category result in p < 0.001. The correlation coefficient between the cortisol level and NRS is 0.87 (p < 0.001). The AUC of cortisol to classify patients into each NRS category is 0.882 (95% CI: 0.853–0.910), 0.496 (95% CI: 0.446–0.545), 0.837 (95% CI: 0.803–0.872), and 0.981 (95% CI: 0.970–0.991) for the pain-free, mild, moderate, and severe categories, respectively. Conclusions Cortisol levels show similar pain evaluation as NRS, with high-correlation for NRS pain categories, except for mild-pain. Therefore, cortisol evaluation via the EMS could provide information regarding pain status.
Raúl López-Izquierdo mail , Elisa A. Ingelmo-Astorga mail , Carlos del Pozo Vegas mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Ancor Sanz-García mail , Francisco Martín-Rodríguez mail ,
López-Izquierdo
<a class="ep_document_link" href="/17838/1/s41598-025-02008-9.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Botnet detection in internet of things using stacked ensemble learning model
Botnets are used for malicious activities such as cyber-attacks, spamming, and data theft and have become a significant threat to cyber security. Despite existing approaches for cyber attack detection, botnets prove to be a particularly difficult problem that calls for more advanced detection methods. In this research, a stacking classifier is proposed based on K-nearest neighbor, support vector machine, decision tree, random forest, and multilayer perceptron, called KSDRM, for botnet detection. Logistic regression acts as the meta-learner to combine the predictions from the base classifiers into the final prediction with the aim of increasing the overall accuracy and predictive performance of the ensemble. The UNSW-NB15 dataset is used to train machine learning models and evaluate their effectiveness in detecting cyber-attacks on IoT networks. The categorical features are transformed into numerical values using label encoding. Machine learning techniques are adopted to recognize botnet attacks to enhance cyber security measures. The KSDRM model successfully captures the complex patterns and traits of botnet attacks and obtains 99.99% training accuracy. The KSDRM model also performs well during testing by achieving an accuracy of 97.94%. Based on 3, 5, 7, and 10 folds, the k-fold cross-validation results show that the proposed method’s average accuracy is 99.89%, 99.88%, 99.89%, and 99.87%, respectively. Further, the demonstration of experiments and results shows the KSDRM model is an effective method to identify botnet-based cyber attacks. The findings of this study have the potential to improve cyber security controls and strengthen networks against changing threats.
Mudasir Ali mail , Muhammad Faheem Mushtaq mail , Urooj Akram mail , Daniel Gavilanes Aray mail daniel.gavilanes@uneatlantico.es, Manuel Masías Vergara mail manuel.masias@uneatlantico.es, Hanen Karamti mail , Imran Ashraf mail ,
Ali
<a class="ep_document_link" href="/17840/1/biomedicines-13-01797.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
In the original publication [1], there was a mistake in Table 1 as published. In Table 1, the row labelled “Dose 1” appears twice; once at the top and once again at the bottom (after Dose 7). This repeated entry was unintentional and should be removed. The correct table should end at Dose 7, and the repeated Dose 1 row at the bottom is redundant and may cause confusion. The corrected Table 1 appears below. The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.
Malaz Yousef mail , Jaime A. Yáñez mail jaime.yanez@unini.edu.mx, Raimar Löbenberg mail , Neal M. Davies mail ,
Yousef
Tipo de documento: Tesis (Masters)
Fecha de publicación: 2022-08-10
URI: https://repositorio.unini.edu.mx/id/eprint/3204
Resumen:
El proyecto propone el diseño de una propuesta de actualización interna basada en comunicación y resolución de conflicto organizacional para miembros de dirección, Consejo de Sede, coordinaciones generales y administrativos de la reciente Sede Regional del Sur, de la Universidad de Costa Rica. Esta propuesta se realiza en un contexto de cambio en la dirección y en la figura organizativa de recinto a sede universitaria, por lo que por medio de diferentes espacios de capacitación se busca favorecer ese proceso de cambio, la comunicación interna, fortalecer los liderazgos y brindar herramientas para la resolución de conflictos organizacionales en este centro de estudios. Como primera parte, en el proyecto se identifican las deficiencias y necesidades de esta población en los temas relacionados con los ejes de comunicación interna y gestión del conflicto en el ámbito laboral a través de técnicas cualitativas como entrevistas focalizadas a profundidad, cuestionario en línea, un grupo de discusión, observación estructurada y revisión documental, y a partir de estos insumos, se definen los ejes de trabajo a atender y se plantea el diseño de una propuesta de actualización que consta de tres bloques temáticos con insumos que enriquecen a esta población con elementos sobre comunicación organizacional y asertiva, liderazgo, resolución de conflictos y estrategias aplicables en su campo laboral. La propuesta considera contenidos, actividades, duración, cronograma recomendado, recursos y necesidades, además de un plan de seguimiento para el cumplimiento de los objetivos. Cada una de las actividades está pensada de manera que puedan integrarse los temas y abarcar los contenidos que resultan de lo identificado en la primera parte. Un elemento de importancia es que en este periodo se logró validar el 50% de la propuesta con los públicos, de manera que se incorporan también elementos de mejora producto de esta validación para que las actividades y materiales puedan ser aplicables en la sede y mejorar los procesos internos y la convivencia de las personas trabajadoras. El interés de trabajar con esta población surge por contactos previos con las personas en dirección y por la anuencia que ofrecen para la consecución de los objetivos. Es importante señalar que según se mencionó, no se suelen realizar procesos de este tipo con la población de personas funcionarias, por lo que ofrecer este espacio y tomar en cuenta sus necesidades, resultó de mucho interés para la participación e integración del personal tanto en el proceso de recolección de datos como de validación de la propuesta. Finalmente, este proceso le brinda a las personas tomadoras de decisión una serie de insumos de relevancia para considerar en esta nueva gestión, tanto en los temas específicos de la propuesta, como otros espacios de actualización y capacitación que las personas funcionarias quisieran tener para enriquecer su trabajo y mejorar el ambiente, la cultura y el clima organizacional.