Pluriactividade, agricultura familiar e condições socio-económicas em duas comunidades de Boane, Moçambique: Perspectivas e desafios entre 2009 e 2020

Thesis Subjects > Social Sciences Ibero-american International University > Research > Doctoral Thesis Cerrado Portugués Em Moçambique, o trabalho agro-pecuário como actividade principal tem reduzido sua importância nos últimos dez anos, tal como ocorre em muitos países em desenvolvimento, convertendo-se em trabalho regular, combinado na família, com trabalho fora da exploração ou extra-agrícola. Esse fenómeno é conhecido internacionalmente como pluriactividade, encarado positivamente para sustentabilidade agrícola e redução da pobreza, sem abandonar o campo entre pequenos agricultores. Esta pesquisa objectivou compreender, para 2009 e 2020, as perspectivas da pluriactividade melhorar as condições socio-económicas dos agricultores familiares do Distrito de Boane, em Maputo, Sul de Moçambique, uma zona de expansão urbana, e de grandes investimentos agrícolas e não agrícolas. O estudo baseou-se numa combinação de métodos quantitativos e qualitativos para recolha, tratamento e análise de dados. Os resultados indicam haver muitas explorações pluriactivas, entre famílias de tamanho numeroso, homens, jovens, mais instruidos, conta própria e em actividades não agrícolas, com perspectivas de incremento, impulsionado desse modo pelos factores intrínsecos da família. Como reflexo, a média da produção agrícola, renda familiar e de posse de bens duráveis foram maiores entre famílias pluriactivas em relação às famílias exclusivamente de agricultores. No entanto, a produção agrícola por exploração, os rácios entre rendimento mensal pluriactivo e o salário mínimo nacional, e entre renda per capita dirário e a linha da pobreza decresceram consideravelmente no período do estudo. Isso configurou a pluriactividade como projecto de diversificação crescente, apenas para sobrevivência, para complemento da renda agro-pecuária, insuficiente para melhoria das condições socio-económicas dos participantes, devido à falta de assistência agrária e uso de tecnologias agrícolas rudimentares entre os participantes, entre outros factores extrínsecos da família. Isto implica que o estado deve adoptar políticas promotoras da pluriactividade, com incremento de assistência agrária, do crédito, das tecnologias agrícolas melhoradas e das ligações da agricultura familiar com o mercado para famílias melhorar sustentavelmente seu bem-estar. metadata Cossa, Alberto Francisco mail alberto.cossa28@gmail.com (2022) Pluriactividade, agricultura familiar e condições socio-económicas em duas comunidades de Boane, Moçambique: Perspectivas e desafios entre 2009 e 2020. Doctoral thesis, UNSPECIFIED.

Full text not available from this repository.

Abstract

Em Moçambique, o trabalho agro-pecuário como actividade principal tem reduzido sua importância nos últimos dez anos, tal como ocorre em muitos países em desenvolvimento, convertendo-se em trabalho regular, combinado na família, com trabalho fora da exploração ou extra-agrícola. Esse fenómeno é conhecido internacionalmente como pluriactividade, encarado positivamente para sustentabilidade agrícola e redução da pobreza, sem abandonar o campo entre pequenos agricultores. Esta pesquisa objectivou compreender, para 2009 e 2020, as perspectivas da pluriactividade melhorar as condições socio-económicas dos agricultores familiares do Distrito de Boane, em Maputo, Sul de Moçambique, uma zona de expansão urbana, e de grandes investimentos agrícolas e não agrícolas. O estudo baseou-se numa combinação de métodos quantitativos e qualitativos para recolha, tratamento e análise de dados. Os resultados indicam haver muitas explorações pluriactivas, entre famílias de tamanho numeroso, homens, jovens, mais instruidos, conta própria e em actividades não agrícolas, com perspectivas de incremento, impulsionado desse modo pelos factores intrínsecos da família. Como reflexo, a média da produção agrícola, renda familiar e de posse de bens duráveis foram maiores entre famílias pluriactivas em relação às famílias exclusivamente de agricultores. No entanto, a produção agrícola por exploração, os rácios entre rendimento mensal pluriactivo e o salário mínimo nacional, e entre renda per capita dirário e a linha da pobreza decresceram consideravelmente no período do estudo. Isso configurou a pluriactividade como projecto de diversificação crescente, apenas para sobrevivência, para complemento da renda agro-pecuária, insuficiente para melhoria das condições socio-económicas dos participantes, devido à falta de assistência agrária e uso de tecnologias agrícolas rudimentares entre os participantes, entre outros factores extrínsecos da família. Isto implica que o estado deve adoptar políticas promotoras da pluriactividade, com incremento de assistência agrária, do crédito, das tecnologias agrícolas melhoradas e das ligações da agricultura familiar com o mercado para famílias melhorar sustentavelmente seu bem-estar.

