Consultar por División
![]() | Subir un nivel |
- FUNIBER (10)
Otro
Otro
Materias > Alimentación
Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Abierto
Inglés, Español, Italiano, Portugués
Composición Nutricional es un espacio creado para proporcionar una serie de servicios de valor añadido, ofreciendo herramientas, recursos e informaciones sobre programas de formación e investigación para profesionales e interesados en el ámbito de la nutrición y salud.
metadata
SIN ESPECIFICAR
mail
SIN ESPECIFICAR
(2022)
Composición Nutricional.
Repositorio de la Universidad.
Otro
Materias > Ciencias Sociales
Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Cerrado
Inglés, Español
A partir de los datos introducidos y de diferentes escenarios, la herramienta del simulador digital genera distintos retos a los estudiantes-emprendedores para poner a prueba y evaluar la parte financiera de una propuesta de emprendimiento y también ofrece recomendaciones en función de la aportación real de diferentes agentes financieros como bancos, inversores privados, business angels o plataformas de financiación colaborativa.
metadata
SIN ESPECIFICAR
mail
SIN ESPECIFICAR
(2023)
Digital Simulator for Entrepreneurial Finance (FINANCEn_LAB).
Repositorio de la Universidad.
Otro
Materias > Educación física y el deporte
Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Abierto
Español
El objetivo de esta investigación es estudiar cuál es el mecanismo de protección ante las consecuencias de la ganancia excesiva de peso en el embarazo en mujeres físicamente activas. Dados los resultados de las investigaciones realizadas acerca de la función endocrina y paracrina del músculo esquelético y la liberación de miokinas, una de las principales líneas de trabajo será estudiar la relación entre la presencia de miokinas y los beneficios obtenidos por el ejercicio físico.
Se inicia el proyecto realizando una revisión del estado del arte en dos áreas en cuanto a ejercicio físico y liberación de miokinas y por otro lado, del tipo de ejercicio que más beneficios reporta en el proceso de gestación.
Se lleva a cabo un ensayo clínico con el Hospital Universitario Marqués de Valdecilla para observar el efecto del ejercicio físico durante el embarazo en la liberación de miokinas y en la prevención de la ganancia excesiva de peso y sus consecuencias.
Como resultado del proyecto se ha generado la página web www.embactiva.es que ha sido presentada en la primera reunión de la Red Temática Española de Ejercicio durante el Embarazo. Esta web está siendo reconocida como enlace de interés desde la Sociedad Española de Ginecología y Obstetricia (SEGO), El Hospital Universitario de Fuenlabrada, ANIS, Farmacosalud, Clínica Zuatzu, entre otros.
metadata
SIN ESPECIFICAR
mail
SIN ESPECIFICAR
(2017)
Estudio de la influencia del ejercicio físico durante el embarazo en la prevención de las consecuencias de la ganancia excesiva de peso - EFEMBARAZO.
Repositorio de la Universidad.
(Inédito)
Otro
Materias > Ciencias Sociales
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Abierto
Inglés
La aplicación “Navigating Tourism in Crisis” está dirigida directamente a nuevos empresarios y con experiencia, interesados en prosperar en el difícil sector turístico, especialmente durante crisis turbulentas. Contiene enlaces a todos los recursos creados dentro de este proyecto, incluidos vídeos, podcasts, estudios de casos y cursos modulares, centrándose especialmente en la accesibilidad de los materiales de aprendizaje para aquellos que quieren evitar pasar largas horas delante de un ordenador.
metadata
SIN ESPECIFICAR
mail
SIN ESPECIFICAR
(2023)
Navigating SMEs in the tourism sector through crisis (T-CRISIS-NAV).
Repositorio de la Universidad.
Otro
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Cerrado
Español
Como resultado del proyecto “Nuevos mecanismos para conocer el riesgo de lesión en el deporte en diferentes tramos de la temporada deportiva” se ha generado una herramienta digital que permite llevar el control de las lesiones de cada deportista, así como sus constantes biomecánicas, hábitos de alimentación y estado de salud emocional de tal forma que, se cuenta con información que combina varios factores a un nivel de detalle importante y de modo personalizado para cada jugador. De este modo, se obtienen los inputs para generar el análisis estadístico que alerta sobre las probabilidades de sufrir determinada lesión.
Objetivo del Proyecto:
Desarrollar una herramienta que permita identificar el riesgo de lesión de un deportista, independientemente del nivel o categoría del mismo, y poder actuar en consecuencia de manera individualizada, según el período de la temporada en el que se encuentre.
