Items where Division is "University of La Romana > Research > Scientific Production" and Year is [pin missing: value2]
![]() | Up a level |
- FUNIBER (52)
2025
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
Background
Co-infection of dengue and COVID-19 has increased the health burden worldwide. We found a significant knowledge gap in epidemiology and risk factors of co-infection in Bangladesh.
Methods
This study included 2458 participants from Dhaka city from December 1, 2021, to November 30, 2023. We performed Kruskal-Walli’s test and χ2 test. Multivariable logistic regression was also performed.
Results
Co-infection of dengue and COVID-19 was found among 31% of the participants. Co-prevalence of dengue and COVID-19 was found in higher frequency in Jatrabari (14%), and Motijhil (11%). Severe (65%, p-value 0.001) and very severe (78%, p-value 0.005) symptoms were prevalent among the participants aged >50 years. Long-term illness was prevalent among the participants with co-infection (35%, 95% CI 33%- 36%) and COVID-19 (28%, 95% CI 26%- 30%). Co-infected participants had a higher frequency of heart damage (31.6%, p-value 0.005), brain fog (22%, p-value 0.03), and kidney damage (49.3%, p-value 0.001). Fever (100%) was the most prevalent symptom followed by weakness (89.6%), chills (82.4%), fatigue (81.4%), headache (80.6%), feeling thirsty (76.3%), myalgia (75%), pressure in the chest (69.1%), and shortness of breath (68.3%), respectively. Area of residence (OR 2.26, 95% CI 1.96-2.49, p-value 0.01), number of family members (OR 1.45, 95% CI 1.08-1.87, p-value <0.001), and population density (OR 2.43, 95% CI 2.15-3.01, p-value 0.001) were associated with higher odds of co-infection. We found that coinfected participants had a 4 times higher risk of developing severe health conditions (OR 4.22, 95% CI 4.11-4.67, p-value 0.02).
Conclusions
This is one of the early epidemiologic studies of co-infection of dengue and COVID-19 in Bangladesh.
metadata
Sharif, Nadim and Opu, Rubayet Rayhan and Khan, Afsana and Saha, Tama and Masud, Abdullah Ibna and Naim, Jannatin and Velázquez Martínez, Zaily Leticia and Osorio García, Carlos Manuel and Alsuwat, Meshari A and Alzahrani, Fuad M and Alzahrani, Khalid J and De la Torre Díez, Isabel and Dey, Shuvra Kanti
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, zaily.velazquez@unini.edu.mx, carlos.osorio@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2025)
Clinical epidemiology of dengue and COVID-19 co-infection among the residents in Dhaka, Bangladesh, 2021-2023: A cross-sectional study.
Open Forum Infectious Diseases.
ISSN 2328-8957
Article
Subjects > Engineering
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Maize is a staple crop worldwide, essential for food security, livestock feed, and industrial uses. Its health directly impacts agricultural productivity and economic stability. Effective detection of maize crop health is crucial for preventing disease spread and ensuring high yields. This study presents VG-GNBNet, an innovative transfer learning model that accurately detects healthy and infected maize crops through a two-step feature extraction process. The proposed model begins by leveraging the visual geometry group (VGG-16) network to extract initial pixel-based spatial features from the crop images. These features are then further refined using the Gaussian Naive Bayes (GNB) model and feature decomposition-based matrix factorization mechanism, which generates more informative features for classification purposes. This study incorporates machine learning models to ensure a comprehensive evaluation. By comparing VG-GNBNet's performance against these models, we validate its robustness and accuracy. Integrating deep learning and machine learning techniques allows VG-GNBNet to capitalize on the strengths of both approaches, leading to superior performance. Extensive experiments demonstrate that the proposed VG-GNBNet+GNB model significantly outperforms other models, achieving an impressive accuracy score of 99.85%. This high accuracy highlights the model's potential for practical application in the agricultural sector, where the precise detection of crop health is crucial for effective disease management and yield optimization.
metadata
Tanveer, Muhammad Usama and Munir, Kashif and Raza, Ali and Abualigah, Laith and Garay, Helena and Prado González, Luis Eduardo and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, helena.garay@uneatlantico.es, uis.prado@uneatlantico.es, UNSPECIFIED
(2025)
Novel Transfer Learning Approach for Detecting Infected and Healthy Maize Crop Using Leaf Images.
Food Science & Nutrition, 13 (1).
ISSN 2048-7177
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
A bone fracture is a medical condition characterized by a partial or complete break in the continuity of the bone. Fractures are primarily caused by injuries and accidents, affecting millions of people worldwide. The healing process for a fracture can take anywhere from one month to one year, leading to significant economic and psychological challenges for patients. The detection of bone fractures is crucial, and radiographic images are often relied on for accurate assessment. An efficient neural network method is essential for the early detection and timely treatment of fractures. In this study, we propose a novel transfer learning-based approach called MobLG-Net for feature engineering purposes. Initially, the spatial features are extracted from bone X-ray images using a transfer model, MobileNet, and then input into a tree-based light gradient boosting machine (LGBM) model for the generation of class probability features. Several machine learning (ML) techniques are applied to the subsets of newly generated transfer features to compare the results. K-nearest neighbor (KNN), LGBM, logistic regression (LR), and random forest (RF) are implemented using the novel features with optimized hyperparameters. The LGBM and LR models trained on proposed MobLG-Net (MobileNet-LGBM) based features outperformed others, achieving an accuracy of 99% in predicting bone fractures. A cross-validation mechanism is used to evaluate the performance of each model. The proposed study can improve the detection of bone fractures using X-ray images.
metadata
Alam, Aneeza and Al-Shamayleh, Ahmad Sami and Thalji, Nisrean and Raza, Ali and Morales Barajas, Edgar Aníbal and Bautista Thompson, Ernesto and de la Torre Diez, Isabel and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, ernesto.bautista@unini.edu.mx, UNSPECIFIED, UNSPECIFIED
(2025)
Novel transfer learning based bone fracture detection using radiographic images.
BMC Medical Imaging, 25 (1).
ISSN 1471-2342
Article
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Background: Nut consumption has been considered a potential protective factor against cognitive decline. The aim of this study was to test whether higher total and specific nut intake was associated with better cognitive status in a sample of older Italian adults. Methods: A cross-sectional analysis on 883 older adults (>50 y) was conducted. A 110-item food frequency questionnaire was used to collect information on the consumption of various types of nuts. The Short Portable Mental Status Questionnaire was used to assess cognitive status. Multivariate logistic regression analyses were performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between nut intake and cognitive status after adjusting for potential confounding factors. Results: The median intake of total nuts was 11.7 g/day and served as a cut-off to categorize low and high consumers (mean intake 4.3 g/day vs. 39.7 g/day, respectively). Higher total nut intake was significantly associated with a lower prevalence of impaired cognitive status among older individuals (OR = 0.35, CI 95%: 0.15, 0.84) after adjusting for potential confounding factors. Notably, this association remained significant after additional adjustment for adherence to the Mediterranean dietary pattern as an indicator of diet quality, (OR = 0.32, CI 95%: 0.13, 0.77). No significant associations were found between cognitive status and specific types of nuts. Conclusions: Habitual nut intake is associated with better cognitive status in older adults.
metadata
Godos, Justyna and Giampieri, Francesca and Frias-Toral, Evelyn and Zambrano-Villacres, Raynier and Rojas Vistorte, Angel Olider and Yélamos Torres, Vanessa and Battino, Maurizio and Galvano, Fabio and Castellano, Sabrina and Grosso, Giuseppe
mail
UNSPECIFIED, francesca.giampieri@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, angel.rojas@uneatlantico.es, vanessa.yelamos@funiber.org, maurizio.battino@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2025)
Nut Consumption Is Associated with Cognitive Status in Southern Italian Adults.
Nutrients, 17 (3).
p. 521.
ISSN 2072-6643
2024
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
The provision of Wireless Fidelity (Wi-Fi) service in an indoor environment is a crucial task and the decay in signal strength issues arises especially in indoor environments. The Line-of-Sight (LOS) is a path for signal propagation that commonly impedes innumerable indoor objects damage signals and also causes signal fading. In addition, the Signal decay (signal penetration), signal reflection, and long transmission distance between transceivers are the key concerns. The signals lose their power due to the existence of obstacles (path of signals) and hence destroy received signal strength (RSS) between different communicating nodes and ultimately cause loss of the packet. Thus, to solve this issue, herein we propose an advanced model to maximize the LOS in communicating nodes using a modern indoor environment. Our proposal comprised various components for instance signal enhancers, repeaters, reflectors,. these components are connected. The signal attenuation and calculation model comprises of power algorithm and hence it can quickly and efficiently find the walls and corridors as obstacles in an indoor environment. We compared our proposed model with state of the art model using Received Signal Strength (RSS) and Packet Delivery Ratio (PDR) (different scenario) and found that our proposed model is efficient. Our proposed model achieved high network throughput as compared to the state-of-the-art models.
metadata
Khan, Muhammad Nasir and Waqas, Muhammad and Abbas, Qamar and Qureshi, Ahsan and Amin, Farhan and de la Torre Díez, Isabel and Uc Ríos, Carlos Eduardo and Fabian Gongora, Henry
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, carlos.uc@unini.edu.mx, henry.gongora@uneatlantico.es
(2024)
Advanced Line-of-Sight (LOS) model for communicating devices in modern indoor environment.
PLOS ONE, 19 (7).
e0305039.
ISSN 1932-6203
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Cerrado
Inglés
The correct analysis of medical images requires the medical knowledge and expertise of radiologists to understand, clarify, and explain complex patterns and diagnose diseases. After analyzing, radiologists write detailed and well-structured reports that contribute to the precise and timely diagnosis of patients. However, manually writing reports is often expensive and time-consuming, and it is difficult for radiologists to analyze medical images, particularly images with multiple views and perceptions. It is challenging to accurately diagnose diseases, and many methods are proposed to help radiologists, both traditional and deep learning-based. Automatic report generation is widely used to tackle this issue as it streamlines the process and lessens the burden of manual labeling of images. This paper introduces a systematic literature review with a focus on analyses and evaluating existing research on medical report generation. This SLR follows a proper protocol for the planning, reviewing, and reporting of the results. This review recognizes that the most commonly used deep learning models are encoder-decoder frameworks (45 articles), which provide an accuracy of around 92–95%. Transformers-based models (20 articles) are the second most established method and achieve an accuracy of around 91%. The remaining articles explored in this SLR are attention mechanisms (10), RNN-LSTM (10), Large language models (LLM-10), and graph-based methods (4) with promising results. However, these methods also face certain limitations such as overfitting, risk of bias, and high data dependency that impact their performance. The review not only highlights the strengths and challenges of these methods but also suggests ways to handle them in the future to increase the accuracy and timely generation of medical reports. The goal of this review is to direct radiologists toward methods that lessen their workload and provide precise medical diagnoses.
metadata
Rehman, Marwareed and Shafi, Imran and Ahmad, Jamil and Osorio García, Carlos Manuel and Pascual Barrera, Alina Eugenia and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, carlos.osorio@uneatlantico.es, alina.pascual@unini.edu.mx, UNSPECIFIED
(2024)
Advancement in medical report generation: current practices, challenges, and future directions.
Medical & Biological Engineering & Computing.
ISSN 0140-0118
Article
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Background: Cardiovascular diseases (CVDs) encompass a variety of conditions that affect the heart and blood vessels. Carotenoids, a group of fat-soluble organic pigments synthesized by plants, fungi, algae, and some bacteria, may have a beneficial effect in reducing cardiovascular disease (CVD) risk. This study aims to examine and synthesize current research on the relationship between carotenoids and CVDs. Methods: A systematic review was conducted using MEDLINE and the Cochrane Library to identify relevant studies on the efficacy of carotenoid supplementation for CVD prevention. Interventional analytical studies (randomized and non-randomized clinical trials) published in English from January 2011 to February 2024 were included. Results: A total of 38 studies were included in the qualitative analysis. Of these, 17 epidemiological studies assessed the relationship between carotenoids and CVDs, 9 examined the effect of carotenoid supplementation, and 12 evaluated dietary interventions. Conclusions: Elevated serum carotenoid levels are associated with reduced CVD risk factors and inflammatory markers. Increasing the consumption of carotenoid-rich foods appears to be more effective than supplementation, though the specific effects of individual carotenoids on CVD risk remain uncertain.
metadata
Sumalla Cano, Sandra and Eguren García, Imanol and Lasarte García, Álvaro and Prola, Thomas and Martínez Díaz, Raquel and Elío Pascual, Iñaki
mail
sandra.sumalla@uneatlantico.es, imanol.eguren@uneatlantico.es, UNSPECIFIED, thomas.prola@uneatlantico.es, raquel.martinez@uneatlantico.es, inaki.elio@uneatlantico.es
(2024)
Carotenoids Intake and Cardiovascular Prevention: A Systematic Review.
Nutrients, 16 (22).
p. 3859.
