Analyse et stratégies d’engagement des jeunes ruraux dans les chaines de valeur agricoles dans la province du Sud-Kivu en République Démocratique du Congo

<a href="/17061/1/fspor-1-1565900.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Tensiomyography, functional movement screen and counter movement jump for the assessment of injury risk in sport: a systematic review of original studies of diagnostic tests

Background: Scientific research should be carried out to prevent sports injuries. For this purpose, new assessment technologies must be used to analyze and identify the risk factors for injury. The main objective of this systematic review was to compile, synthesize and integrate international research published in different scientific databases on Countermovement Jump (CMJ), Functional Movement Screen (FMS) and Tensiomyography (TMG) tests and technologies for the assessment of injury risk in sport. This way, this review determines the current state of the knowledge about this topic and allows a better understanding of the existing problems, making easier the development of future lines of research. Methodology: A structured search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines and the PICOS model until November 30, 2024, in the MEDLINE/PubMed, Web of Science (WOS), ScienceDirect, Cochrane Library, SciELO, EMBASE, SPORTDiscus and Scopus databases. The risk of bias was assessed and the PEDro scale was used to analyze methodological quality. Results: A total of 510 articles were obtained in the initial search. After inclusion and exclusion criteria, the final sample was 40 articles. These studies maintained a high standard of quality. This revealed the effects of the CMJ, FMS and TMG methods for sports injury assessment, indicating the sample population, sport modality, assessment methods, type of research design, study variables, main findings and intervention effects. Conclusions: The CMJ vertical jump allows us to evaluate the power capacity of the lower extremities, both unilaterally and bilaterally, detect neuromuscular asymmetries and evaluate fatigue. Likewise, FMS could be used to assess an athlete's basic movement patterns, mobility and postural stability. Finally, TMG is a non-invasive method to assess the contractile properties of superficial muscles, monitor the effects of training, detect muscle asymmetries, symmetries, provide information on muscle tone and evaluate fatigue. Therefore, they should be considered as assessment tests and technologies to individualize training programs and identify injury risk factors.

Producción Científica

Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Antonio Bores-Cerezal mail antonio.bores@uneatlantico.es, Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Julio Calleja-González mail ,

Velarde-Sotres

<a class="ep_document_link" href="/17139/1/s41598-025-89266-9.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Harnessing AI forward and backward chaining with telemetry data for enhanced diagnostics and prognostics of smart devices

In the rapidly evolving landscape of artificial intelligence (AI) and the Internet of Things (IoT), the significance of device diagnostics and prognostics is paramount for guaranteeing the dependable operation and upkeep of intricate systems. The capacity to precisely diagnose and preemptively predict potential failures holds the potential to considerably amplify maintenance efficiency, diminish downtime, and optimize resource allocation. The wealth of information offered by telemetry data gathered from IoT devices presents an opportunity for diagnostics and prognostics applications. However, extracting valuable insights and making well-timed decisions from this extensive data reservoir remains a formidable challenge. This study proposes a novel AI-driven framework that integrates forward chaining and backward chaining algorithms to analyze telemetry data from IoT devices. The proposed methodology utilizes rule-based inference to detect real-time anomalies and predict potential future failures, providing a dual-layered approach for diagnostics and prognostics. The results show that the diagnostics engine using forward chaining detects real-time issues like “High Temperature” and “Low Pressure,” while the prognostics engine with backward chaining predicts potential future occurrences of these issues, enabling proactive prevention measures. The experimental results demonstrate that adopting this approach could offer valuable assistance to authorities and stakeholders. Accurate early diagnosis and prediction of potential failures have the capability to greatly improve maintenance efficiency, minimize downtime, and optimize cost.

Producción Científica

Muhammad Shoaib Farooq mail , Rizwan Pervez Mir mail , Atif Alvi mail , Kilian Tutusaus mail kilian.tutusaus@uneatlantico.es, Eduardo García Villena mail eduardo.garcia@uneatlantico.es, Fadwa Alrowais mail , Hanen Karamti mail , Imran Ashraf mail ,

Farooq

<a href="/17140/1/s41598-025-90616-w.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Efficient CNN architecture with image sensing and algorithmic channeling for dataset harmonization