Financiación:
Este proyecto ha sido cofinanciado por la Sociedad de Desarrollo Regional de Cantabria (SODERCAN) y el el Programa Operativo FEDER de Cantabria en el marco del programa denominado I+C= +C 2016 (Investigación + Conocimiento= +Cantabria) que tiene por objetivo el fortalecimiento del tejido industrial de la región.
Inicio:
15/12/2016
Fin:
14/12/2018
Código Externo:
ID16-IN-022
metadata
SIN ESPECIFICAR
mail
SIN ESPECIFICAR
(2016)
Nuevos mecanismos para conocer el riesgo de lesión en el deporte en diferentes tramos de la temporada deportiva. R&P (Recovery and Performance).
Repositorio de la Universidad.
(Inédito)
Otro
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Cerrado
Español
El proyecto se centra en el desarrollo de tecnologías para la identificación de riesgos en espacios acuáticos naturales. A partir del conocimiento que se pretende generar, la entidad espera comercializar servicios de soporte para la gestión de riesgos, la acción preventiva y comunicación de emergencias.
La propuesta se orienta a crear un sistema experto en la gestión de riesgos en espacios acuáticos naturales (playas), basado por un lado en una aplicación para la evaluación de riesgos, y por otro, en un sistema de registro y análisis de sucesos y accidentes.
Esta herramienta debe permitir a los responsables de la gestión de la seguridad en zonas de baño una gestión adecuada y eficaz de los recursos preventivos para minimizar la probabilidad y severidad de riesgos que puedan afectar a la integridad física o a la salud de las personas, y en consecuencia, el aumento de la seguridad acuática en las costas.
Objetivo del Proyecto:
Desarrollar tecnologías para la identificación de riesgos en espacios acuáticos naturales con el objeto de prevenir ahogamientos y otros incidentes en zonas de playa.
Financiación:
Este proyecto ha sido cofinanciado por la Sociedad de Desarrollo Regional de Cantabria (SODERCAN) y el el Programa Operativo FEDER de Cantabria en el marco del programa denominado I+C= +C 2016 (Investigación + Conocimiento= +Cantabria) que tiene por objetivo el fortalecimiento del tejido industrial de la región.
Inicio:
09/12/2016
Fin:
08/12/2018
Código Externo:
ID16-IN-038
metadata
SIN ESPECIFICAR
mail
SIN ESPECIFICAR
(2016)
PREVENT-SOS: Desarrollo de tecnologías para la identificación de riesgos en espacios acuáticos naturales.
Repositorio de la Universidad.
(Inédito)
Otro
Materias > Ingeniería
Materias > Educación
Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Cerrado
Español
A pesar del gran incremento de la práctica deportiva en la sociedad occidental en los últimos años, aún hay, según fuentes de la UE, aproximadamente un 50% de la población europea que no hace ejercicio regularmente, lo que está generando un grave problema de salud, especialmente preocupante en la población infantil y juvenil. Del 50% de la población que hace deporte de forma regular, un porcentaje muy alto lo hace solo, en casa o en lugares abiertos públicos sin ninguna supervisión o control por parte de personal especializado, lo que conlleva un cierto riesgo de sufrir lesiones y/o patologías de diferente pronósticos. Ante esta situación compleja de tener la necesidad de promover la actividad física pero intentando aminorar el riesgo de la propia práctica, se propone el desarrollo de una aplicación móvil “freemium” que fomente el ejercicio y que integre una serie de tecnologías innovadoras para incorporar inteligencia artificial que aplicará sobre unos elementos de alerta que puedan generar avisos y geolocalizar al practicante de una forma rápida y eficaz. Entendemos que el desarrollo de este tipo de negocios de carácter tecnológico y de alto grado de responsabilidad social hacia la ciudadanía incrementará el tejido empresarial de Cantabria y generará nuevos puestos de trabajo estables y de alto nivel de formación. Las sinergias que se proponen con instituciones universitarias y de investigación fomentarán los ecosistemas profesionales relacionados con las nuevas tecnologías de la información, la salud y la seguridad. El objetivo de este sistema complejo que se propone es promover la actividad física segura de forma global.
metadata
SIN ESPECIFICAR
mail
SIN ESPECIFICAR
(2016)
SMART ACTIVE LIFE: Desarrollo de tecnologías inteligentes para la promoción de la vida activa y segura.