ISSN 2072-6643
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Emergency medical services (EMSs) face critical situations that require patient risk classification based on analytical and vital signs. We aimed to establish clustering-derived phenotypes based on prehospital analytical and vital signs that allow risk stratification. This was a prospective, multicenter, EMS-delivered, ambulance-based cohort study considering six advanced life support units, 38 basic life support units, and four tertiary hospitals in Spain. Adults with unselected acute diseases managed by the EMS and evacuated with discharge priority to emergency departments were considered between January 1, 2020, and June 30, 2023. Prehospital point-of-care testing and on-scene vital signs were used for the unsupervised machine learning method (clustering) to determine the phenotypes. Then phenotypes were compared with the primary outcome (cumulative mortality (all-cause) at 2, 7, and 30 days). A total of 7909 patients were included. The median (IQR) age was 64 (51–80) years, 41% were women, and 26% were living in rural areas. Three clusters were identified: alpha 16.2% (1281 patients), beta 28.8% (2279), and gamma 55% (4349). The mortality rates for alpha, beta and gamma at 2 days were 18.6%, 4.1%, and 0.8%, respectively; at 7 days, were 24.7%, 6.2%, and 1.7%; and at 30 days, were 33%, 10.2%, and 3.2%, respectively. Based on standard vital signs and blood test biomarkers in the prehospital scenario, three clusters were identified: alpha (high-risk), beta and gamma (medium- and low-risk, respectively). This permits the EMS system to quickly identify patients who are potentially compromised and to proactively implement the necessary interventions.
metadata
López-Izquierdo, Raúl and del Pozo Vegas, Carlos and Sanz-García, Ancor and Mayo Íscar, Agustín and Castro Villamor, Miguel A. and Silva Alvarado, Eduardo René and Gracia Villar, Santos and Dzul López, Luis Alonso and Aparicio Obregón, Silvia and Calderón Iglesias, Rubén and Soriano, Joan B. and Martín-Rodríguez, Francisco
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, eduardo.silva@funiber.org, santos.gracia@uneatlantico.es, luis.dzul@uneatlantico.es, silvia.aparicio@uneatlantico.es, ruben.calderon@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2024)
Clinical phenotypes and short-term outcomes based on prehospital point-of-care testing and on-scene vital signs.
npj Digital Medicine, 7 (1).
ISSN 2398-6352
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Emergency medical services (EMSs) face critical situations that require patient risk classification based on analytical and vital signs. We aimed to establish clustering-derived phenotypes based on prehospital analytical and vital signs that allow risk stratification. This was a prospective, multicenter, EMS-delivered, ambulance-based cohort study considering six advanced life support units, 38 basic life support units, and four tertiary hospitals in Spain. Adults with unselected acute diseases managed by the EMS and evacuated with discharge priority to emergency departments were considered between January 1, 2020, and June 30, 2023. Prehospital point-of-care testing and on-scene vital signs were used for the unsupervised machine learning method (clustering) to determine the phenotypes. Then phenotypes were compared with the primary outcome (cumulative mortality (all-cause) at 2, 7, and 30 days). A total of 7909 patients were included. The median (IQR) age was 64 (51–80) years, 41% were women, and 26% were living in rural areas. Three clusters were identified: alpha 16.2% (1281 patients), beta 28.8% (2279), and gamma 55% (4349). The mortality rates for alpha, beta and gamma at 2 days were 18.6%, 4.1%, and 0.8%, respectively; at 7 days, were 24.7%, 6.2%, and 1.7%; and at 30 days, were 33%, 10.2%, and 3.2%, respectively. Based on standard vital signs and blood test biomarkers in the prehospital scenario, three clusters were identified: alpha (high-risk), beta and gamma (medium- and low-risk, respectively). This permits the EMS system to quickly identify patients who are potentially compromised and to proactively implement the necessary interventions.
metadata
López-Izquierdo, Raúl and del Pozo Vegas, Carlos and Sanz-García, Ancor and Mayo Íscar, Agustín and Castro Villamor, Miguel A. and Silva Alvarado, Eduardo René and Gracia Villar, Santos and Dzul López, Luis Alonso and Aparicio Obregón, Silvia and Calderón Iglesias, Rubén and Soriano, Joan B. and Martín-Rodríguez, Francisco
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, eduardo.silva@funiber.org, santos.gracia@uneatlantico.es, luis.dzul@uneatlantico.es, silvia.aparicio@uneatlantico.es, ruben.calderon@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2024)
Clinical phenotypes and short-term outcomes based on prehospital point-of-care testing and on-scene vital signs.
npj Digital Medicine, 7 (1).
ISSN 2398-6352
Article
Subjects > Biomedicine
Subjects > Social Sciences
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Aim: The development of predictive models for patients treated by emergency medical services (EMS) is on the rise in the emergency field. However, how these models evolve over time has not been studied. The objective of the present work is to compare the characteristics of patients who present mortality in the short, medium and long term, and to derive and validate a predictive model for each mortality time. Methods: A prospective multicenter study was conducted, which included adult patients with unselected acute illness who were treated by EMS. The primary outcome was noncumulative mortality from all causes by time windows including 30-day mortality, 31- to 180-day mortality, and 181- to 365-day mortality. Prehospital predictors included demographic variables, standard vital signs, prehospital laboratory tests, and comorbidities. Results: A total of 4830 patients were enrolled. The noncumulative mortalities at 30, 180, and 365 days were 10.8%, 6.6%, and 3.5%, respectively. The best predictive value was shown for 30-day mortality (AUC = 0.930; 95% CI: 0.919–0.940), followed by 180-day (AUC = 0.852; 95% CI: 0.832–0.871) and 365-day (AUC = 0.806; 95% CI: 0.778–0.833) mortality. Discussion: Rapid characterization of patients at risk of short-, medium-, or long-term mortality could help EMS to improve the treatment of patients suffering from acute illnesses.
metadata
Enriquez de Salamanca Gambara, Rodrigo and Sanz-García, Ancor and del Pozo Vegas, Carlos and López-Izquierdo, Raúl and Sánchez Soberón, Irene and Delgado Benito, Juan F. and Martínez Díaz, Raquel and Mazas Pérez-Oleaga, Cristina and Martínez López, Nohora Milena and Dominguez Azpíroz, Irma and Martín-Rodríguez, Francisco
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, raquel.martinez@uneatlantico.es, cristina.mazas@uneatlantico.es, nohora.martinez@uneatlantico.es, irma.dominguez@unini.edu.mx, UNSPECIFIED
(2024)
A Comparison of the Clinical Characteristics of Short-, Mid-, and Long-Term Mortality in Patients Attended by the Emergency Medical Services: An Observational Study.
Diagnostics, 14 (12).
p. 1292.
ISSN 2075-4418
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
UNSPECIFIED
metadata
Khawaja, Seher Ansar and Farooq, Muhammad Shoaib and Ishaq, Kashif and Alsubaie, Najah and Karamti, Hanen and Caro Montero, Elizabeth and Silva Alvarado, Eduardo René and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, elizabeth.caro@uneatlantico.es, eduardo.silva@funiber.org, UNSPECIFIED
(2024)
Correction: Prediction of leukemia peptides using convolutional neural network and protein compositions.
BMC Cancer, 24 (1).
ISSN 1471-2407
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Generative intelligence relies heavily on the integration of vision and language. Much of the research has focused on image captioning, which involves describing images with meaningful sentences. Typically, when generating sentences that describe the visual content, a language model and a vision encoder are commonly employed. Because of the incorporation of object areas, properties, multi-modal connections, attentive techniques, and early fusion approaches like bidirectional encoder representations from transformers (BERT), these components have experienced substantial advancements over the years. This research offers a reference to the body of literature, identifies emerging trends in an area that blends computer vision as well as natural language processing in order to maximize their complementary effects, and identifies the most significant technological improvements in architectures employed for image captioning. It also discusses various problem variants and open challenges. This comparison allows for an objective assessment of different techniques, architectures, and training strategies by identifying the most significant technical innovations, and offers valuable insights into the current landscape of image captioning research.
metadata
Jamil, Azhar and Rehman, Saif Ur and Mahmood, Khalid and Gracia Villar, Mónica and Prola, Thomas and Diez, Isabel De La Torre and Samad, Md Abdus and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, monica.gracia@uneatlantico.es, thomas.prola@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2024)
Deep Learning Approaches for Image Captioning: Opportunities, Challenges and Future Potential.
IEEE Access.
p. 1.
ISSN 2169-3536
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
The classification of bird species is of significant importance in the field of ornithology, as it plays an important role in assessing and monitoring environmental dynamics, including habitat modifications, migratory behaviors, levels of pollution, and disease occurrences. Traditional methods of bird classification, such as visual identification, were time-intensive and required a high level of expertise. However, audio-based bird species classification is a promising approach that can be used to automate bird species identification. This study aims to establish an audio-based bird species classification system for 264 Eastern African bird species employing modified deep transfer learning. In particular, the pre-trained EfficientNet technique was utilized for the investigation. The study adapts the fine-tune model to learn the pertinent patterns from mel spectrogram images specific to this bird species classification task. The fine-tuned EfficientNet model combined with a type of Recurrent Neural Networks (RNNs) namely Gated Recurrent Unit (GRU) and Long short-term memory (LSTM). RNNs are employed to capture the temporal dependencies in audio signals, thereby enhancing bird species classification accuracy. The dataset utilized in this work contains nearly 17,000 bird sound recordings across a diverse range of species. The experiment was conducted with several combinations of EfficientNet and RNNs, and EfficientNet-B7 with GRU surpasses other experimental models with an accuracy of 84.03% and a macro-average precision score of 0.8342.
metadata
Shaikh, Asadullah and Baowaly, Mrinal Kanti and Sarkar, Bisnu Chandra and Walid, Md. Abul Ala and Ahamad, Md. Martuza and Singh, Bikash Chandra and Silva Alvarado, Eduardo René and Ashraf, Imran and Samad, Md. Abdus
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, eduardo.silva@funiber.org, UNSPECIFIED, UNSPECIFIED
(2024)
Deep transfer learning-based bird species classification using mel spectrogram images.
PLOS ONE, 19 (8).
e0305708.
ISSN 1932-6203
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Non-Insulin-Dependent Diabetes Mellitus (NIDDM) is a chronic health condition caused by high blood sugar levels, and if not treated early, it can lead to serious complications i.e. blindness. Human Activity Recognition (HAR) offers potential for early NIDDM diagnosis, emerging as a key application for HAR technology. This research introduces DiabSense, a state-of-the-art smartphone-dependent system for early staging of NIDDM. DiabSense incorporates HAR and Diabetic Retinopathy (DR) upon leveraging the power of two different Graph Neural Networks (GNN). HAR uses a comprehensive array of 23 human activities resembling Diabetes symptoms, and DR is a prevalent complication of NIDDM. Graph Attention Network (GAT) in HAR achieved 98.32% accuracy on sensor data, while Graph Convolutional Network (GCN) in the Aptos 2019 dataset scored 84.48%, surpassing other state-of-the-art models. The trained GCN analyzed retinal images of four experimental human subjects for DR report generation, and GAT generated their average duration of daily activities over 30 days. The daily activities in non-diabetic periods of diabetic patients were measured and compared with the daily activities of the experimental subjects, which helped generate risk factors. Fusing risk factors with DR conditions enabled early diagnosis recommendations for the experimental subjects despite the absence of any apparent symptoms. The comparison of DiabSense system outcome with clinical diagnosis reports in the experimental subjects was conducted using the A1C test. The test results confirmed the accurate assessment of early diagnosis requirements for experimental subjects by the system. Overall, DiabSense exhibits significant potential for ensuring early NIDDM treatment, improving millions of lives worldwide.
metadata
Alam, Md Nuho Ul and Hasnine, Ibrahim and Bahadur, Erfanul Hoque and Masum, Abdul Kadar Muhammad and Briones Urbano, Mercedes and Masías Vergara, Manuel and Uddin, Jia and Ashraf, Imran and Samad, Md. Abdus
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, mercedes.briones@uneatlantico.es, manuel.masias@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2024)
DiabSense: early diagnosis of non-insulin-dependent diabetes mellitus using smartphone-based human activity recognition and diabetic retinopathy analysis with Graph Neural Network.
Journal of Big Data, 11 (1).
ISSN 2196-1115
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Objective Epileptic seizures are neurological events that pose significant risks of physical injuries characterized by sudden, abnormal bursts of electrical activity in the brain, often leading to loss of consciousness and uncontrolled movements. Early seizure detection is essential for timely treatments and better patient outcomes. To address this critical issue, there is a need for an advanced artificial intelligence approach for the early detection of epileptic seizure disorder. Methods This study primarily focuses on designing a novel ensemble approach to perform early detection of epileptic seizure disease with high performance. A novel ensemble approach consisting of a fast, independent component analysis random forest (FIR) and prediction probability is proposed, which uses electroencephalography (EEG) data to investigate the efficacy of the proposed approach for early detection of epileptic seizures. The FIR model extracts independent components and class prediction probability features, creating a new feature set. The proposed model combined integrated component analysis (ICA) with predicting probability to enhance seizure recognition accuracy scores. Extensive experimental evaluations demonstrate that FIR assists machine learning models to obtain superior results compared to original features. Results The research gap is addressed using combined features to improve the performance of epileptic seizure detection compared to a single feature set. In particular, the ensemble model FIR with support vector machine (FIR + SVM) outperforms other methods, achieving an accuracy of 98.4% for epileptic seizure detection. Conclusions The proposed FIR has the potential for early diagnosis of epileptic seizures and can significantly help the medical industry with enhanced detection and timely interventions.
metadata
Khalid, Madiha and Raza, Ali and Akhtar, Adnan and Rustam, Furqan and Brito Ballester, Julién and Rodríguez Velasco, Carmen Lilí and Díez, Isabel de la Torre and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, julien.brito@uneatlantico.es, carmen.rodriguez@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2024)
Diagnosing epileptic seizures using combined features from independent components and prediction probability from EEG data.