Item Type: Thesis (Doctoral)
Uncontrolled Keywords: pluriactividade, agricultura familiar, condições socio-económicas, sustentabilidade, desenvolvimento rural
Subjects: Subjects > Social Sciences
Divisions: Ibero-american International University > Research > Doctoral Thesis
Date Deposited: 21 Sep 2023 23:30
Last Modified: 21 Sep 2023 23:30
URI: https://repositorio.unini.edu.mx/id/eprint/823

Actions (login required)

View Item View Item

<a href="/15983/1/Food%20Science%20%20%20Nutrition%20-%202025%20-%20Tanveer%20-%20Novel%20Transfer%20Learning%20Approach%20for%20Detecting%20Infected%20and%20Healthy%20Maize%20Crop.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Novel Transfer Learning Approach for Detecting Infected and Healthy Maize Crop Using Leaf Images

Maize is a staple crop worldwide, essential for food security, livestock feed, and industrial uses. Its health directly impacts agricultural productivity and economic stability. Effective detection of maize crop health is crucial for preventing disease spread and ensuring high yields. This study presents VG-GNBNet, an innovative transfer learning model that accurately detects healthy and infected maize crops through a two-step feature extraction process. The proposed model begins by leveraging the visual geometry group (VGG-16) network to extract initial pixel-based spatial features from the crop images. These features are then further refined using the Gaussian Naive Bayes (GNB) model and feature decomposition-based matrix factorization mechanism, which generates more informative features for classification purposes. This study incorporates machine learning models to ensure a comprehensive evaluation. By comparing VG-GNBNet's performance against these models, we validate its robustness and accuracy. Integrating deep learning and machine learning techniques allows VG-GNBNet to capitalize on the strengths of both approaches, leading to superior performance. Extensive experiments demonstrate that the proposed VG-GNBNet+GNB model significantly outperforms other models, achieving an impressive accuracy score of 99.85%. This high accuracy highlights the model's potential for practical application in the agricultural sector, where the precise detection of crop health is crucial for effective disease management and yield optimization.

Producción Científica

Muhammad Usama Tanveer mail , Kashif Munir mail , Ali Raza mail , Laith Abualigah mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Imran Ashraf mail ,

Tanveer

<a class="ep_document_link" href="/16270/1/s12880-024-01546-4.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Novel transfer learning based bone fracture detection using radiographic images

A bone fracture is a medical condition characterized by a partial or complete break in the continuity of the bone. Fractures are primarily caused by injuries and accidents, affecting millions of people worldwide. The healing process for a fracture can take anywhere from one month to one year, leading to significant economic and psychological challenges for patients. The detection of bone fractures is crucial, and radiographic images are often relied on for accurate assessment. An efficient neural network method is essential for the early detection and timely treatment of fractures. In this study, we propose a novel transfer learning-based approach called MobLG-Net for feature engineering purposes. Initially, the spatial features are extracted from bone X-ray images using a transfer model, MobileNet, and then input into a tree-based light gradient boosting machine (LGBM) model for the generation of class probability features. Several machine learning (ML) techniques are applied to the subsets of newly generated transfer features to compare the results. K-nearest neighbor (KNN), LGBM, logistic regression (LR), and random forest (RF) are implemented using the novel features with optimized hyperparameters. The LGBM and LR models trained on proposed MobLG-Net (MobileNet-LGBM) based features outperformed others, achieving an accuracy of 99% in predicting bone fractures. A cross-validation mechanism is used to evaluate the performance of each model. The proposed study can improve the detection of bone fractures using X-ray images.