Repositorio de la Universidad.
(Inédito)
Otro
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Cerrado
Español
El ahogamiento es una de las principales causas de muerte en el mundo, alrededor de 372.000 personas al año, siendo una cifra que se considera subestimada (OMS, 2014). En consecuencia, existe la necesidad de mejorar esta situación considerada de salud pública.
El objetivo del proyecto SOSeas es el desarrollo de una herramienta de evaluación para predecir el riesgo dinámico de los ahogamientos en las playas. En los espacios acuáticos recreativos se espera que una herramienta informática pueda mejorar la gestión de la seguridad por parte de los socorristas y también la información de riesgo de ahogamiento para los bañistas.
Este proyecto es una continuidad del trabajo realizado en PreventSOS. En aquel caso el foco era el desarrollo de un sistema experto para la identificación, análisis y gestión del riesgo en espacios acuáticos y el diseño de una aplicación web para el registro de incidentes y accidentes. SOSeas pretende mejorar el servicio anterior integrando el sistema de información que provee el Copernicus Marine Environment Monitoring Service (CMEMS) en todo el mundo. Se pretende conseguir suficientes datos para poder nutrir a un sistema basado en técnicas de aprendizaje-máquina. La herramienta SOSeas se desarrolla para dos tipos de usuarios : gestores de playas/socorristas y usuarios recreativos (nadadores, navegantes, surfistas...). Estos usuarios podrán acceder a las condiciones meteorológicas y oceanográficas así como a información a medida sobre las amenazas de estos entornos siempre cambiantes.
metadata
SIN ESPECIFICAR
mail
SIN ESPECIFICAR
(2019)
SOSeas: An assessment tool for predicting the dynamic risk of drowning on beaches.
Repositorio de la Universidad.
(Inédito)
Otro
Materias > Alimentación
Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Abierto
Inglés, Español, Portugués
Se trata de una plataforma que integra cinco bots diferentes disponibles en cinco idiomas. El bot enseña al estudiante de nutrición y dietética a realizar un proceso de exploración clínica de forma online/interactiva. Estos bots proporcionan los siguientes casos: Gastroenterología, Diabetes mellitus tipo 1, enfermedades cardiovasculares y diabetes, obesidad y enfermedades renales. Cada bot dispone de un cuestionario relacionado con el ámbito de la nutrición, y una encuesta final para conocer la experiencia del usuario. Desarrollada en el marco del proyecto E+DIETing_LAB
metadata
SIN ESPECIFICAR
mail
SIN ESPECIFICAR
(2025)
Virtual Patient (E+DIETing_LAB).
Repositorio de la Universidad.
Otro
Materias > Alimentación
Universidad Europea del Atlántico > Investigación > Herramientas TIC
Fundación Universitaria Internacional de Colombia > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana México > Investigación > Herramientas TIC
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Herramientas TIC
Universidad Internacional do Cuanza > Investigación > Herramientas TIC
Universidad de La Romana > Investigación > Herramientas TIC
Abierto
Inglés, Español, Portugués
Una herramienta que ofrece una formación centrada en el Proceso de Atención Nutricional (PAN) y el servicio a la comunidad. Mediante videollamada las personas interesadas pueden recibir consejo dietético gratuito y unas recomendaciones de cómo mejorar su alimentación, bajo la supervisión de un profesor. Desarrollada en el marco del proyecto E+DIETing_LAB
metadata
SIN ESPECIFICAR
mail
SIN ESPECIFICAR
(2025)
Virtual nutritional clinic (E+DIETing_LAB).
Repositorio de la Universidad.