DIGITAL HEALTH, 10.
ISSN 2055-2076
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Malaria is an extremely malignant disease and is caused by the bites of infected female mosquitoes. This disease is not only infectious among humans, but among animals as well. Malaria causes mild symptoms like fever, headache, sweating and vomiting, and muscle discomfort; severe symptoms include coma, seizures, and kidney failure. The timely identification of malaria parasites is a challenging and chaotic endeavor for health staff. An expert technician examines the schematic blood smears of infected red blood cells through a microscope. The conventional methods for identifying malaria are not efficient. Machine learning approaches are effective for simple classification challenges but not for complex tasks. Furthermore, machine learning involves rigorous feature engineering to train the model and detect patterns in the features. On the other hand, deep learning works well with complex tasks and automatically extracts low and high-level features from the images to detect disease. In this paper, EfficientNet, a deep learning-based approach for detecting Malaria, is proposed that uses red blood cell images. Experiments are carried out and performance comparison is made with pre-trained deep learning models. In addition, k-fold cross-validation is also used to substantiate the results of the proposed approach. Experiments show that the proposed approach is 97.57% accurate in detecting Malaria from red blood cell images and can be beneficial practically for medical healthcare staff.
metadata
Mujahid, Muhammad and Rustam, Furqan and Shafique, Rahman and Caro Montero, Elizabeth and Silva Alvarado, Eduardo René and de la Torre Diez, Isabel and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, elizabeth.caro@uneatlantico.es, eduardo.silva@funiber.org, UNSPECIFIED, UNSPECIFIED
(2024)
Efficient deep learning-based approach for malaria detection using red blood cell smears.
Scientific Reports, 14 (1).
ISSN 2045-2322
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Diabetes is a persistent health condition led by insufficient use or inappropriate use of insulin in the body. If left undetected, it can lead to further complications involving organ damage such as heart, lungs, and eyes. Timely detection of diabetes helps obtain the right medication, diet, and exercise plan to lead a healthy life. ML approach has been utilized to obtain rapid and reliable diabetes detection, however, existing approaches suffer from the use of limited datasets, lack of generalizability, and lower accuracy. This study proposes a novel feature extraction approach to overcome these limitations by using an ensemble of convolutional neural network (CNN) and long short-term memory (LSTM) models. Multiple datasets are combined to make a larger dataset for experiments and multiple features are utilized for investigating the efficacy of the proposed approach. Features from the extra tree classifier, CNN, and LSTM are also considered for comparison. Experimental results reveal the superb performance of CNN-LSTM-based features with random forest model obtaining a 0.99 accuracy score. This performance is further validated by comparison with existing approaches and k-fold cross-validation which shows the proposed approach provides robust results.
metadata
Rustam, Furqan and Al-Shamayleh, Ahmad Sami and Shafique, Rahman and Aparicio Obregón, Silvia and Calderón Iglesias, Rubén and Gonzalez, J. Pablo Miramontes and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, silvia.aparicio@uneatlantico.es, ruben.calderon@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2024)
Enhanced detection of diabetes mellitus using novel ensemble feature engineering approach and machine learning model.
Scientific Reports, 14 (1).
ISSN 2045-2322
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Thyroid illness encompasses a range of disorders affecting the thyroid gland, leading to either hyperthyroidism or hypothyroidism, which can significantly impact metabolism and overall health. Hypothyroidism can cause a slowdown in bodily processes, leading to symptoms such as fatigue, weight gain, depression, and cold sensitivity. Hyperthyroidism can lead to increased metabolism, causing symptoms like rapid weight loss, anxiety, irritability, and heart palpitations. Prompt diagnosis and appropriate treatment are crucial in managing thyroid disorders and improving patients’ quality of life. Thyroid illness affects millions worldwide and can significantly impact their quality of life if left untreated. This research aims to propose an effective artificial intelligence-based approach for the early diagnosis of thyroid illness. An open-access thyroid disease dataset based on 3,772 male and female patient observations is used for this research experiment. This study uses the nominal continuous synthetic minority oversampling technique (SMOTE-NC) for data balancing and a fine-tuned light gradient booster machine (LGBM) technique to diagnose thyroid illness and handle class imbalance problems. The proposed SNL (SMOTE-NC-LGBM) approach outperformed the state-of-the-art approach with high-accuracy performance scores of 0.96. We have also applied advanced machine learning and deep learning methods for comparison to evaluate performance. Hyperparameter optimizations are also conducted to enhance thyroid diagnosis performance. In addition, we have applied the explainable Artificial Intelligence (XAI) mechanism based on Shapley Additive exPlanations (SHAP) to enhance the transparency and interpretability of the proposed method by analyzing the decision-making processes. The proposed research revolutionizes the diagnosis of thyroid disorders efficiently and helps specialties overcome thyroid disorders early.
metadata
Raza, Ali and Eid, Fatma and Caro Montero, Elisabeth and Delgado Noya, Irene and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, elizabeth.caro@uneatlantico.es, irene.delgado@uneatlantico.es, UNSPECIFIED
(2024)
Enhanced interpretable thyroid disease diagnosis by leveraging synthetic oversampling and machine learning models.
BMC Medical Informatics and Decision Making, 24 (1).
ISSN 1472-6947
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
Humans can carry various diseases, some of which are poorly understood and lack comprehensive solutions. Such a disease can exists in human eye that can affect one or both eyes is diabetic retinopathy (DR) which can impair function, vision, and eventually result in permanent blindness. It is one of those complex complexities. Therefore, early detection of DR can significantly reduce the risk of vision impairment by appropriate treatment and necessary precautions. The primary aim of this study is to leverage cutting-edge models trained on diverse image datasets and propose a CNN model that demonstrates comparable performance. Specifically, we employ transfer learning models such as DenseNet121, Xception, Resnet50, VGG16, VGG19, and InceptionV3, and machine learning models such as SVM, and neural network models like (RNN) for binary and multi-class classification. It has been shown that the proposed approach of multi-label classification with softmax functions and categorical cross-entropy works more effectively, yielding perfect accuracy, precision, and recall values. In particular, Xception achieved an impressive 82% accuracy among all the transfer learning models, setting a new benchmark for the dataset used. However, our proposed CNN model shows superior performance, achieving an accuracy of 95.27% on this dataset, surpassing the state-of-the-art Xception model. Moreover, for single-label (binary classifications), our proposed model achieved perfect accuracy as well. Through exploration of these advances, our objective is to provide a comprehensive overview of the leading methods for the early detection of DR. The aim is to discuss the challenges associated with these methods and highlight potential enhancements. In essence, this paper provides a high-level perspective on the integration of deep learning techniques and machine learning models, coupled with explainable artificial intelligence (XAI) and gradient-weighted class activation mapping (Grad-CAM). We prese...
metadata
Ahnaf Alavee, Kazi and Hasan, Mehedi and Hasnayen Zillanee, Abu and Mostakim, Moin and Uddin, Jia and Silva Alvarado, Eduardo René and de la Torre Diez, Isabel and Ashraf, Imran and Abdus Samad, Md
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, eduardo.silva@funiber.org, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2024)
Enhancing Early Detection of Diabetic Retinopathy Through the Integration of Deep Learning Models and Explainable Artificial Intelligence.
IEEE Access, 12.
pp. 73950-73969.
ISSN 2169-3536
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Background: The 2023 dengue outbreak has proven that dengue is not only an endemic disease but also an emerging health threat in Bangladesh. Integrated studies on the epidemiology, clinical characteristics, seasonality, and genotype of dengue are limited. This study was conducted to determine recent trends in the molecular epidemiology, clinical features, and seasonality of dengue outbreaks.
Methods: We analyzed data from 41 original studies, extracting epidemiological information from all 41 articles, clinical symptoms from 30 articles, and genotypic diversity from 11 articles. The study adhered to the standards of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement and Cochrane Collaboration guidelines.
Conclusion: This study provides integrated insights into the molecular epidemiology, clinical features, seasonality, and transmission of dengue in Bangladesh and highlights research gaps for future studies.
metadata
Sharif, Nadim and Opu, Rubayet Rayhan and Saha, Tama and Masud, Abdullah Ibna and Naim, Jannatin and Alsharif, Khalaf F. and Alzahrani, Khalid J. and Silva Alvarado, Eduardo René and Delgado Noya, Irene and De la Torre Díez, Isabel and Dey, Shuvra Kanti
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, eduardo.silva@funiber.org, irene.delgado@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2024)
Evolving epidemiology, clinical features, and genotyping of dengue outbreaks in Bangladesh, 2000–2024: a systematic review.
Frontiers in Microbiology, 15.
ISSN 1664-302X
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
With the rapid growth of Internet of Things (IoT) systems, ensuring robust security measures has become paramount. Microservices Architecture (MSA) has emerged as a promising approach for enhancing IoT systems security, yet its adoption in this context lacks comprehensive analysis. This systematic review addresses this research gap by examining the incorporation of MSA in IoT systems from 2010 to 2024. From an initial pool of 4388 studies, selected articles underwent thorough quality assessment with weighted critical appraisal questions and a defined inclusion threshold. This study represents the first comprehensive systematic review to investigate the potential of microservices in IoT, with a particular focus on security aspects. The review explores the merits of MSA, highlighting twelve benefits, eight key challenges, and eight security risks. Additionally, the eight best practices for implementing MSA in IoT systems are extracted. The findings underscore MSA’s utility in fortifying IoT security while also acknowledging complexities and potential vulnerabilities. Moreover, the study calls attention to the importance of incorporating complementary technologies including blockchain and machine learning to address identified gaps effectively. Finally, we propose a taxonomic classification for Microservice-based IoT security patterns, facilitating the categorization and organization of security measures in this context. Such a review can help researchers and practitioners identify existing gaps, highlight potential research directions, and provide guidelines for designing secure and efficient microservice-based IoT systems.
metadata
El Akhdar, Abir and Baidada, Chafik and Kartit, Ali and Hanine, Mohamed and Osorio García, Carlos Manuel and García Lara, Roberto and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, carlos.osorio@uneatlantico.es, roberto.garcia@unini.edu.mx, UNSPECIFIED
(2024)
Exploring the Potential of Microservices in Internet of Things: A Systematic Review of Security and Prospects.
Sensors, 24 (20).
p. 6771.
ISSN 1424-8220
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
In contemporary society, depression has emerged as a prominent mental disorder that exhibits exponential growth and exerts a substantial influence on premature mortality. Although numerous research applied machine learning methods to forecast signs of depression. Nevertheless, only a limited number of research have taken into account the severity level as a multiclass variable. Besides, maintaining the equality of data distribution among all the classes rarely happens in practical communities. So, the inevitable class imbalance for multiple variables is considered a substantial challenge in this domain. Furthermore, this research emphasizes the significance of addressing class imbalance issues in the context of multiple classes. We introduced a new approach Feature group partitioning (FGP) in the data preprocessing phase which effectively reduces the dimensionality of features to a minimum. This study utilized synthetic oversampling techniques, specifically Synthetic Minority Over-sampling Technique (SMOTE) and Adaptive Synthetic (ADASYN), for class balancing. The dataset used in this research was collected from university students by administering the Burn Depression Checklist (BDC). For methodological modifications, we implemented heterogeneous ensemble learning stacking, homogeneous ensemble bagging, and five distinct supervised machine learning algorithms. The issue of overfitting was mitigated by evaluating the accuracy of the training, validation, and testing datasets. To justify the effectiveness of the prediction models, balanced accuracy, sensitivity, specificity, precision, and f1-score indices are used. Overall, comprehensive analysis demonstrates the discrimination between the Conventional Depression Screening (CDS) and FGP approach. In summary, the results show that the stacking classifier for FGP with SMOTE approach yields the highest balanced accuracy, with a rate of 92.81%. The empirical evidence has demonstrated that the FGP approach, when combined with the SMOTE, able to produce better performance in predicting the severity of depression. Most importantly the optimization of the training time of the FGP approach for all of the classifiers is a significant achievement of this research.
metadata
Shaha, Tumpa Rani and Begum, Momotaz and Uddin, Jia and Yélamos Torres, Vanessa and Alemany Iturriaga, Josep and Ashraf, Imran and Samad, Md. Abdus
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, vanessa.yelamos@funiber.org, josep.alemany@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2024)
Feature group partitioning: an approach for depression severity prediction with class balancing using machine learning algorithms.
BMC Medical Research Methodology, 24 (1).