Producción Científica

Aneeza Alam mail , Ahmad Sami Al-Shamayleh mail , Nisrean Thalji mail , Ali Raza mail , Edgar Aníbal Morales Barajas mail , Ernesto Bautista Thompson mail ernesto.bautista@unini.edu.mx, Isabel de la Torre Diez mail , Imran Ashraf mail ,

Alam

<a href="/16273/1/v16p0506.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Hybrid Model with Wavelet Decomposition and EfficientNet for Accurate Skin Cancer Classification

Faced with anomalies in medical images, Deep learning is facing major challenges in detecting, diagnosing, and classifying the various pathologies that can be treated via medical imaging. The main challenges encountered are mainly due to the imbalance and variability of the data, as well as its complexity. The detection and classification of skin diseases is one such challenge that researchers are trying to overcome, as these anomalies present great variability in terms of appearance, texture, color, and localization, which sometimes makes them difficult to identify accurately and quickly, particularly by doctors, or by the various Deep Learning techniques on offer. In this study, an innovative and robust hybrid architecture is unveiled, underscoring the symbiotic potential of wavelet decomposition in conjunction with EfficientNet models. This approach integrates wavelet transformations with an EfficientNet backbone and incorporates advanced data augmentation, loss function, and optimization strategies. The model tested on the publicly accessible HAM10000 and ISIC2017 datasets has achieved an accuracy rate of 94.7%, and 92.2% respectively.

Producción Científica

Amina Aboulmira mail , Hamid Hrimech mail , Mohamed Lachgar mail , Mohamed Hanine mail , Carlos Manuel Osorio García mail carlos.osorio@uneatlantico.es, Gerardo Méndez Mezquita mail , Imran Ashraf mail ,

Aboulmira

<a href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Influence of E-learning training on the acquisition of competences in basketball coaches in Cantabria

The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.

Producción Científica

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,

Alemany Iturriaga

<a href="/15625/1/s41598-024-74127-8.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Smart agriculture: utilizing machine learning and deep learning for drought stress identification in crops

Plant stress reduction research has advanced significantly with the use of Artificial Intelligence (AI) techniques, such as machine learning and deep learning. This is a significant step toward sustainable agriculture. Innovative insights into the physiological responses of plants mostly crops to drought stress have been revealed through the use of complex algorithms like gradient boosting, support vector machines (SVM), recurrent neural network (RNN), and long short-term memory (LSTM), combined with a thorough examination of the TYRKC and RBR-E3 domains in stress-associated signaling proteins across a range of crop species. Modern resources were used in this study, including the UniProt protein database for crop physiochemical properties associated with specific signaling domains and the SMART database for signaling protein domains. These insights were then applied to deep learning and machine learning techniques after careful data processing. The rigorous metric evaluations and ablation analysis that typified the study’s approach highlighted the algorithms’ effectiveness and dependability in recognizing and classifying stress events. Notably, the accuracy of SVM was 82%, while gradient boosting and RNN showed 96%, and 94%, respectively and LSTM obtained an astounding 97% accuracy. The study observed these successes but also highlights the ongoing obstacles to AI adoption in agriculture, emphasizing the need for creative thinking and interdisciplinary cooperation. In addition to its scholarly value, the collected data has significant implications for improving resource efficiency, directing precision agricultural methods, and supporting global food security programs. Notably, the gradient boosting and LSTM algorithm outperformed the others with an exceptional accuracy of 96% and 97%, demonstrating their potential for accurate stress categorization. This work highlights the revolutionary potential of AI to completely disrupt the agricultural industry while simultaneously advancing our understanding of plant stress responses.

Producción Científica

Tariq Ali mail , Saif Ur Rehman mail , Shamshair Ali mail , Khalid Mahmood mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Tahir Khurshaid mail , Imran Ashraf mail ,

Ali