<a class="ep_document_link" href="/26722/1/nutrients-18-00257.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background/Objectives: The growing integration of Artificial Intelligence (AI) and chatbots in health professional education offers innovative methods to enhance learning and clinical preparedness. This study aimed to evaluate the educational impact and perceptions in university students of Human Nutrition and Dietetics, regarding the utility, usability, and design of the E+DIEting_Lab chatbot platform when implemented in clinical nutrition training. Methods: The platform was piloted from December 2023 to April 2025 involving 475 students from multiple European universities. While all 475 students completed the initial survey, 305 finished the follow-up evaluation, representing a 36% attrition rate. Participants completed surveys before and after interacting with the chatbots, assessing prior experience, knowledge, skills, and attitudes. Data were analyzed using descriptive statistics and independent samples t-tests to compare pre- and post-intervention perceptions. Results: A total of 475 university students completed the initial survey and 305 the final evaluation. Most university students were females (75.4%), with representation from six languages and diverse institutions. Students reported clear perceived learning gains: 79.7% reported updated practical skills in clinical dietetics and communication were updated, 90% felt that new digital tools improved classroom practice, and 73.9% reported enhanced interpersonal skills. Self-rated competence in using chatbots as learning tools increased significantly, with mean knowledge scores rising from 2.32 to 2.66 and skills from 2.39 to 2.79 on a 0–5 Likert scale (p < 0.001 for both). Perceived effectiveness and usefulness of chatbots as self-learning tools remained positive but showed a small decline after use (effectiveness from 3.63 to 3.42; usefulness from 3.63 to 3.45), suggesting that hands-on experience refined, but did not diminish, students’ overall favorable views of the platform. Conclusions: The implementation and pilot evaluation of the E+DIEting_Lab self-learning virtual patient chatbot platform demonstrate that structured digital simulation tools can significantly improve perceived clinical nutrition competences. These findings support chatbot adoption in dietetics curricula and inform future digital education innovations.
Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Kilian Tutusaus mail kilian.tutusaus@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Arturo Ortega-Mansilla mail arturo.ortega@uneatlantico.es, Thomas Prola mail thomas.prola@uneatlantico.es, Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es,
Elío Pascual
<a class="ep_document_link" href="/26964/1/s44196-025-01123-9_reference.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Suicide Ideation Detection Using Social Media Data and Ensemble Machine Learning Model
Identifying the emotional state of individuals has useful applications, particularly to reduce the risk of suicide. Users’ thoughts on social media platforms can be used to find cues on the emotional state of individuals. Clinical approaches to suicide ideation detection primarily rely on evaluation by psychologists, medical experts, etc., which is time-consuming and requires medical expertise. Machine learning approaches have shown potential in automating suicide detection. In this regard, this study presents a soft voting ensemble model (SVEM) by leveraging random forest, logistic regression, and stochastic gradient descent classifiers using soft voting. In addition, for the robust training of SVEM, a hybrid feature engineering approach is proposed that combines term frequency-inverse document frequency and the bag of words. For experimental evaluation, “Suicide Watch” and “Depression” subreddits on the Reddit platform are used. Results indicate that the proposed SVEM model achieves an accuracy of 94%, better than existing approaches. The model also shows robust performance concerning precision, recall, and F1, each with a 0.93 score. ERT and deep learning models are also used, and performance comparison with these models indicates better performance of the SVEM model. Gated recurrent unit, long short-term memory, and recurrent neural network have an accuracy of 92% while the convolutional neural network obtains an accuracy of 91%. SVEM’s computational complexity is also low compared to deep learning models. Further, this study highlights the importance of explainability in healthcare applications such as suicidal ideation detection, where the use of LIME provides valuable insights into the contribution of different features. In addition, k-fold cross-validation further validates the performance of the proposed approach.
Erol KINA mail , Jin-Ghoo Choi mail , Abid Ishaq mail , Rahman Shafique mail , Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Isabel de la Torre Diez mail , Imran Ashraf mail ,
KINA
<a class="ep_document_link" href="/26965/1/s40203-025-00539-7.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Human metapneumovirus (hMPV) is one of the potential pandemic pathogens, and it is a concern for elderly subjects and immunocompromised patients. There is no vaccine or specific antiviral available for hMPV. We conducted an in-silico study to predict initial antiviral candidates against human metapneumovirus. Our methodology included protein modeling, stability assessment, molecular docking, molecular simulation, analysis of non-covalent interactions, bioavailability, carcinogenicity, and pharmacokinetic profiling. We pinpointed four plant-derived bio-compounds as antiviral candidates. Among the compounds, apigenin showed the highest binding affinity, with values of − 8.0 kcal/mol for the hMPV-F protein and − 7.6 kcal/mol for the hMPV-N protein. Molecular dynamic simulations and further analyses confirmed that the protein-ligand docked complexes exhibited acceptable stability compared to two standard antiviral drugs. Additionally, these four compounds yielded satisfactory outcomes in bioavailability, drug-likeness, and ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) and STopTox analyses. This study highlights the potential of apigenin and xanthoangelol E as an initial antiviral candidate, underscoring the necessity for wet-lab evaluation, preclinical and clinical trials against human metapneumovirus infection.