ISSN 1471-2288
Article
Subjects > Biomedicine
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Cardiovascular diseases (CVDs) are one of the main causes of mortality and morbidity worldwide. A healthy diet rich in plant-derived compounds such as (poly)phenols appears to have a key role in improving cardiovascular health. Flavan-3-ols represent a subclass of (poly)phenols of great interest for their possible health benefits. In this review, we summarized the results of clinical studies on vascular outcomes of flavan-3-ol supplementation and we focused on the role of the microbiota in CVD. Clinical trials included in this review showed that supplementation with flavan-3-ols mostly derived from cocoa products significantly reduces blood pressure and improves endothelial function. Studies on catechins from green tea demonstrated better results when involving healthy individuals. From a mechanistic point of view, emerging evidence suggests that microbial metabolites may play a role in the observed effects. Their function extends beyond the previous belief of ROS scavenging activity and encompasses a direct impact on gene expression and protein function. Although flavan-3-ols appear to have effects on cardiovascular health, further studies are needed to clarify and confirm these potential benefits and the rising evidence of the potential involvement of the microbiota.
metadata
Godos, Justyna and Romano, Giovanni Luca and Laudani, Samuele and Gozzo, Lucia and Guerrera, Ida and Dominguez Azpíroz, Irma and Martínez Díaz, Raquel and Quiles, José L. and Battino, Maurizio and Drago, Filippo and Giampieri, Francesca and Galvano, Fabio and Grosso, Giuseppe
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, irma.dominguez@unini.edu.mx, raquel.martinez@uneatlantico.es, jose.quiles@uneatlantico.es, maurizio.battino@uneatlantico.es, UNSPECIFIED, francesca.giampieri@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2024)
Flavan-3-ols and Vascular Health: Clinical Evidence and Mechanisms of Action.
Nutrients, 16 (15).
p. 2471.
ISSN 2072-6643
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Wafer mappings (WM) help diagnose low-yield issues in semiconductor production by offering vital information about process anomalies. As integrated circuits continue to grow in complexity, doing efficient yield analyses is becoming more essential but also more difficult. Semiconductor manufacturers require constant attention to reliability and efficiency. Using the capabilities of convolutional neural network (CNN) models improved by hierarchical attention module (HAM), wafer hotspot detection is achieved throughout the fabrication process. In an effort to achieve accurate hotspot detection, this study examines a variety of model combinations, including CNN, CNN+long short-term memory (LSTM) LSTM, CNN+Autoencoder, CNN+artificial neural network (ANN), LSTM+HAM, Autoencoder+HAM, ANN+HAM, and CNN+HAM. Data augmentation strategies are utilized to enhance the model’s resilience by optimizing its performance on a variety of datasets. Experimental results indicate a superior performance of 94.58% accuracy using the CNN+HAM model. K-fold cross-validation results using 3, 5, 7, and 10 folds indicate mean accuracy of 94.66%, 94.67%, 94.66%, and 94.66%, for the proposed approach, respectively. The proposed model performs better than recent existing works on wafer hotspot detection. Performance comparison with existing models further validates its robustness and performance.
metadata
Shahroz, Mobeen and Ali, Mudasir and Tahir, Alishba and Fabian Gongora, Henry and Uc Ríos, Carlos Eduardo and Abdus Samad, Md and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, henry.gongora@uneatlantico.es, carlos.uc@unini.edu.mx, UNSPECIFIED, UNSPECIFIED
(2024)
Hierarchical Attention Module-Based Hotspot Detection in Wafer Fabrication Using Convolutional Neural Network Model.
IEEE Access, 12.
pp. 92840-92855.
ISSN 2169-3536
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Nanotechnology has opened new avenues for advanced research in various fields of soft materials. Materials scientists, chemists, physicists, and computational mathematicians have begun to take a keen interest in soft materials due to their potential applications in nanopatterning, membrane separation, drug delivery, nanolithography, advanced storage media, and nanorobotics. The unique properties of soft materials, particularly self-assembly, have made them useful in fields ranging from nanotechnology to biomedicine. The discovery of new morphologies in the diblock copolymer system in curved geometries is a challenging problem for mathematicians and theoretical scientists. Structural frustration under the effects of confinement in the system helps predict new structures. This mathematical study evaluates the effects of confinement and curvature on symmetric diblock copolymer melt using a cell dynamic simulation model. New patterns in lamella morphologies are predicted. The Laplacian involved in the cell dynamic simulation model is approximated by generating a 17-point stencil discretized to a polar grid by the finite difference method. Codes are programmed in FORTRAN to run the simulation, and IBM open DX is used to visualize the results. Comparison of computational results with existing studies validates this study and identifies defects and new patterns.
metadata
Iqbal, Muhammad Javed and Soomro, Inayatullah and Razzaq, Mirza Abdur and Omar-Martinez, Erislandy and Velázquez Martínez, Zaily Leticia and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, zaily.velazquez@unini.edu.mx, UNSPECIFIED
(2024)
Investigation of structural frustration in symmetric diblock copolymers confined in polar discs through cell dynamic simulation.
Scientific Reports, 14 (1).
ISSN 2045-2322
Article
Subjects > Biomedicine
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Isoflavones are a group of (poly)phenols, also defined as phytoestrogens, with chemical structures comparable with estrogen, that exert weak estrogenic effects. These phytochemical compounds have been targeted for their proven antioxidant and protective effects. Recognizing the increasing prevalence of cardiovascular diseases (CVD), there is a growing interest in understanding the potential cardiovascular benefits associated with these phytochemical compounds. Gut microbiota may play a key role in mediating the effects of isoflavones on vascular and endothelial functions, as it is directly implicated in isoflavones metabolism. The findings from randomized clinical trials indicate that isoflavone supplementation may exert putative effects on vascular biomarkers among healthy individuals, but not among patients affected by cardiometabolic disorders. These results might be explained by the enzymatic transformation to which isoflavones are subjected by the gut microbiota, suggesting that a diverse composition of the microbiota may determine the diverse bioavailability of these compounds. Specifically, the conversion of isoflavones in equol—a microbiota-derived metabolite—seems to differ between individuals. Further studies are needed to clarify the intricate molecular mechanisms behind these contrasting results.
metadata
Laudani, Samuele and Godos, Justyna and Romano, Giovanni Luca and Gozzo, Lucia and Di Domenico, Federica Martina and Dominguez Azpíroz, Irma and Martínez Díaz, Raquel and Giampieri, Francesca and Quiles, José L. and Battino, Maurizio and Drago, Filippo and Galvano, Fabio and Grosso, Giuseppe
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, irma.dominguez@unini.edu.mx, raquel.martinez@uneatlantico.es, francesca.giampieri@uneatlantico.es, jose.quiles@uneatlantico.es, maurizio.battino@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2024)
Isoflavones Effects on Vascular and Endothelial Outcomes: How Is the Gut Microbiota Involved?
Pharmaceuticals, 17 (2).
p. 236.
ISSN 1424-8247
Article
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Background/Objectives. Traditional dietary patterns are being abandoned in Mediterranean countries, especially among younger generations. This study aimed to investigate the potential lifestyle determinants that can increase adherence to the Mediterranean diet in children and adolescents. Methods. This study is a cross-sectional analysis of data from five Mediterranean countries (Italy, Spain, Portugal, Egypt, and Lebanon) within the context of the EU-funded project DELICIOUS (UnDErstanding consumer food choices & promotion of healthy and sustainable Mediterranean Diet and LIfestyle in Children and adolescents through behavIOUral change actionS). This study comprised information on 2011 children and adolescents aged 6–17 years old collected during 2023. The main background characteristics of both children and parents, including age, sex, education, and family situation, were collected. Children’s eating (i.e., breakfast, place of eating, etc.) and lifestyle habits (i.e., physical activity level, sleep, and screen time) were also investigated. The level of adherence to the Mediterranean diet was assessed using the KIDMED index. Logistic regression analyses were performed to test for likelihood of higher adherence to the Mediterranean diet. Results. Major determinants of higher adherence to the Mediterranean diet were younger age, higher physical activity level, adequate sleep duration, and, among dietary habits, having breakfast and eating with family members and at school. Parents’ younger age and higher education were also determinants of higher adherence. Multivariate adjusted analyses showed that an overall healthier lifestyle and parents’ education were the factors independently associated with higher adherence to the Mediterranean diet. Conclusions. Higher adherence to the Mediterranean diet in children and adolescents living in the Mediterranean area is part of an overall healthy lifestyle possibly depending on parents’ cultural background.
metadata
Rosi, Alice and Scazzina, Francesca and Giampieri, Francesca and Álvarez-Córdova, Ludwig and Abdelkarim, Osama and Ammar, Achraf and Aly, Mohamed and Frias-Toral, Evelyn and Pons, Juancho and Vázquez-Araújo, Laura and Rodríguez Velasco, Carmen Lilí and Brito Ballester, Julién and Monasta, Lorenzo and Mata, Ana and Chacón, Adrián and Busó, Pablo and Grosso, Giuseppe
mail
UNSPECIFIED, UNSPECIFIED, francesca.giampieri@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, carmen.rodriguez@uneatlantico.es, julien.brito@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2024)
Lifestyle Factors Associated with Children’s and Adolescents’ Adherence to the Mediterranean Diet Living in Mediterranean Countries: The DELICIOUS Project.
Nutrients, 17 (1).
p. 26.
ISSN 2072-6643
Article
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
The prevalence of sleep disorders, characterized by issues with quality, timing, and sleep duration is increasing globally. Among modifiable risk factors, diet quality has been suggested to influence sleep features. The Mediterranean diet is considered a landmark dietary pattern in terms of quality and effects on human health. However, dietary habits characterized by this cultural heritage should also be considered in the context of overall lifestyle behaviors, including sleep habits. This study aimed to systematically revise the literature relating to adherence to the Mediterranean diet and sleep features in observational studies. The systematic review comprised 23 reports describing the relation between adherence to the Mediterranean diet and different sleep features, including sleep quality, sleep duration, daytime sleepiness, and insomnia symptoms. The majority of the included studies were conducted in the Mediterranean basin and reported a significant association between a higher adherence to the Mediterranean diet and a lower likelihood of having poor sleep quality, inadequate sleep duration, excessive daytime sleepiness or symptoms of insomnia. Interestingly, additional studies conducted outside the Mediterranean basin showed a relationship between the adoption of a Mediterranean-type diet and sleep quality, suggesting that biological mechanisms sustaining such an association may exist. In conclusion, current evidence suggests a relationship between adhering to the Mediterranean diet and overall sleep quality and different sleep parameters. The plausible bidirectional association should be further investigated to understand whether the promotion of a healthy diet could be used as a tool to improve sleep quality.
metadata
Godos, Justyna and Ferri, Raffaele and Lanza, Giuseppe and Caraci, Filippo and Rojas Vistorte, Angel Olider and Yélamos Torres, Vanessa and Grosso, Giuseppe and Castellano, Sabrina
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, angel.rojas@uneatlantico.es, vanessa.yelamos@funiber.org, UNSPECIFIED, UNSPECIFIED
(2024)
Mediterranean Diet and Sleep Features: A Systematic Review of Current Evidence.
Nutrients, 16 (2).
p. 282.
ISSN 2072-6643
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
New approaches to software testing are required due to the rising complexity of today’s software applications and the rapid growth of software engineering practices. Among these methods, one that has shown promise is the introduction of Natural Language Processing (NLP) tools to software testing practices. NLP has witnessed a rise in popularity within all IT fields, especially in software engineering, where its use has improved the way we extract information from textual data. The goal of this systematic literature review (SLR) is to provide an in-depth analysis of the present body of the literature on the expanding subject of NLP-based software testing. Through a repeatable process, that takes into account the quality of the research, we examined 24 papers extracted from Web of Science and Scopus databases to extract insights about the usage of NLP techniques in the field of software testing. Requirements analysis and test case generation popped up as the most hot topics in the field. We also explored NLP techniques, software testing types, machine/deep learning algorithms, and NLP tools and frameworks used in the studied body of literature. This study also stressed some recurrent open challenges that need further work in future research such as the generalization of the NLP algorithm across domains and languages and the ambiguity in the natural language requirements. Software testing professionals and researchers can get important insights from the findings of this SLR, which will help them comprehend the advantages and challenges of using NLP in software testing.
metadata
Boukhlif, Mohamed and Hanine, Mohamed and Kharmoum, Nassim and Ruigómez Noriega, Atenea and García Obeso, David and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, atenea.ruigomez@uneatlantico.es, david.garcia@uneatlantico.es, UNSPECIFIED
(2024)
Natural Language Processing-Based Software Testing: A Systematic Literature Review.
IEEE Access, 12.
pp. 79383-79400.
ISSN 2169-3536
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
The evolution of the COVID-19 pandemic has been associated with variations in clinical presentation and severity. Similarly, prediction scores may suffer changes in their diagnostic accuracy. The aim of this study was to test the 30-day mortality predictive validity of the 4C and SEIMC scores during the sixth wave of the pandemic and to compare them with those of validation studies. This was a longitudinal retrospective observational study. COVID-19 patients who were admitted to the Emergency Department of a Spanish hospital from December 15, 2021, to January 31, 2022, were selected. A side-by-side comparison with the pivotal validation studies was subsequently performed. The main measures were 30-day mortality and the 4C and SEIMC scores. A total of 27,614 patients were considered in the study, including 22,361 from the 4C, 4,627 from the SEIMC and 626 from our hospital. The 30-day mortality rate was significantly lower than that reported in the validation studies. The AUCs were 0.931 (95% CI: 0.90–0.95) for 4C and 0.903 (95% CI: 086–0.93) for SEIMC, which were significantly greater than those obtained in the first wave. Despite the changes that have occurred during the coronavirus disease 2019 (COVID-19) pandemic, with a reduction in lethality, scorecard systems are currently still useful tools for detecting patients with poor disease risk, with better prognostic capacity.
metadata
de Santos Castro, Pedro Ángel and del Pozo Vegas, Carlos and Pinilla Arribas, Leyre Teresa and Zalama Sánchez, Daniel and Sanz-García, Ancor and Vásquez del Águila, Tony Giancarlo and González Izquierdo, Pablo and de Santos Sánchez, Sara and Mazas Pérez-Oleaga, Cristina and Dominguez Azpíroz, Irma and Elío Pascual, Iñaki and Martín-Rodríguez, Francisco
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, cristina.mazas@uneatlantico.es, irma.dominguez@unini.edu.mx, inaki.elio@uneatlantico.es, UNSPECIFIED
(2024)
Performance of the 4C and SEIMC scoring systems in predicting mortality from onset to current COVID-19 pandemic in emergency departments.
