Artificial Intelligence and Behavioral Economics: A Bibliographic Analysis of Research Field
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Artículos y libros
Universidad de La Romana > Investigación > Producción Científica
Abierto
Inglés
Behavioral economics and artificial intelligence (AI) have been two rapidly growing fields of research over the past few years. While behavioral economics aims to combine concepts from psychology, sociology, and neuroscience with classical economic thoughts to understand human decision-making processes in the complex economic environment, AI on the other hand, focuses on creating intelligent machines that can mimic human cognitive abilities such as learning, problem-solving, decision-making, and language understanding. The intersection of these two fields has led to thrilling research theories and practical applications. This study provides a bibliometric analysis of the literature on AI and behavioral economics to gain insight into research trends in this field. We conducted this bibliometric analysis using the Web of Science database on articles published between 2012 and 2022 that were related to AI and behavioral economics. VOSviewer and Bibliometrix R package were utilized to identify influential authors, journals, institutions, and countries in the field. Network analysis was also performed to identify the main research themes and their interrelationships. The analysis revealed that the number of publications on AI and behavioral economics has been increasing steadily over the past decade. We found that most studies focused on customer and consumer behavior, including topics such as decision-making under uncertainty, neuroeconomics, and behavioral game theory, combined mainly with machine learning and deep learning techniques. We also identified several emerging themes, including the use of AI in nudging and prospect theory in behavioral finance, as well as undeveloped themes such as AI-driven behavioral macroeconomics. The findings suggests that there is a need for more interdisciplinary collaboration between researchers in behavioral economics and AI. We also suggest that future research on AI and behavioral economics further consider the ethical implications of using AI and behavioral insights in decision-making. This study can serve as a valuable resource for researchers interested in AI and behavioral economics.
metadata
Aoujil, Zakaria; Hanine, Mohamed; Soriano Flores, Emmanuel; Samad, Md Abdu y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, emmanuel.soriano@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR
(2023)
Artificial Intelligence and Behavioral Economics: A Bibliographic Analysis of Research Field.
IEEE Access.
p. 1.
ISSN 2169-3536
(En Prensa)
Resumen
Behavioral economics and artificial intelligence (AI) have been two rapidly growing fields of research over the past few years. While behavioral economics aims to combine concepts from psychology, sociology, and neuroscience with classical economic thoughts to understand human decision-making processes in the complex economic environment, AI on the other hand, focuses on creating intelligent machines that can mimic human cognitive abilities such as learning, problem-solving, decision-making, and language understanding. The intersection of these two fields has led to thrilling research theories and practical applications. This study provides a bibliometric analysis of the literature on AI and behavioral economics to gain insight into research trends in this field. We conducted this bibliometric analysis using the Web of Science database on articles published between 2012 and 2022 that were related to AI and behavioral economics. VOSviewer and Bibliometrix R package were utilized to identify influential authors, journals, institutions, and countries in the field. Network analysis was also performed to identify the main research themes and their interrelationships. The analysis revealed that the number of publications on AI and behavioral economics has been increasing steadily over the past decade. We found that most studies focused on customer and consumer behavior, including topics such as decision-making under uncertainty, neuroeconomics, and behavioral game theory, combined mainly with machine learning and deep learning techniques. We also identified several emerging themes, including the use of AI in nudging and prospect theory in behavioral finance, as well as undeveloped themes such as AI-driven behavioral macroeconomics. The findings suggests that there is a need for more interdisciplinary collaboration between researchers in behavioral economics and AI. We also suggest that future research on AI and behavioral economics further consider the ethical implications of using AI and behavioral insights in decision-making. This study can serve as a valuable resource for researchers interested in AI and behavioral economics.
Tipo de Documento: | Artículo |
---|---|
Palabras Clave: | Artificial intelligence, behavioral economics, behavioral finance, consumer behavior, investor behavior, decision making, neuroeconomics, machine learning, bibliometric analysis |
Clasificación temática: | Materias > Ingeniería |
Divisiones: | Universidad Europea del Atlántico > Investigación > Producción Científica Universidad Internacional Iberoamericana México > Investigación > Artículos y libros Universidad de La Romana > Investigación > Producción Científica |
Depositado: | 12 Dic 2023 23:30 |
Ultima Modificación: | 02 Ene 2024 23:30 |
URI: | https://repositorio.unini.edu.mx/id/eprint/10069 |
Acciones (logins necesarios)
Ver Objeto |
<a class="ep_document_link" href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.
Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,
Alemany Iturriaga
<a href="/15625/1/s41598-024-74127-8.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Plant stress reduction research has advanced significantly with the use of Artificial Intelligence (AI) techniques, such as machine learning and deep learning. This is a significant step toward sustainable agriculture. Innovative insights into the physiological responses of plants mostly crops to drought stress have been revealed through the use of complex algorithms like gradient boosting, support vector machines (SVM), recurrent neural network (RNN), and long short-term memory (LSTM), combined with a thorough examination of the TYRKC and RBR-E3 domains in stress-associated signaling proteins across a range of crop species. Modern resources were used in this study, including the UniProt protein database for crop physiochemical properties associated with specific signaling domains and the SMART database for signaling protein domains. These insights were then applied to deep learning and machine learning techniques after careful data processing. The rigorous metric evaluations and ablation analysis that typified the study’s approach highlighted the algorithms’ effectiveness and dependability in recognizing and classifying stress events. Notably, the accuracy of SVM was 82%, while gradient boosting and RNN showed 96%, and 94%, respectively and LSTM obtained an astounding 97% accuracy. The study observed these successes but also highlights the ongoing obstacles to AI adoption in agriculture, emphasizing the need for creative thinking and interdisciplinary cooperation. In addition to its scholarly value, the collected data has significant implications for improving resource efficiency, directing precision agricultural methods, and supporting global food security programs. Notably, the gradient boosting and LSTM algorithm outperformed the others with an exceptional accuracy of 96% and 97%, demonstrating their potential for accurate stress categorization. This work highlights the revolutionary potential of AI to completely disrupt the agricultural industry while simultaneously advancing our understanding of plant stress responses.
Tariq Ali mail , Saif Ur Rehman mail , Shamshair Ali mail , Khalid Mahmood mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Tahir Khurshaid mail , Imran Ashraf mail ,
Ali
<a class="ep_document_link" href="/15198/1/nutrients-16-03859.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Carotenoids Intake and Cardiovascular Prevention: A Systematic Review
Background: Cardiovascular diseases (CVDs) encompass a variety of conditions that affect the heart and blood vessels. Carotenoids, a group of fat-soluble organic pigments synthesized by plants, fungi, algae, and some bacteria, may have a beneficial effect in reducing cardiovascular disease (CVD) risk. This study aims to examine and synthesize current research on the relationship between carotenoids and CVDs. Methods: A systematic review was conducted using MEDLINE and the Cochrane Library to identify relevant studies on the efficacy of carotenoid supplementation for CVD prevention. Interventional analytical studies (randomized and non-randomized clinical trials) published in English from January 2011 to February 2024 were included. Results: A total of 38 studies were included in the qualitative analysis. Of these, 17 epidemiological studies assessed the relationship between carotenoids and CVDs, 9 examined the effect of carotenoid supplementation, and 12 evaluated dietary interventions. Conclusions: Elevated serum carotenoid levels are associated with reduced CVD risk factors and inflammatory markers. Increasing the consumption of carotenoid-rich foods appears to be more effective than supplementation, though the specific effects of individual carotenoids on CVD risk remain uncertain.
Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Thomas Prola mail thomas.prola@uneatlantico.es, Raquel Martínez Díaz mail raquel.martinez@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,
Sumalla Cano
<a class="ep_document_link" href="/15333/1/nutrients-16-03907.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background/Objectives: The diet quality of younger individuals is decreasing globally, with alarming trends also in the Mediterranean region. The aim of this study was to assess diet quality and adequacy in relation to country-specific dietary recommendations for children and adolescents living in the Mediterranean area. Methods: A cross-sectional survey was conducted of 2011 parents of the target population participating in the DELICIOUS EU-PRIMA project. Dietary data and cross-references with food-based recommendations and the application of the youth healthy eating index (YHEI) was assessed through 24 h recalls and food frequency questionnaires. Results: Adherence to recommendations on plant-based foods was low (less than ∼20%), including fruit and vegetables adequacy in all countries, legume adequacy in all countries except for Italy, and cereal adequacy in all countries except for Portugal. For animal products and dietary fats, the adequacy in relation to the national food-based dietary recommendations was slightly better (∼40% on average) in most countries, although the Eastern countries reported worse rates. Higher scores on the YHEI predicted adequacy in relation to vegetables (except Egypt), fruit (except Lebanon), cereals (except Spain), and legumes (except Spain) in most countries. Younger children (p < 0.005) reporting having 8–10 h adequate sleep duration (p < 0.001), <2 h/day screen time (p < 0.001), and a medium/high physical activity level (p < 0.001) displayed a better diet quality. Moreover, older respondents (p < 0.001) with a medium/high educational level (p = 0.001) and living with a partner (p = 0.003) reported that their children had a better diet quality. Conclusions: Plant-based food groups, including fruit, vegetables, legumes, and even (whole-grain) cereals are underrepresented in the diets of Mediterranean children and adolescents. Moreover, the adequate consumption of other important dietary components, such as milk and dairy products, is rather disregarded, leading to substantially suboptimal diets and poor adequacy in relation to dietary guidelines.
Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Alice Rosi mail , Francesca Scazzina mail , Evelyn Frias-Toral mail , Osama Abdelkarim mail , Mohamed Aly mail , Raynier Zambrano-Villacres mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Lorenzo Monasta mail , Ana Mata mail , María Isabel Pardo mail , Pablo Busó mail , Giuseppe Grosso mail ,
Giampieri
<a href="/15440/1/fcimb-1-1515641.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Editorial: Host-bacteria interactions in fish pathogens
In order to promote the sustainable development of aquaculture, it is of great importance to better understand fish diseases caused by classic and emerging bacterial pathogens. Strains of classic fish pathogens such as Aeromonas, Vibrio, Photobacterium, Edwardsiella, Yersinia, Flavobacterium, or Piscirickettsia.
José Ramos-Vivas mail jose.ramos@uneatlantico.es, Félix Acosta mail ,
Ramos-Vivas