Hasan Huzayfa Rahaman mail , Afsana Khan mail , Nadim Sharif mail , Wasifuddin Ahmed mail , Nazmul Sharif mail , Rista Majumder mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Isabel De la Torre Díez mail , Shuvra Kanti Dey mail ,
Rahaman
<a href="/27153/1/fpls-16-1720471.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Introduction: Jackfruit cultivation is highly affected by leaf diseases that reduce yield, fruit quality, and farmer income. Early diagnosis remains challenging due to the limitations of manual inspection and the lack of automated and scalable disease detection systems. Existing deep-learning approaches often suffer from limited generalization and high computational cost, restricting real-time field deployment. Methods: This study proposes CNNAttLSTM, a hybrid deep-learning architecture integrating Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) units, and an attention mechanism for multi-class classification of algal leaf spot, black spot, and healthy jackfruit leaves. Each image is divided into ordered 56×56 spatial patches, treated as pseudo-temporal sequences to enable the LSTM to capture contextual dependencies across different leaf regions. Spatial features are extracted via Conv2D, MaxPooling, and GlobalAveragePooling layers; temporal modeling is performed by LSTM units; and an attention mechanism assigns adaptive weights to emphasize disease-relevant regions. Experiments were conducted on a publicly available Kaggle dataset comprising 38,019 images, using predefined training, validation, and testing splits. Results: The proposed CNNAttLSTM model achieved 99% classification accuracy, outperforming the baseline CNN (86%) and CNN–LSTM (98%) models. It required only 3.7 million parameters, trained in 45 minutes on an NVIDIA Tesla T4 GPU, and achieved an inference time of 22 milliseconds per image, demonstrating high computational efficiency. The patch-based pseudo-temporal approach improved spatial–temporal feature representation, enabling the model to distinguish subtle differences between visually similar disease classes. Discussion: Results show that combining spatial feature extraction with temporal modeling and attention significantly enhances robustness and classification performance in plant disease detection. The lightweight design enables real-time and edge-device deployment, addressing a major limitation of existing deep-learning techniques. The findings highlight the potential of CNNAttLSTM for scalable, efficient, and accurate agricultural disease monitoring and broader precision agriculture applications.
Gaurav Tuteja mail , Fuad Ali Mohammed Al-Yarimi mail , Amna Ikram mail , Rupesh Gupta mail , Ateeq Ur Rehman mail , Jeewan Singh mail , Irene Delgado Noya mail irene.delgado@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es,
Tuteja
<a href="/27154/1/s41598-026-37191-w_reference.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
End-to-end emergency response protocol for tunnel accidents augmentation with reinforcement learning
Autonomous unmanned aerial vehicles (UAVs) offer cost-effective and flexible solutions for a wide range of real-world applications, particularly in hazardous and time-critical environments. Their ability to navigate autonomously, communicate rapidly, and avoid collisions makes UAVs well suited for emergency response scenarios. However, real-time path planning in dynamic and unpredictable environments remains a major challenge, especially in confined tunnel infrastructures where accidents may trigger fires, smoke propagation, debris, and rapid environmental changes. In such conditions, conventional preplanned or model-based navigation approaches often fail due to limited visibility, narrow passages, and the absence of reliable localization signals. To address these challenges, this work proposes an end-to-end emergency response framework for tunnel accidents based on Multi-Agent Reinforcement Learning (MARL). Each UAV operates as an independent learning agent using an Independent Q-Learning paradigm, enabling real-time decision-making under limited computational resources. To mitigate premature convergence and local optima during exploration, Grey Wolf Optimization (GWO) is integrated as a policy-guidance mechanism within the reinforcement learning (RL) framework. A customized reward function is designed to prioritize victim discovery, penalize unsafe behavior, and explicitly discourage redundant exploration among agents. The proposed approach is evaluated using a frontier-based exploration simulator under both single-agent and multi-agent settings with multiple goals. Extensive simulation results demonstrate that the proposed framework achieves faster goal discovery, improved map coverage, and reduced rescue time compared to state-of-the-art GWO-based exploration and random search algorithms. These results highlight the effectiveness of lightweight MARL-based coordination for autonomous UAV-assisted tunnel emergency response.
Hafiz Muhammad Raza ur Rehman mail , M. Junaid Gul mail , Rabbiya Younas mail , Muhammad Zeeshan Jhandir mail , Roberto Marcelo Álvarez mail roberto.alvarez@uneatlantico.es, Yini Airet Miró Vera mail yini.miro@uneatlantico.es, Imran Ashraf mail ,
ur Rehman