Scientific Reports, 14 (1).
ISSN 2045-2322
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
The evolution of the COVID-19 pandemic has been associated with variations in clinical presentation and severity. Similarly, prediction scores may suffer changes in their diagnostic accuracy. The aim of this study was to test the 30-day mortality predictive validity of the 4C and SEIMC scores during the sixth wave of the pandemic and to compare them with those of validation studies. This was a longitudinal retrospective observational study. COVID-19 patients who were admitted to the Emergency Department of a Spanish hospital from December 15, 2021, to January 31, 2022, were selected. A side-by-side comparison with the pivotal validation studies was subsequently performed. The main measures were 30-day mortality and the 4C and SEIMC scores. A total of 27,614 patients were considered in the study, including 22,361 from the 4C, 4,627 from the SEIMC and 626 from our hospital. The 30-day mortality rate was significantly lower than that reported in the validation studies. The AUCs were 0.931 (95% CI: 0.90–0.95) for 4C and 0.903 (95% CI: 086–0.93) for SEIMC, which were significantly greater than those obtained in the first wave. Despite the changes that have occurred during the coronavirus disease 2019 (COVID-19) pandemic, with a reduction in lethality, scorecard systems are currently still useful tools for detecting patients with poor disease risk, with better prognostic capacity.
metadata
de Santos Castro, Pedro Ángel and del Pozo Vegas, Carlos and Pinilla Arribas, Leyre Teresa and Zalama Sánchez, Daniel and Sanz-García, Ancor and Vásquez del Águila, Tony Giancarlo and González Izquierdo, Pablo and de Santos Sánchez, Sara and Mazas Pérez-Oleaga, Cristina and Dominguez Azpíroz, Irma and Elío Pascual, Iñaki and Martín-Rodríguez, Francisco
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, cristina.mazas@uneatlantico.es, irma.dominguez@unini.edu.mx, inaki.elio@uneatlantico.es, UNSPECIFIED
(2024)
Performance of the 4C and SEIMC scoring systems in predicting mortality from onset to current COVID-19 pandemic in emergency departments.
Scientific Reports, 14 (1).
ISSN 2045-2322
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Cerrado
Inglés
Leukemia is a type of blood cell cancer that is in the bone marrow’s blood-forming cells. Two types of Leukemia are acute and chronic; acute enhances fast and chronic growth gradually which are further classified into lymphocytic and myeloid leukemias. This work evaluates a unique deep convolutional neural network (CNN) classifier that improves identification precision by carefully examining concatenated peptide patterns. The study uses leukemia protein expression for experiments supporting two different techniques including independence and applied cross-validation. In addition to CNN, multilayer perceptron (MLP), gated recurrent unit (GRU), and recurrent neural network (RNN) are applied. The experimental results show that the CNN model surpasses competitors with its outstanding predictability in independent and cross-validation testing applied on different features extracted from protein expressions such as amino acid composition (AAC) with a group of AAC (GAAC), tripeptide composition (TPC) with a group of TPC (GTPC), and dipeptide composition (DPC) for calculating its accuracies with their receiver operating characteristic (ROC) curve. In independence testing, a feature expression of AAC and a group of GAAC are applied using MLP and CNN modules, and ROC curves are achieved with overall 100% accuracy for the detection of protein patterns. In cross-validation testing, a feature expression on a group of AAC and GAAC patterns achieved 98.33% accuracy which is the highest for the CNN module. Furthermore, ROC curves show a 0.965% extraordinary result for the GRU module. The findings show that the CNN model is excellent at figuring out leukemia illnesses from protein expressions with higher accuracy.
metadata
Khawaja, Seher Ansar and Farooq, Muhammad Shoaib and Ishaq, Kashif and Alsubaie, Najah and Karamti, Hanen and Caro Montero, Elizabeth and Silva Alvarado, Eduardo René and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, elizabeth.caro@uneatlantico.es, eduardo.silva@funiber.org, UNSPECIFIED
(2024)
Prediction of leukemia peptides using convolutional neural network and protein compositions.
BMC Cancer, 24 (1).
ISSN 1471-2407
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Cardiovascular diseases are among the leading causes of mortality worldwide, with dietary factors being the main risk contributors. Diets rich in bioactive compounds, such as (poly)phenols, have been shown to potentially exert positive effects on vascular health. Among them, resveratrol has gained particular attention due to its potential antioxidant and anti-inflammatory action. Nevertheless, the results in humans are conflicting possibly due to interindividual different responses. The gut microbiota, a complex microbial community that inhabits the gastrointestinal tract, has been called out as potentially responsible for modulating the biological activities of phenolic metabolites in humans. The present review aims to summarize the main findings from clinical trials on the effects of resveratrol interventions on endothelial and vascular outcomes and review potential mechanisms interesting the role of gut microbiota on the metabolism of this molecule and its cardioprotective metabolites. The findings from randomized controlled trials show contrasting results on the effects of resveratrol supplementation and vascular biomarkers without dose-dependent effect. In particular, studies in which resveratrol was integrated using food sources, i.e., red wine, reported significant effects although the resveratrol content was, on average, much lower compared to tablet supplementation, while other studies with often extreme resveratrol supplementation resulted in null findings. The results from experimental studies suggest that resveratrol exerts cardioprotective effects through the modulation of various antioxidant, anti-inflammatory, and anti-hypertensive pathways, and microbiota composition. Recent studies on resveratrol-derived metabolites, such as piceatannol, have demonstrated its effects on biomarkers of vascular health. Moreover, resveratrol itself has been shown to improve the gut microbiota composition toward an anti-inflammatory profile. Considering the contrasting findings from clinical studies, future research exploring the bidirectional link between resveratrol metabolism and gut microbiota as well as the mediating effect of gut microbiota in resveratrol effect on cardiovascular health is warranted.
metadata
Godos, Justyna and Romano, Giovanni Luca and Gozzo, Lucia and Laudani, Samuele and Paladino, Nadia and Dominguez Azpíroz, Irma and Martínez López, Nohora Milena and Giampieri, Francesca and Quiles, José L. and Battino, Maurizio and Galvano, Fabio and Drago, Filippo and Grosso, Giuseppe
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, irma.dominguez@unini.edu.mx, nohora.martinez@uneatlantico.es, francesca.giampieri@uneatlantico.es, jose.quiles@uneatlantico.es, maurizio.battino@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2024)
Resveratrol and vascular health: evidence from clinical studies and mechanisms of actions related to its metabolites produced by gut microbiota.
Frontiers in Pharmacology, 15.
ISSN 1663-9812
Article
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
The purpose of the study is to assess the risk of developing general eating disorders (ED), anorexia nervosa (AN), and bulimia nervosa (BN), as well as to examine the effects of gender, academic year, place of residence, faculty, and diet quality on that risk. Over two academic years, 129 first- and fourth-year Uneatlántico students were included in an observational descriptive study. The self-administered tests SCOFF, EAT-26, and BITE were used to determine the participants’ risk of developing ED. The degree of adherence to the Mediterranean diet (MD) was used to evaluate the quality of the diet. Data were collected at the beginning (T1) and at the end (T2) of the academic year. The main results were that at T1, 34.9% of participants were at risk of developing general ED, AN 3.9%, and BN 16.3%. At T2, these percentages were 37.2%, 14.7%, and 8.5%, respectively. At T2, the frequency of general ED in the female group was 2.5 times higher (OR: 2.55, 95% CI: 1.22–5.32, p = 0.012). The low-moderate adherence to the MD students’ group was 0.92 times less frequent than general ED at T2 (OR: 0.921, 95%CI: 0.385–2.20, p < 0.001). The most significant risk factor for developing ED is being a female in the first year of university. Moreover, it appears that the likelihood of developing ED generally increases during the academic year.
metadata
Eguren García, Imanol and Sumalla Cano, Sandra and Conde González, Sandra and Vila-Martí, Anna and Briones Urbano, Mercedes and Martínez Díaz, Raquel and Elío Pascual, Iñaki
mail
imanol.eguren@uneatlantico.es, sandra.sumalla@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, mercedes.briones@uneatlantico.es, raquel.martinez@uneatlantico.es, inaki.elio@uneatlantico.es
(2024)
Risk Factors for Eating Disorders in University Students: The RUNEAT Study.
Healthcare, 12 (9).
p. 942.
ISSN 2227-9032
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
With the rapid increase of users over social media, cyberbullying, and hate speech problems have arisen over the past years. Automatic hate speech detection (HSD) from text is an emerging research problem in natural language processing (NLP). Researchers developed various approaches to solve the automatic hate speech detection problem using different corpora in various languages, however, research on the Urdu language is rather scarce. This study aims to address the HSD task on Twitter using Roman Urdu text. The contribution of this research is the development of a hybrid model for Roman Urdu HSD, which has not been previously explored. The novel hybrid model integrates deep learning (DL) and transformer models for automatic feature extraction, combined with machine learning algorithms (MLAs) for classification. To further enhance model performance, we employ several hyperparameter optimization (HPO) techniques, including Grid Search (GS), Randomized Search (RS), and Bayesian Optimization with Gaussian Processes (BOGP). Evaluation is carried out on two publicly available benchmarks Roman Urdu corpora comprising HS-RU-20 corpus and RUHSOLD hate speech corpus. Results demonstrate that the Multilingual BERT (MBERT) feature learner, paired with a Support Vector Machine (SVM) classifier and optimized using RS, achieves state-of-the-art performance. On the HS-RU-20 corpus, this model attained an accuracy of 0.93 and an F1 score of 0.95 for the Neutral-Hostile classification task, and an accuracy of 0.89 with an F1 score of 0.88 for the Hate Speech-Offensive task. On the RUHSOLD corpus, the same model achieved an accuracy of 0.95 and an F1 score of 0.94 for the Coarse-grained task, alongside an accuracy of 0.87 and an F1 score of 0.84 for the Fine-grained task. These results demonstrate the effectiveness of our hybrid approach for Roman Urdu hate speech detection.
metadata
Ashiq, Waqar and Kanwal, Samra and Rafique, Adnan and Waqas, Muhammad and Khurshaid, Tahir and Caro Montero, Elizabeth and Bustamante Alonso, Alicia and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, elizabeth.caro@uneatlantico.es, alicia.bustamante@uneatlantico.es, UNSPECIFIED
(2024)
Roman urdu hate speech detection using hybrid machine learning models and hyperparameter optimization.
Scientific Reports, 14 (1).
ISSN 2045-2322
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
Assessment of side effects associated with COVID-19 vaccination is required to monitor safety issues and acceptance of vaccines in the long term. We found a significant knowledge gap in the safety profile of COVID-19 vaccines in Bangladesh. We enrolled 1805 vaccine recipients from May 5, 2021, to April 4, 2023. Kruskal-Wallis test and χ2 test were performed. Multivariable logistic regression was also performed. First, second and third doses were administered among 1805, 1341, and 923 participants, respectively. Oxford–AstraZeneca (2946 doses) was the highest administered followed by Sinopharm BIBP (551 doses), Sinovac (214 doses), Pfizer-BioNTech (198 doses), and Moderna (160 doses), respectively. Pain at the injection site (80-90%, 3200–3600), swelling (85%, 3458), redness (78%, 3168), and heaviness in hand (65%, 2645) were the most common local effects, and fever (85%, 3458), headache (82%, 3336), myalgia (70%, 2848), chills (67%, 2726), muscle pain (60%, 2441) were the most prevalent systemic side effects reported within 48 h of vaccination. Thrombosis was only reported among the Oxford–AstraZeneca recipients (3.5-5.7%). Both local and systemic effects were significantly associated with the Oxford–AstraZeneca (p-value < 0.05), Pfizer–BioNTech (p-value < 0.05), and Moderna (p-value < 0.05) vaccination. Chronic urticaria and psoriasis were reported by 55-60% of the recipients after six months or later. The highest percentage of local and systemic effects after 2nd and 3rd dose were found among recipients of Moderna followed by Pfizer-BioNTech and Oxford–AstraZeneca. Homogenous doses of Oxford–AstraZeneca and heterogenous doses of Moderna and Pfizer-BioNTech were significantly associated with elevated adverse effects. Females, aged above 60 years with preexisting health conditions had higher risks. Vaccination with Pfizer-BioNTech (OR 4.34, 95% CI 3.95–4.58) had the highest odds of severe and long-term effects followed by Moderna (OR 4.15, 95% CI 3.92–4.69) and Oxford–AstraZeneca (OR 3.89, 95% CI 3.45–4.06), respectively. This study will provide an integrated insight into the safety profile of COVID-19 vaccines.
metadata
Sharif, Nadim and Opu, Rubayet Rayhan and Saha, Tama and Khan, Afsana and Aljohani, Abrar and Alsuwat, Meshari A. and García, Carlos O. and Vázquez, Annia A. and Alzahrani, Khalid J. and Miramontes-González, J. Pablo and Dey, Shuvra Kanti
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, annia.almeyda@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2024)
Side effects associated with homogenous and heterogenous doses of Oxford–AstraZeneca vaccine among adults in Bangladesh: an observational study.