The process of image formulation uses semantic analysis to extract influential vectors from image components. The proposed approach integrates DenseNet with ResNet-50, VGG-19, and GoogLeNet using an innovative bonding process that establishes algorithmic channeling between these models. The goal targets compact efficient image feature vectors that process data in parallel regardless of input color or grayscale consistency and work across different datasets and semantic categories. Image patching techniques with corner straddling and isolated responses help detect peaks and junctions while addressing anisotropic noise through curvature-based computations and auto-correlation calculations. An integrated channeled algorithm processes the refined features by uniting local-global features with primitive-parameterized features and regioned feature vectors. Using K-nearest neighbor indexing methods analyze and retrieve images from the harmonized signature collection effectively. Extensive experimentation is performed on the state-of-the-art datasets including Caltech-101, Cifar-10, Caltech-256, Cifar-100, Corel-10000, 17-Flowers, COIL-100, FTVL Tropical Fruits, Corel-1000, and Zubud. This contribution finally endorses its standing at the peak of deep and complex image sensing analysis. A state-of-the-art deep image sensing analysis method delivers optimal channeling accuracy together with robust dataset harmonization performance.

Producción Científica

Khadija Kanwal mail , Khawaja Tehseen Ahmad mail , Aiza Shabir mail , Li Jing mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Hanen Karamti mail , Imran Ashraf mail ,

Kanwal

<a href="/17272/1/s41598-025-88676-z.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Incorporating soil information with machine learning for crop recommendation to improve agricultural output

The agriculture field is the basis of a country’s change and financial system. Crops are the main source of revenue for the people. One of the farmer’s most challenging problems is choosing the right crops for their land. This critical decision has a direct impact on productivity and profit. Wrong crop selection not only reduces yields but also causes food shortages, creating more problems for farmers. The best crop depends on many parameters such as illustration humidity, N, K, P, pH, rainfall, and temperature of the soil. Getting advice from experts is not an easy task. This requires intelligent models in crop recommendations that use machine-learning models to suggest suitable crops for soil and other environmental conditions. Temperature, humidity, and pH are important data for growing crops in agriculture. In this study, we gather and preprocess relevant data. To recommend the most suitable crop, we propose a novel ensemble learning approach called RFXG based on random forest (RF) and extreme gradient boosting (XGB) to suggest the best crop out of the twenty-two major crops. To measure the capability of the proposed approach, various machine learning models are utilized including extra tree classifier, multilayer perceptron, RF, decision trees, logistic regression, and XGB classifiers. To get the best performance, optimization of hyperparameter, and K-fold cross-validation procedures are performed. Experimental outcomes show that the proposed RFXG technique achieves a recommendation accuracy is 98%. Specifically, the proposed solution provides immediate recommendations to help farmers make timely decisions.

Producción Científica

Hadeeqa Afzal mail , Madiha Amjad mail , Ali Raza mail , Kashif Munir mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Imran Ashraf mail ,

Afzal

<a class="ep_document_link" href="/17450/1/ejaz-et-al-2025-fundus-image-classification-using-feature-concatenation-for-early-diagnosis-of-retinal-disease.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Fundus image classification using feature concatenation for early diagnosis of retinal disease

Background Deep learning models assist ophthalmologists in early detection of diseases from retinal images and timely treatment. Aim Owing to robust and accurate results from deep learning models, we aim to use convolutional neural network (CNN) to provide a non-invasive method for early detection of eye diseases. Methodology We used a hybridized CNN with deep learning (DL) based on two separate CNN blocks, to identify multiple Optic Disc Cupping, Diabetic Retinopathy, Media Haze, and Healthy images. We used the RFMiD dataset, which contains various categories of fundus images representing different eye diseases. Data augmenting, resizing, coping, and one-hot encoding are used among other preprocessing techniques to improve the performance of the proposed model. Color fundus images have been analyzed by CNNs to extract relevant features. Two CCN models that extract deep features are trained in parallel. To obtain more noticeable features, the gathered features are further fused utilizing the Canonical Correlation Analysis fusion approach. To assess the effectiveness, we employed eight classification algorithms: Gradient boosting, support vector machines, voting ensemble, medium KNN, Naive Bayes, COARSE- KNN, random forest, and fine KNN. Results With the greatest accuracy of 93.39%, the ensemble learning performed better than the other algorithms. Conclusion The accuracy rates suggest that the deep learning model has learned to distinguish between different eye disease categories and healthy images effectively. It contributes to the field of eye disease detection through the analysis of color fundus images by providing a reliable and efficient diagnostic system.