Scientific Reports, 14 (1).
ISSN 2045-2322
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
Assessment of side effects associated with COVID-19 vaccination is required to monitor safety issues and acceptance of vaccines in the long term. We found a significant knowledge gap in the safety profile of COVID-19 vaccines in Bangladesh. We enrolled 1805 vaccine recipients from May 5, 2021, to April 4, 2023. Kruskal-Wallis test and χ2 test were performed. Multivariable logistic regression was also performed. First, second and third doses were administered among 1805, 1341, and 923 participants, respectively. Oxford–AstraZeneca (2946 doses) was the highest administered followed by Sinopharm BIBP (551 doses), Sinovac (214 doses), Pfizer-BioNTech (198 doses), and Moderna (160 doses), respectively. Pain at the injection site (80-90%, 3200–3600), swelling (85%, 3458), redness (78%, 3168), and heaviness in hand (65%, 2645) were the most common local effects, and fever (85%, 3458), headache (82%, 3336), myalgia (70%, 2848), chills (67%, 2726), muscle pain (60%, 2441) were the most prevalent systemic side effects reported within 48 h of vaccination. Thrombosis was only reported among the Oxford–AstraZeneca recipients (3.5-5.7%). Both local and systemic effects were significantly associated with the Oxford–AstraZeneca (p-value < 0.05), Pfizer–BioNTech (p-value < 0.05), and Moderna (p-value < 0.05) vaccination. Chronic urticaria and psoriasis were reported by 55-60% of the recipients after six months or later. The highest percentage of local and systemic effects after 2nd and 3rd dose were found among recipients of Moderna followed by Pfizer-BioNTech and Oxford–AstraZeneca. Homogenous doses of Oxford–AstraZeneca and heterogenous doses of Moderna and Pfizer-BioNTech were significantly associated with elevated adverse effects. Females, aged above 60 years with preexisting health conditions had higher risks. Vaccination with Pfizer-BioNTech (OR 4.34, 95% CI 3.95–4.58) had the highest odds of severe and long-term effects followed by Moderna (OR 4.15, 95% CI 3.92–4.69) and Oxford–AstraZeneca (OR 3.89, 95% CI 3.45–4.06), respectively. This study will provide an integrated insight into the safety profile of COVID-19 vaccines.
metadata
Sharif, Nadim and Opu, Rubayet Rayhan and Saha, Tama and Khan, Afsana and Aljohani, Abrar and Alsuwat, Meshari A. and García, Carlos O. and Vázquez, Annia A. and Alzahrani, Khalid J. and Miramontes-González, J. Pablo and Dey, Shuvra Kanti
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, annia.almeyda@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2024)
Side effects associated with homogenous and heterogenous doses of Oxford–AstraZeneca vaccine among adults in Bangladesh: an observational study.
Scientific Reports, 14 (1).
ISSN 2045-2322
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Telephysiotherapy has emerged as a vital solution for delivering remote healthcare, particularly in response to global challenges such as the COVID-19 pandemic. This study seeks to enhance telephysiotherapy by developing a system capable of accurately classifying physiotherapeutic exercises using PoseNet, a state-of-the-art pose estimation model. A dataset was collected from 49 participants (35 males, 14 females) performing seven distinct exercises, with twelve anatomical landmarks then extracted using the Google MediaPipe library. Each landmark was represented by four features, which were used for classification. The core challenge addressed in this research involves ensuring accurate and real-time exercise classification across diverse body morphologies and exercise types. Several tree-based classifiers, including Random Forest, Extra Tree Classifier, XGBoost, LightGBM, and Hist Gradient Boosting, were employed. Furthermore, two novel ensemble models called RandomLightHist Fusion and StackedXLightRF are proposed to enhance classification accuracy. The RandomLightHist Fusion model achieved superior accuracy of 99.6%, demonstrating the system’s robustness and effectiveness. This innovation offers a practical solution for providing real-time feedback in telephysiotherapy, with potential to improve patient outcomes through accurate monitoring and assessment of exercise performance.
metadata
Hussain, Shahzad and Siddiqui, Hafeez Ur Rehman and Saleem, Adil Ali and Raza, Muhammad Amjad and Alemany Iturriaga, Josep and Velarde-Sotres, Álvaro and Díez, Isabel De la Torre and Dudley, Sandra
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, josep.alemany@uneatlantico.es, alvaro.velarde@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2024)
Smart Physiotherapy: Advancing Arm-Based Exercise Classification with PoseNet and Ensemble Models.
Sensors, 24 (19).
p. 6325.
ISSN 1424-8220
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Plant stress reduction research has advanced significantly with the use of Artificial Intelligence (AI) techniques, such as machine learning and deep learning. This is a significant step toward sustainable agriculture. Innovative insights into the physiological responses of plants mostly crops to drought stress have been revealed through the use of complex algorithms like gradient boosting, support vector machines (SVM), recurrent neural network (RNN), and long short-term memory (LSTM), combined with a thorough examination of the TYRKC and RBR-E3 domains in stress-associated signaling proteins across a range of crop species. Modern resources were used in this study, including the UniProt protein database for crop physiochemical properties associated with specific signaling domains and the SMART database for signaling protein domains. These insights were then applied to deep learning and machine learning techniques after careful data processing. The rigorous metric evaluations and ablation analysis that typified the study’s approach highlighted the algorithms’ effectiveness and dependability in recognizing and classifying stress events. Notably, the accuracy of SVM was 82%, while gradient boosting and RNN showed 96%, and 94%, respectively and LSTM obtained an astounding 97% accuracy. The study observed these successes but also highlights the ongoing obstacles to AI adoption in agriculture, emphasizing the need for creative thinking and interdisciplinary cooperation. In addition to its scholarly value, the collected data has significant implications for improving resource efficiency, directing precision agricultural methods, and supporting global food security programs. Notably, the gradient boosting and LSTM algorithm outperformed the others with an exceptional accuracy of 96% and 97%, demonstrating their potential for accurate stress categorization. This work highlights the revolutionary potential of AI to completely disrupt the agricultural industry while simultaneously advancing our understanding of plant stress responses.
metadata
Ali, Tariq and Rehman, Saif Ur and Ali, Shamshair and Mahmood, Khalid and Aparicio Obregón, Silvia and Calderón Iglesias, Rubén and Khurshaid, Tahir and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, silvia.aparicio@uneatlantico.es, ruben.calderon@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2024)
Smart agriculture: utilizing machine learning and deep learning for drought stress identification in crops.
Scientific Reports, 14 (1).
ISSN 2045-2322
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Interleukin-10, a highly effective cytokine recognized for its anti-inflammatory properties, plays a critical role in the immune system. In addition to its well-documented capacity to mitigate inflammation, IL-10 can unexpectedly demonstrate pro-inflammatory characteristics under specific circumstances. The presence of both aspects emphasizes the vital need to identify the IL-10-induced peptide. To mitigate the drawbacks of manual identification, which include its high cost, this study introduces StackIL10, an ensemble learning model based on stacking, to identify IL-10-inducing peptides in a precise and efficient manner. Ten Amino-acid-composition-based Feature Extraction approaches are considered. The StackIL10, stacking ensemble, the model with five optimized Machine Learning Algorithm (specifically LGBM, RF, SVM, Decision Tree, KNN) as the base learners and a Logistic Regression as the meta learner was constructed, and the identification rate reached 91.7%, MCC of 0.833 with 0.9078 Specificity. Experiments were conducted to examine the impact of various enhancement techniques on the correctness of IL-10 Prediction. These experiments included comparisons between single models and various combinations of stacking-based ensemble models. It was demonstrated that the model proposed in this study was more effective than singular models and produced satisfactory results, thereby improving the identification of peptides that induce IL-10.
metadata
Usmani, Salman Sadullah and Tuhin, Izaz Ahmmed and Mia, Md. Rajib and Islam, Md. Monirul and Islam, Md. Monirul and Mahmud, Imran and Uc Ríos, Carlos Eduardo and Fabian Gongora, Henry and Ashraf, Imran and Samad, Md. Abdus
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, carlos.uc@unini.edu.mx, henry.gongora@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2024)
StackIL10: A stacking ensemble model for the improved prediction of IL-10 inducing peptides.
PLOS ONE, 19 (11).
e0313835.
ISSN 1932-6203
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Driving while drowsy poses significant risks, including reduced cognitive function and the potential for accidents, which can lead to severe consequences such as trauma, economic losses, injuries, or death. The use of artificial intelligence can enable effective detection of driver drowsiness, helping to prevent accidents and enhance driver performance. This research aims to address the crucial need for real-time and accurate drowsiness detection to mitigate the impact of fatigue-related accidents. Leveraging ultra-wideband radar data collected over five minutes, the dataset was segmented into one-minute chunks and transformed into grayscale images. Spatial features are retrieved from the images using a two-dimensional Convolutional Neural Network. Following that, these features were used to train and test multiple machine learning classifiers. The ensemble classifier RF-XGB-SVM, which combines Random Forest, XGBoost, and Support Vector Machine using a hard voting criterion, performed admirably with an accuracy of 96.6%. Additionally, the proposed approach was validated with a robust k-fold score of 97% and a standard deviation of 0.018, demonstrating significant results. The dataset is augmented using Generative Adversarial Networks, resulting in improved accuracies for all models. Among them, the RF-XGB-SVM model outperformed the rest with an accuracy score of 99.58%.
metadata
Siddiqui, Hafeez Ur Rehman and Akmal, Ambreen and Iqbal, Muhammad and Saleem, Adil Ali and Raza, Muhammad Amjad and Zafar, Kainat and Zaib, Aqsa and Dudley, Sandra and Arambarri, Jon and Kuc Castilla, Ángel Gabriel and Rustam, Furqan
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, jon.arambarri@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2024)
Ultra-Wide Band Radar Empowered Driver Drowsiness Detection with Convolutional Spatial Feature Engineering and Artificial Intelligence.
Sensors, 24 (12).
p. 3754.
ISSN 1424-8220
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
This paper studies the latest and state-of-the-art underwater thermal energy harvesting algorithms and techniques designed in the latest decade (2014-2024). The techniques are classified based on their unique operations for energy harvesting. This classification includes thermal energy harvesting using a phase change material (PCM), thermoelectric generator (TEG) and multi-source harvesting. Every class of techniques is described by its operation using a schematic diagram and a mathematical model to fully understand its working principle. Moreover, every individual technique is also described in terms of its operation, amount of harvested energy/power and the aspect(s) where margin of further improvement exists. Also, a comparative analysis of the classified algorithms is performed with each other as well as with other underwater energy harvesting techniques (solar, piezoelectric, wave) to highlight their effectiveness and feasibility in a diverse set of underwater and various other applications. The classified techniques are also compared in terms of harvested output to indicate their harvesting efficiency. Furthermore, the publications made in the latest decade in terms of thermal energy harvesting using PCM, TEG and multi-source methods are also graphically depicted. Such a description of the studied techniques and classified methods is unique from the already existing underwater energy harvesting reviews in literature where an in-depth and thorough analysis is absent, rather only marginal description is given. The harvesting results indicate that hybrid (multi-source) and PCM methods have the greatest amount of harvested power and energy, respectively. Finally, the research challenges in underwater thermal energy harvesting are specified and areas of further research are highlighted for future investigation.
metadata
Khan, Anwar and Gracia Villar, Santos and Dzul López, Luis Alonso and Almaleh, Abdulaziz and Alqahtani, Abdullah M. and Alnaimi, Raja’A
mail
UNSPECIFIED, santos.gracia@uneatlantico.es, luis.dzul@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2024)
Underwater Thermal Energy Harvesting: Frameworks, Challenges, Applications, and Future Investigation.
IEEE Access, 12.
pp. 174371-174386.
ISSN 2169-3536
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Virtual histopathology is an emerging technology in medical imaging that utilizes advanced computational methods to analyze tissue images for more precise disease diagnosis. Traditionally, histopathology relies on manual techniques and expertise, often resulting in time-consuming processes and variability in diagnoses. Virtual histopathology offers a more consistent, and automated approach, employing techniques like machine learning, deep learning, and image processing to simulate staining and enhance tissue analysis. This review explores the strengths, limitations, and clinical applications of these methods, highlighting recent advancements in virtual histopathological approaches. In addition, important areas are identified for future research to improve diagnostic accuracy and efficiency in clinical settings.
metadata
Imran, Muhammad Talha and Shafi, Imran and Ahmad, Jamil and Butt, Muhammad Fasih Uddin and Gracia Villar, Santos and García Villena, Eduardo and Khurshaid, Tahir and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, santos.gracia@uneatlantico.es, eduardo.garcia@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2024)
Virtual histopathology methods in medical imaging - a systematic review.
BMC Medical Imaging, 24 (1).
ISSN 1471-2342
Article
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
Background/Objectives: The diet quality of younger individuals is decreasing globally, with alarming trends also in the Mediterranean region. The aim of this study was to assess diet quality and adequacy in relation to country-specific dietary recommendations for children and adolescents living in the Mediterranean area. Methods: A cross-sectional survey was conducted of 2011 parents of the target population participating in the DELICIOUS EU-PRIMA project. Dietary data and cross-references with food-based recommendations and the application of the youth healthy eating index (YHEI) was assessed through 24 h recalls and food frequency questionnaires. Results: Adherence to recommendations on plant-based foods was low (less than ∼20%), including fruit and vegetables adequacy in all countries, legume adequacy in all countries except for Italy, and cereal adequacy in all countries except for Portugal. For animal products and dietary fats, the adequacy in relation to the national food-based dietary recommendations was slightly better (∼40% on average) in most countries, although the Eastern countries reported worse rates. Higher scores on the YHEI predicted adequacy in relation to vegetables (except Egypt), fruit (except Lebanon), cereals (except Spain), and legumes (except Spain) in most countries. Younger children (p < 0.005) reporting having 8–10 h adequate sleep duration (p < 0.001), <2 h/day screen time (p < 0.001), and a medium/high physical activity level (p < 0.001) displayed a better diet quality. Moreover, older respondents (p < 0.001) with a medium/high educational level (p = 0.001) and living with a partner (p = 0.003) reported that their children had a better diet quality. Conclusions: Plant-based food groups, including fruit, vegetables, legumes, and even (whole-grain) cereals are underrepresented in the diets of Mediterranean children and adolescents. Moreover, the adequate consumption of other important dietary components, such as milk and dairy products, is rather disregarded, leading to substantially suboptimal diets and poor adequacy in relation to dietary guidelines.
metadata
Giampieri, Francesca and Rosi, Alice and Scazzina, Francesca and Frias-Toral, Evelyn and Abdelkarim, Osama and Aly, Mohamed and Zambrano-Villacres, Raynier and Pons, Juancho and Vázquez-Araújo, Laura and Sumalla Cano, Sandra and Elío Pascual, Iñaki and Monasta, Lorenzo and Mata, Ana and Pardo, María Isabel and Busó, Pablo and Grosso, Giuseppe
mail
francesca.giampieri@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, sandra.sumalla@uneatlantico.es, inaki.elio@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2024)
Youth Healthy Eating Index (YHEI) and Diet Adequacy in Relation to Country-Specific National Dietary Recommendations in Children and Adolescents in Five Mediterranean Countries from the DELICIOUS Project.
Nutrients, 16 (22).
p. 3907.
ISSN 2072-6643
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Accurately predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is vital for improving battery performance and safety in applications such as consumer electronics and electric vehicles. While the prediction of RUL for these batteries is a well-established field, the current research refines RUL prediction methodologies by leveraging deep learning techniques, advancing prediction accuracy. This study proposes AccuCell Prodigy, a deep learning model that integrates auto-encoders and long short-term memory (LSTM) layers to enhance RUL prediction accuracy and efficiency. The model’s name reflects its precision (“AccuCell”) and predictive strength (“Prodigy”). The proposed methodology involves preparing a dataset of battery operational features, split using an 80–20 ratio for training and testing. Leveraging 22 variations of current (critical parameter) across three Li-ion cells, AccuCell Prodigy significantly reduces prediction errors, achieving a mean square error of 0.1305%, mean absolute error of 2.484%, and root mean square error of 3.613%, with a high R-squared value of 0.9849. These results highlight its robustness and potential for advancing battery health management.
metadata
Iftikhar, Mahrukh and Shoaib, Muhammad and Altaf, Ayesha and Iqbal, Faiza and Gracia Villar, Santos and Dzul López, Luis Alonso and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, santos.gracia@uneatlantico.es, luis.dzul@uneatlantico.es, UNSPECIFIED
(2024)
A deep learning approach to optimize remaining useful life prediction for Li-ion batteries.
Scientific Reports, 14 (1).
ISSN 2045-2322
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Video content on the web platform has increased explosively during the past decade, thanks to the open access to Facebook, YouTube, etc. YouTube is the second-largest social media platform nowadays containing more than 37 million YouTube channels. YouTube revealed at a recent press event that 30,000 new content videos per hour and 720,000 per day are posted. There is a need for an advanced deep learning-based approach to categorize the huge database of YouTube videos. This study aims to develop an artificial intelligence-based approach to categorize YouTube videos. This study analyzes the textual information related to videos like titles, descriptions, user tags, etc. using YouTube exploratory data analysis (YEDA) and shows that such information can be potentially used to categorize videos. A deep convolutional neural network (DCNN) is designed to categorize YouTube videos with efficiency and high accuracy. In addition, recurrent neural network (RNN), and gated recurrent unit (GRU) are also employed for performance comparison. Moreover, logistic regression, support vector machines, decision trees, and random forest models are also used. A large dataset with 9 classes is used for experiments. Experimental findings indicate that the proposed DCNN achieves the highest receiver operating characteristics (ROC) area under the curve (AUC) score of 99% in the context of YouTube video categorization and 96% accuracy which is better than existing approaches. The proposed approach can be used to help YouTube users suggest relevant videos and sort them by video category.
metadata
Raza, Ali and Younas, Faizan and Siddiqui, Hafeez Ur Rehman and Rustam, Furqan and Gracia Villar, Mónica and Silva Alvarado, Eduardo René and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, monica.gracia@uneatlantico.es, eduardo.silva@funiber.org, UNSPECIFIED
(2024)
An improved deep convolutional neural network-based YouTube video classification using textual features.
Heliyon, 10 (16).
e35812.
ISSN 24058440
2023
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
Behavioral economics and artificial intelligence (AI) have been two rapidly growing fields of research over the past few years. While behavioral economics aims to combine concepts from psychology, sociology, and neuroscience with classical economic thoughts to understand human decision-making processes in the complex economic environment, AI on the other hand, focuses on creating intelligent machines that can mimic human cognitive abilities such as learning, problem-solving, decision-making, and language understanding. The intersection of these two fields has led to thrilling research theories and practical applications. This study provides a bibliometric analysis of the literature on AI and behavioral economics to gain insight into research trends in this field. We conducted this bibliometric analysis using the Web of Science database on articles published between 2012 and 2022 that were related to AI and behavioral economics. VOSviewer and Bibliometrix R package were utilized to identify influential authors, journals, institutions, and countries in the field. Network analysis was also performed to identify the main research themes and their interrelationships. The analysis revealed that the number of publications on AI and behavioral economics has been increasing steadily over the past decade. We found that most studies focused on customer and consumer behavior, including topics such as decision-making under uncertainty, neuroeconomics, and behavioral game theory, combined mainly with machine learning and deep learning techniques. We also identified several emerging themes, including the use of AI in nudging and prospect theory in behavioral finance, as well as undeveloped themes such as AI-driven behavioral macroeconomics. The findings suggests that there is a need for more interdisciplinary collaboration between researchers in behavioral economics and AI. We also suggest that future research on AI and behavioral economics further consider the ethical implications of using AI and behavioral insights in decision-making. This study can serve as a valuable resource for researchers interested in AI and behavioral economics.
metadata
Aoujil, Zakaria and Hanine, Mohamed and Soriano Flores, Emmanuel and Samad, Md Abdu and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, emmanuel.soriano@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2023)
Artificial Intelligence and Behavioral Economics: A Bibliographic Analysis of Research Field.
IEEE Access.
p. 1.
ISSN 2169-3536
(In Press)
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Objective The aim was to explore the association of demographic and prehospital parameters with short-term and long-term mortality in acute life-threatening cardiovascular disease by using a hazard model, focusing on elderly individuals, by comparing patients under 75 years versus patients over 75 years of age.
Design Prospective, multicentre, observational study.
Setting Emergency medical services (EMS) delivery study gathering data from two back-to-back studies between 1 October 2019 and 30 November 2021. Six advanced life support (ALS), 43 basic life support and five hospitals in Spain were considered.
Participants Adult patients suffering from acute life-threatening cardiovascular disease attended by the EMS.
Primary and secondary outcome measures The primary outcome was in-hospital mortality from any cause within the first to the 365 days following EMS attendance. The main measures included prehospital demographics, biochemical variables, prehospital ALS techniques used and syndromic suspected conditions.
Results A total of 1744 patients fulfilled the inclusion criteria. The 365-day cumulative mortality in the elderly amounted to 26.1% (229 cases) versus 11.6% (11.6%) in patients under 75 years old. Elderly patients (≥75 years) presented a twofold risk of mortality compared with patients ≤74 years. Life-threatening interventions (mechanical ventilation, cardioversion and defibrillation) were also related to a twofold increased risk of mortality. Importantly, patients suffering from acute heart failure presented a more than twofold increased risk of mortality.
Conclusions This study revealed the prehospital variables associated with the long-term mortality of patients suffering from acute cardiovascular disease. Our results provide important insights for the development of specific codes or scores for cardiovascular diseases to facilitate the risk of mortality characterisation.
metadata
del Pozo Vegas, Carlos and Zalama-Sánchez, Daniel and Sanz-Garcia, Ancor and López-Izquierdo, Raúl and Sáez-Belloso, Silvia and Mazas Pérez-Oleaga, Cristina and Dominguez Azpíroz, Irma and Elío Pascual, Iñaki and Martín-Rodríguez, Francisco
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, cristina.mazas@uneatlantico.es, irma.dominguez@unini.edu.mx, inaki.elio@uneatlantico.es, UNSPECIFIED
(2023)
Prehospital acute life-threatening cardiovascular disease in elderly: an observational, prospective, multicentre, ambulance-based cohort study.
BMJ Open, 13 (11).
e078815.
ISSN 2044-6055
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Introduction: Rotavirus infection is a major cause of mortality among children under 5 years in Bangladesh. There is lack of integrated studies on rotavirus prevalence and genetic diversity during 1973 to 2023 in Bangladesh.
Methods: This meta-analysis was conducted to determine the prevalence, genotypic diversity and seasonal distribution of rotavirus during pre-vaccination period in Bangladesh. This study included published articles on rotavirus A, rotavirus B and rotavirus C. We used Medline, Scopus and Google Scholar for published articles. Selected literatures were published between 1973 to 2023.
Results: This study detected 12431 research articles published on rotavirus. Based on the inclusion criteria, 29 of 75 (30.2%) studies were selected. Molecular epidemiological data was taken from 29 articles, prevalence data from 29 articles, and clinical symptoms from 19 articles. The pooled prevalence of rotavirus was 30.1% (95% CI: 22%-45%, p = 0.005). Rotavirus G1 (27.1%, 2228 of 8219) was the most prevalent followed by G2 (21.09%, 1733 of 8219), G4 (11.58%, 952 of 8219), G9 (9.37%, 770 of 8219), G12 (8.48%, 697 of 8219), and G3 (2.79%, 229 of 8219), respectively. Genotype P[8] (40.6%, 2548 of 6274) was the most prevalent followed by P[4] (12.4%, 777 of 6274) and P[6] (6.4%, 400 of 6274), respectively. Rotavirus G1P[8] (19%) was the most frequent followed by G2P [4] (9.4%), G12P[8] (7.2%), and G9P[8], respectively. Rotavirus infection had higher odds of occurrence during December and February (aOR: 2.86, 95% CI: 2.43-3.6, p = 0.001).
Discussion: This is the first meta-analysis including all the studies on prevalence, molecular epidemiology, and genetic diversity of rotavirus from 1973 to 2023, pre-vaccination period in Bangladesh. This study will provide overall scenario of rotavirus genetic diversity and seasonality during pre-vaccination period and aids in policy making for rotavirus vaccination program in Bangladesh. This work will add valuable knowledge for vaccination against rotavirus and compare the data after starting vaccination in Bangladesh.
metadata
Sharif, Nadim and Sharif, Nazmul and Khan, Afsana and Dominguez Azpíroz, Irma and Martínez Díaz, Raquel and Díez, Isabel De la Torre and Parvez, Anowar Khasru and Dey, Shuvra Kanti
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, irma.dominguez@unini.edu.mx, raquel.martinez@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2023)
Prevalence and genetic diversity of rotavirus in Bangladesh during pre-vaccination period, 1973-2023: a meta-analysis.
Frontiers in Immunology, 14.
ISSN 1664-3224
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Software cost and effort estimation is one of the most significant tasks in the area of software engineering. Research conducted in this field has been evolving with new techniques that necessitate periodic comparative analyses. Software project success largely depends on accurate software cost estimation as it gives an idea of the challenges and risks involved in the development. The great diversity of ML and Non-ML techniques has generated a comparison and progressed into the integration of these techniques. Based on varying advantages it has become imperative to work out preferred estimation techniques to improve the project development process. This study aims to present a systematic literature review (SLR) to investigate the trends of the articles published in the recent one and a half decades and to propose a way forward. This systematic literature review has proposed a three-stage approach to plan (Tollgate approach), conduct (Likert type scale), and report the results from five renowned digital libraries. For the selected 52 articles, artificial neural network model (ANN) and constructive cost model (COCOMO) based approaches have been the favored techniques. The mean magnitude of relative error (MMRE) has been the preferred accuracy metric, software engineering, and project management are the most relevant fields, and the promise repository has been identified as the widely accessed database. This review is likely to be of value for the development, cost, and effort estimations.
metadata
Rashid, Chaudhary Hamza and Shafi, Imran and Ahmad, Jamil and Bautista Thompson, Ernesto and Masías Vergara, Manuel and Diez, Isabel De La Torre and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, ernesto.bautista@unini.edu.mx, manuel.masias@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2023)
Software Cost and Effort Estimation: Current Approaches and Future Trends.