Producción Científica

Sara Ejaz mail , Hafiz U Zia mail , Fiaz Majeed mail , Umair Shafique mail , Stefanía Carvajal-Altamiranda mail stefania.carvajal@uneatlantico.es, Vivian Lipari mail vivian.lipari@uneatlantico.es, Imran Ashraf mail ,

Ejaz

Universidad Internacional Iberoamericana México > Investigación > Tesis Doctorales

Tipo de documento: Tesis (Doctoral)

Fecha de publicación: 2024

URI: https://repositorio.unini.edu.mx/id/eprint/16487

Resumen:

La dynamique et la transition démographique mondiales avec le nombre croissant des jeunes auront des effets socio-économiques variables sur les pays à faible revenu et la communauté mondiale en général. L’extrême pauvreté des jeunes particulièrement en zones rurales est encore beaucoup plus élevée comparé à la moyenne mondiale. La création d'emplois plus nombreux et de meilleure qualité pour les jeunes est donc une priorité urgente du siècle. En dépit du rôle de locomotive reconnu de l’agriculture dans la croissance économique, la création d’emploi et la réduction de la pauvreté, plusieurs évidences font étant d’un désengagement des jeunes de ce secteur. C’est ainsi que nous avons réalisé une analyse systémique de l’engagement des jeunes ruraux dans les chaines de valeur agricoles au Sud-Kivu. Pour répondre à notre question principale à savoir pourquoi les jeunes ruraux se désengagent de plus en plus de l’agriculture, nous avons conduit la recherche sur le terrain de mars 2020 à mai 2023 dont les résultats ont été analysés et discutés à la lumière des théories en lien avec l’agriculture et la croissance économique, les chaines de valeur et l’engagement. Afin de bien appréhender la complexité et la transversalité de la question, l’approche systémique a été utilisée. Les individus à enquêter ont été choisis aléatoirement par triage sans remise en s’inspirant de la technique de l’urne de Bernoulli. Les données ont été analysées grâce au logiciel SPSS, ce qui a permis de décrire les différentes variables, vérifier leur normalité et utiliser les tests de Friedman, Khi Carré, Mann-Whitney et Kruskal-Wallis pour comprendre les liens entre elles. Premièrement, l’enquête auprès de 144 acteurs a permis d’identifier 12 facteurs d’ordre institutionnel, économique, social et écologique perçus principalement comme limitant l’essor de chaines de valeur agricoles dans la zone. Une différence statistiquement significative a été observée quant à la perception de ces facteurs selon la fonction, le type de motivation, le mieux d’origine et le niveau d’éducation des acteurs. Ce qui nous a permis de confirmer notre première hypothèse. Deuxièmement, l’étude des perceptions de 456 jeunes ruraux a montré que seuls 13,4 % des jeunes aspirent à l’agripreneuriat, 71,9% ne sont pas encouragés par leur entourage à s’engager dans l’agriculture, 73,7% sont prêts à emprunter la voie de d’exode rural/migration. 53,5 % des jeunes ont affiché une attitude négative vis-à-vis de l’agriculture comme profession. Une différence statistiquement significative a été observée concernant les scores des perceptions des facteurs économiques, personnels et sociétaux vis-à-vis de l’agriculture comme profession selon le sexe, l’âge, le niveau d’étude ainsi la zone d’origine des jeunes. Nous avons ainsi confirmé notre deuxième hypothèse. L’étude de cas mobilisant 32 jeunes agripreneurs a montré que 84,4% d’entre eux ont enregistré des résultats d’exploitation annuels positifs malgré le faible accès aux facteurs de production, un climat des affaires nonincitatif et le désintérêt affiché par la société vis-à-vis du secteur agricole. Une différence significative a été observée au niveau de leurs revenus en fonction du genre/sexe, la formation professionnelle, le sous-secteur d’activité, le statut matrimonial, l’expérience, la source du capital de démarrage. Nous considérons cela comme facteurs clés de succès de jeunes agripreneurs. Nous confirmons ainsi la troisième et dernière hypothèse de la présente thèse. Pour engager durablement les jeunes ruraux dans les chaines de valeur agricoles nous recommandons de créer un environnement politique et socio-économique facilitant l’accès aux facteurs de production ; développer des stratégies programmatiques sensibles aux jeunes ruraux en tirant profit des TIC ; promouvoir un narratif positif en faveur de l’agriculture comme profession