IEEE Access.
p. 1.
ISSN 2169-3536
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Data mining is an analytical approach that contributes to achieving a solution to many problems by extracting previously unknown, fascinating, nontrivial, and potentially valuable information from massive datasets. Clustering in data mining is used for splitting or segmenting data items/points into meaningful groups and clusters by grouping the items that are near to each other based on certain statistics. This paper covers various elements of clustering, such as algorithmic methodologies, applications, clustering assessment measurement, and researcher-proposed enhancements with their impact on data mining thorough grasp of clustering algorithms, its applications, and the advances achieved in the existing literature. This study includes a literature search for papers published between 1995 and 2023, including conference and journal publications. The study begins by outlining fundamental clustering techniques along with algorithm improvements and emphasizing their advantages and limitations in comparison to other clustering algorithms. It investigates the evolution measures for clustering algorithms with an emphasis on metrics used to gauge clustering quality, such as the F-measure and the Rand Index. This study includes a variety of clustering-related topics, such as algorithmic approaches, practical applications, metrics for clustering evaluation, and researcher-proposed improvements. It addresses numerous methodologies offered to increase the convergence speed, resilience, and accuracy of clustering, such as initialization procedures, distance measures, and optimization strategies. The work concludes by emphasizing clustering as an active research area driven by the need to identify significant patterns and structures in data, enhance knowledge acquisition, and improve decision making across different domains. This study aims to contribute to the broader knowledge base of data mining practitioners and researchers, facilitating informed decision making and fostering advancements in the field through a thorough analysis of algorithmic enhancements, clustering assessment metrics, and optimization strategies.
metadata
Chaudhry, Mahnoor and Shafi, Imran and Mahnoor, Mahnoor and Ramírez-Vargas, Debora L. and Bautista Thompson, Ernesto and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, debora.ramirez@unini.edu.mx, ernesto.bautista@unini.edu.mx, UNSPECIFIED
(2023)
A Systematic Literature Review on Identifying Patterns Using Unsupervised Clustering Algorithms: A Data Mining Perspective.
Symmetry, 15 (9).
p. 1679.
ISSN 2073-8994
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Articles and books
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Abierto
Inglés
Artificial intelligence (AI)-based models have emerged as powerful tools in financial markets, capable of reducing investment risks and aiding in selecting highly profitable stocks by achieving precise predictions. This holds immense value for investors, as it empowers them to make data-driven decisions. Identifying current and future trends in multi-class forecasting techniques employed within financial markets, particularly profitability analysis as an evaluation metric is important. The review focuses on examining stud-ies conducted between 2018 and 2023, sourced from three prominent academic databases. A meticulous three-stage approach was employed, encompassing the systematic planning, conduct, and analysis of the se-lected studies. Specifically, the analysis emphasizes technical assessment, profitability analysis, hybrid mod-eling, and the type of results generated by models. Articles were shortlisted based on inclusion and exclusion criteria, while a rigorous quality assessment through ten quality criteria questions, utilizing a Likert-type scale was employed to ensure methodological robustness. We observed that ensemble and hybrid models with long short-term memory (LSTM) and support vector machines (SVM) are being more adopted for financial trends and price prediction. Moreover, hybrid models employing AI algorithms for feature engineering have great potential at par with ensemble techniques. Most studies only employ performance metrics and lack utilization of profitability metrics or investment or trading strategy (simulated or real-time). Similarly, research on multi-class or output is severely lacking in financial forecasting and can be a good avenue for future research.
metadata
Khattak, Bilal Hassan Ahmed and Shafi, Imran and Khan, Abdul Saboor and Soriano Flores, Emmanuel and García Lara, Roberto and Samad, Md. Abdus and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, emmanuel.soriano@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2023)
A Systematic Survey of AI Models in Financial Market Forecasting for Profitability Analysis.
IEEE Access, 11.
pp. 125359-125380.
ISSN 2169-3536
<a class="ep_document_link" href="/15983/1/Food%20Science%20%20%20Nutrition%20-%202025%20-%20Tanveer%20-%20Novel%20Transfer%20Learning%20Approach%20for%20Detecting%20Infected%20and%20Healthy%20Maize%20Crop.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Novel Transfer Learning Approach for Detecting Infected and Healthy Maize Crop Using Leaf Images
Maize is a staple crop worldwide, essential for food security, livestock feed, and industrial uses. Its health directly impacts agricultural productivity and economic stability. Effective detection of maize crop health is crucial for preventing disease spread and ensuring high yields. This study presents VG-GNBNet, an innovative transfer learning model that accurately detects healthy and infected maize crops through a two-step feature extraction process. The proposed model begins by leveraging the visual geometry group (VGG-16) network to extract initial pixel-based spatial features from the crop images. These features are then further refined using the Gaussian Naive Bayes (GNB) model and feature decomposition-based matrix factorization mechanism, which generates more informative features for classification purposes. This study incorporates machine learning models to ensure a comprehensive evaluation. By comparing VG-GNBNet's performance against these models, we validate its robustness and accuracy. Integrating deep learning and machine learning techniques allows VG-GNBNet to capitalize on the strengths of both approaches, leading to superior performance. Extensive experiments demonstrate that the proposed VG-GNBNet+GNB model significantly outperforms other models, achieving an impressive accuracy score of 99.85%. This high accuracy highlights the model's potential for practical application in the agricultural sector, where the precise detection of crop health is crucial for effective disease management and yield optimization.
Muhammad Usama Tanveer mail , Kashif Munir mail , Ali Raza mail , Laith Abualigah mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Imran Ashraf mail ,
Tanveer
<a class="ep_document_link" href="/16270/1/s12880-024-01546-4.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Novel transfer learning based bone fracture detection using radiographic images
A bone fracture is a medical condition characterized by a partial or complete break in the continuity of the bone. Fractures are primarily caused by injuries and accidents, affecting millions of people worldwide. The healing process for a fracture can take anywhere from one month to one year, leading to significant economic and psychological challenges for patients. The detection of bone fractures is crucial, and radiographic images are often relied on for accurate assessment. An efficient neural network method is essential for the early detection and timely treatment of fractures. In this study, we propose a novel transfer learning-based approach called MobLG-Net for feature engineering purposes. Initially, the spatial features are extracted from bone X-ray images using a transfer model, MobileNet, and then input into a tree-based light gradient boosting machine (LGBM) model for the generation of class probability features. Several machine learning (ML) techniques are applied to the subsets of newly generated transfer features to compare the results. K-nearest neighbor (KNN), LGBM, logistic regression (LR), and random forest (RF) are implemented using the novel features with optimized hyperparameters. The LGBM and LR models trained on proposed MobLG-Net (MobileNet-LGBM) based features outperformed others, achieving an accuracy of 99% in predicting bone fractures. A cross-validation mechanism is used to evaluate the performance of each model. The proposed study can improve the detection of bone fractures using X-ray images.
Aneeza Alam mail , Ahmad Sami Al-Shamayleh mail , Nisrean Thalji mail , Ali Raza mail , Edgar Aníbal Morales Barajas mail , Ernesto Bautista Thompson mail ernesto.bautista@unini.edu.mx, Isabel de la Torre Diez mail , Imran Ashraf mail ,
Alam
<a href="/16273/1/v16p0506.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Hybrid Model with Wavelet Decomposition and EfficientNet for Accurate Skin Cancer Classification
Faced with anomalies in medical images, Deep learning is facing major challenges in detecting, diagnosing, and classifying the various pathologies that can be treated via medical imaging. The main challenges encountered are mainly due to the imbalance and variability of the data, as well as its complexity. The detection and classification of skin diseases is one such challenge that researchers are trying to overcome, as these anomalies present great variability in terms of appearance, texture, color, and localization, which sometimes makes them difficult to identify accurately and quickly, particularly by doctors, or by the various Deep Learning techniques on offer. In this study, an innovative and robust hybrid architecture is unveiled, underscoring the symbiotic potential of wavelet decomposition in conjunction with EfficientNet models. This approach integrates wavelet transformations with an EfficientNet backbone and incorporates advanced data augmentation, loss function, and optimization strategies. The model tested on the publicly accessible HAM10000 and ISIC2017 datasets has achieved an accuracy rate of 94.7%, and 92.2% respectively.
Amina Aboulmira mail , Hamid Hrimech mail , Mohamed Lachgar mail , Mohamed Hanine mail , Carlos Manuel Osorio García mail carlos.osorio@uneatlantico.es, Gerardo Méndez Mezquita mail , Imran Ashraf mail ,
Aboulmira
<a class="ep_document_link" href="/16577/1/nutrients-17-00521-v2.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Nut Consumption Is Associated with Cognitive Status in Southern Italian Adults
Background: Nut consumption has been considered a potential protective factor against cognitive decline. The aim of this study was to test whether higher total and specific nut intake was associated with better cognitive status in a sample of older Italian adults. Methods: A cross-sectional analysis on 883 older adults (>50 y) was conducted. A 110-item food frequency questionnaire was used to collect information on the consumption of various types of nuts. The Short Portable Mental Status Questionnaire was used to assess cognitive status. Multivariate logistic regression analyses were performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between nut intake and cognitive status after adjusting for potential confounding factors. Results: The median intake of total nuts was 11.7 g/day and served as a cut-off to categorize low and high consumers (mean intake 4.3 g/day vs. 39.7 g/day, respectively). Higher total nut intake was significantly associated with a lower prevalence of impaired cognitive status among older individuals (OR = 0.35, CI 95%: 0.15, 0.84) after adjusting for potential confounding factors. Notably, this association remained significant after additional adjustment for adherence to the Mediterranean dietary pattern as an indicator of diet quality, (OR = 0.32, CI 95%: 0.13, 0.77). No significant associations were found between cognitive status and specific types of nuts. Conclusions: Habitual nut intake is associated with better cognitive status in older adults.
Justyna Godos mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Evelyn Frias-Toral mail , Raynier Zambrano-Villacres mail , Angel Olider Rojas Vistorte mail angel.rojas@uneatlantico.es, Vanessa Yélamos Torres mail vanessa.yelamos@funiber.org, Maurizio Battino mail maurizio.battino@uneatlantico.es, Fabio Galvano mail , Sabrina Castellano mail , Giuseppe Grosso mail ,
Godos
<a class="ep_document_link" href="/16580/1/ofaf039.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background Co-infection of dengue and COVID-19 has increased the health burden worldwide. We found a significant knowledge gap in epidemiology and risk factors of co-infection in Bangladesh. Methods This study included 2458 participants from Dhaka city from December 1, 2021, to November 30, 2023. We performed Kruskal-Walli’s test and χ2 test. Multivariable logistic regression was also performed. Results Co-infection of dengue and COVID-19 was found among 31% of the participants. Co-prevalence of dengue and COVID-19 was found in higher frequency in Jatrabari (14%), and Motijhil (11%). Severe (65%, p-value 0.001) and very severe (78%, p-value 0.005) symptoms were prevalent among the participants aged >50 years. Long-term illness was prevalent among the participants with co-infection (35%, 95% CI 33%- 36%) and COVID-19 (28%, 95% CI 26%- 30%). Co-infected participants had a higher frequency of heart damage (31.6%, p-value 0.005), brain fog (22%, p-value 0.03), and kidney damage (49.3%, p-value 0.001). Fever (100%) was the most prevalent symptom followed by weakness (89.6%), chills (82.4%), fatigue (81.4%), headache (80.6%), feeling thirsty (76.3%), myalgia (75%), pressure in the chest (69.1%), and shortness of breath (68.3%), respectively. Area of residence (OR 2.26, 95% CI 1.96-2.49, p-value 0.01), number of family members (OR 1.45, 95% CI 1.08-1.87, p-value <0.001), and population density (OR 2.43, 95% CI 2.15-3.01, p-value 0.001) were associated with higher odds of co-infection. We found that coinfected participants had a 4 times higher risk of developing severe health conditions (OR 4.22, 95% CI 4.11-4.67, p-value 0.02). Conclusions This is one of the early epidemiologic studies of co-infection of dengue and COVID-19 in Bangladesh.
Nadim Sharif mail , Rubayet Rayhan Opu mail , Afsana Khan mail , Tama Saha mail , Abdullah Ibna Masud mail , Jannatin Naim mail , Zaily Leticia Velázquez Martínez mail zaily.velazquez@unini.edu.mx, Carlos Manuel Osorio García mail carlos.osorio@uneatlantico.es, Meshari A Alsuwat mail , Fuad M Alzahrani mail , Khalid J Alzahrani mail , Isabel De la Torre Díez mail , Shuvra Kanti Dey mail ,
Sharif